Abstract
We determine various properties of the regular (LB)-spaces \(ces(p-)\), \(1<p\le \infty \), generated by the family of Banach sequence spaces \(\{ces(q):1<q<p\}\). For instance, \(ces(p-)\) is a (DFS)-space which coincides with a countable inductive limit of weighted \(\ell _1\)-spaces; it is also Montel but not nuclear. Moreover, \(ces(p-)\) and \(ces(q-)\) are isomorphic as locally convex Hausdorff spaces for all choices of \(p, q\in (1,\infty ]\). In addition, with respect to the coordinatewise order, \(ces(p-)\) is also a Dedekind complete, reflexive, locally solid, lc-Riesz space with a Lebesgue topology. A detailed study is also made of various aspects (e.g., the spectrum, continuity, compactness, mean ergodicity, supercyclicity) of the Cesàro operator, multiplication operators and inclusion operators acting on such spaces (and between the spaces \(\ell _{r-}\) and \(ces(p-)\)).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)
Albanese, A.A., Bonet, J., Ricker, W.J.: Gröthendieck spaces with the Dunford-Pettis property. Positivity 14, 145–164 (2010)
Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces \(\ell ^{p+}\) and \(L^{p-}\). Glasgow Math. J. 59, 273–287 (2017)
Albanese, A.A., Bonet, J., Ricker, W.J.: The Fréchet spaces \(ces(p+),1 < p < \infty ,\). J. Math. Anal. Appl. 458, 1314–1323 (2018)
Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on Korenblum type spaces of analytic functions. Collect. Math. 69, 263–281 (2018)
Albanese, A.A., Bonet, J., Ricker, W.J.: Multiplier and averaging operators in the Banach spaces \(ces(p)\), \(1 < p < \infty \). Positivity. 23, 177–193 (2019)
Albanese, A.A., Bonet, J., Ricker, W.J.: Operators on the Fréchet sequence spaces \(ces(p+)\), \(1\le p < \infty \), Rev. R. Acad. Cien. Serie A Mat. RACSAM. https://doi.org/10.1007/s13398-018-0564-2
Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces. Academic Press, London-New York (1978)
Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces, Indag. Math. N.S. 20, 329–379 (2009)
Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces: a survey, Function spaces X, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 102, 13–40 (2014)
Astashkin, S.V., Maligranda, L.: Interpolation of Cesàro sequences and function spaces. Stud. Math. 215, 39–69 (2013)
Bennett, D.: Factorizing the classical inequalities, Mem. Am. Math. Soc. 120(576), viii + 130 pp. (1996)
Bierstedt, K.D.: An introduction to locally convex inductive limits. In: Hogbe-Nlend, H. (ed) Functional Analysis and its Applications, pp. 35–133. World Scientific, Singapore (1988)
Bierstedt, K.D., Meise, R.G., Summers, W.H.: Köthe sets and Köthe sequence spaces, In: Functional Analysis, Holomorphy and Approximation Theory (Rio de Janeiro, 1980), North-Holland Mathematics Studies 17, Amsterdam, pp. 27–91 (1982)
Bonet, J.: A question of Valdivia on quasinormable Fréchet spaces. Canad. Math. Bull. 34, 301–304 (1991)
Bonet, J., Ricker, W.J.: The canonical spectral measure in Köthe echelon spaces. Integr. Equ. Oper. Theory 53, 477–496 (2005)
Bonet, J., de Pagter, B., Ricker, W.J.: Mean ergodic operators and reflexive Fréchet lattices. Proc. Roy. Soc. Edinburgh 141A, 897–920 (2011)
Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of \(N\)-supercyclic operators. Stud. Math. 165, 135–157 (2004)
Bueno-Contreras, J.: The Cesàro Spaces of Dirichlet Series. Instituto de Matemàticas University Sevilla IMUS, Universidad de Sevilla, Spain (2018). Ph.D. Thesis
Crofts, G.: Concerning perfect Fréchet spaces and diagonal transformations. Math. Ann. 182, 67–76 (1969)
Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on \(\ell ^p\) and \(c_0\). Integr. Equ. Oper. Theory 80, 61–77 (2014)
Curbera, G.P., Ricker, W.J.: A feature of averaging. Integr. Equ. Oper. Theory 76, 447–449 (2013)
Díaz, J.-C.: An example of a Fréchet space, not Montel, without infinite-dimensional normable subspaces. Proc. Am. Math. Soc. 96, 721 (1986)
Edwards, R.E.: Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York Chicago San Francisco (1965)
Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998)
Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1973)
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1964)
Jagers, A.A.: A note on Cesàro sequence spaces. Nieuw Arch. Wisk. 22, 113–124 (1974)
Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)
Köthe, G.: Topological Vector Spaces I, 2nd printing rev. Springer, New York (1983)
Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)
Krengel, U.: Ergodic Theorems, de Gruyter Studies in Mathematics, 6. Walter de Gruyter Co., Berlin (1985)
Lee, P.Y.: Cesàro sequence spaces. Math. Chronicle, New Zealand 13, 29–45 (1984)
Leibowitz, G.M.: A note on the Cesàro sequence spaces. Tamkang J. Math. 2, 151–157 (1971)
Maligranda, L., Petrot, N., Suantai, S.: On the James constant and B-convexity of Cesàro and Cesàro-Orlicz sequence spaces. J. Math. Anal. Appl. 326, 312–331 (2007)
Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)
Metafune, G., Moscatelli, V.B.: On the space \(\ell ^{p+}=\cap _{q>p}\ell ^q\). Math. Nachr. 147, 7–12 (1990)
Pietsch, A.: Nuclear Locally Convex Spaces. Springer, Heidelberg (1972)
W.J. Ricker, Convolution operators in discrete Cesàro spaces. Arch. Math. (Basel) 121, 71–82 (2019)
Shiue, J.S.: On the Cesàro sequence spaces. Tamkang J. Math. 1, 19–25 (1970)
Taylor, A.E.: Introduction to Functional Analysis, Wiley, International edn. Wiley, Tokyo (1958)
Waelbroek, L.: Topological Vector Spaces and Algebras. Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971)
Wilansky, A.: Summability Through Functional Analysis. North Holland, Amsterdam (1984)
Acknowledgements
The research of the first two authors was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Albanese, A.A., Bonet, J., Ricker, W.J. (2019). Linear Operators on the (LB)-Sequence Spaces \(\mathbf{ces(p-), 1< p \le \infty } \). In: Ferrando, J. (eds) Descriptive Topology and Functional Analysis II. TFA 2018. Springer Proceedings in Mathematics & Statistics, vol 286. Springer, Cham. https://doi.org/10.1007/978-3-030-17376-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-17376-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17375-3
Online ISBN: 978-3-030-17376-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)