Skip to main content

Linear Operators on the (LB)-Sequence Spaces \(\mathbf{ces(p-), 1< p \le \infty } \)

In Honour of Manuel López-Pellicer

  • Conference paper
  • First Online:
Descriptive Topology and Functional Analysis II (TFA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 286))

Included in the following conference series:

Abstract

We determine various properties of the regular (LB)-spaces \(ces(p-)\), \(1<p\le \infty \), generated by the family of Banach sequence spaces \(\{ces(q):1<q<p\}\). For instance, \(ces(p-)\) is a (DFS)-space which coincides with a countable inductive limit of weighted \(\ell _1\)-spaces; it is also Montel but not nuclear. Moreover, \(ces(p-)\) and \(ces(q-)\) are isomorphic as locally convex Hausdorff spaces for all choices of \(p, q\in (1,\infty ]\). In addition, with respect to the coordinatewise order, \(ces(p-)\) is also a Dedekind complete, reflexive, locally solid, lc-Riesz space with a Lebesgue topology. A detailed study is also made of various aspects (e.g., the spectrum, continuity, compactness, mean ergodicity, supercyclicity) of the Cesàro operator, multiplication operators and inclusion operators acting on such spaces (and between the spaces \(\ell _{r-}\) and \(ces(p-)\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Albanese, A.A., Bonet, J., Ricker, W.J.: Gröthendieck spaces with the Dunford-Pettis property. Positivity 14, 145–164 (2010)

    Article  MathSciNet  Google Scholar 

  3. Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces \(\ell ^{p+}\) and \(L^{p-}\). Glasgow Math. J. 59, 273–287 (2017)

    Google Scholar 

  4. Albanese, A.A., Bonet, J., Ricker, W.J.: The Fréchet spaces \(ces(p+),1 < p < \infty ,\). J. Math. Anal. Appl. 458, 1314–1323 (2018)

    Google Scholar 

  5. Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on Korenblum type spaces of analytic functions. Collect. Math. 69, 263–281 (2018)

    Article  Google Scholar 

  6. Albanese, A.A., Bonet, J., Ricker, W.J.: Multiplier and averaging operators in the Banach spaces \(ces(p)\), \(1 < p < \infty \). Positivity. 23, 177–193 (2019)

    Google Scholar 

  7. Albanese, A.A., Bonet, J., Ricker, W.J.: Operators on the Fréchet sequence spaces \(ces(p+)\), \(1\le p < \infty \), Rev. R. Acad. Cien. Serie A Mat. RACSAM. https://doi.org/10.1007/s13398-018-0564-2

    Article  Google Scholar 

  8. Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces. Academic Press, London-New York (1978)

    MATH  Google Scholar 

  9. Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces, Indag. Math. N.S. 20, 329–379 (2009)

    Article  MathSciNet  Google Scholar 

  10. Astashkin, S.V., Maligranda, L.: Structure of Cesàro function spaces: a survey, Function spaces X, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 102, 13–40 (2014)

    Article  Google Scholar 

  11. Astashkin, S.V., Maligranda, L.: Interpolation of Cesàro sequences and function spaces. Stud. Math. 215, 39–69 (2013)

    Article  MathSciNet  Google Scholar 

  12. Bennett, D.: Factorizing the classical inequalities, Mem. Am. Math. Soc. 120(576), viii + 130 pp. (1996)

    Article  MathSciNet  Google Scholar 

  13. Bierstedt, K.D.: An introduction to locally convex inductive limits. In: Hogbe-Nlend, H. (ed) Functional Analysis and its Applications, pp. 35–133. World Scientific, Singapore (1988)

    Google Scholar 

  14. Bierstedt, K.D., Meise, R.G., Summers, W.H.: Köthe sets and Köthe sequence spaces, In: Functional Analysis, Holomorphy and Approximation Theory (Rio de Janeiro, 1980), North-Holland Mathematics Studies 17, Amsterdam, pp. 27–91 (1982)

    Google Scholar 

  15. Bonet, J.: A question of Valdivia on quasinormable Fréchet spaces. Canad. Math. Bull. 34, 301–304 (1991)

    Article  MathSciNet  Google Scholar 

  16. Bonet, J., Ricker, W.J.: The canonical spectral measure in Köthe echelon spaces. Integr. Equ. Oper. Theory 53, 477–496 (2005)

    Article  MathSciNet  Google Scholar 

  17. Bonet, J., de Pagter, B., Ricker, W.J.: Mean ergodic operators and reflexive Fréchet lattices. Proc. Roy. Soc. Edinburgh 141A, 897–920 (2011)

    Article  Google Scholar 

  18. Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of \(N\)-supercyclic operators. Stud. Math. 165, 135–157 (2004)

    Article  MathSciNet  Google Scholar 

  19. Bueno-Contreras, J.: The Cesàro Spaces of Dirichlet Series. Instituto de Matemàticas University Sevilla IMUS, Universidad de Sevilla, Spain (2018). Ph.D. Thesis

    Google Scholar 

  20. Crofts, G.: Concerning perfect Fréchet spaces and diagonal transformations. Math. Ann. 182, 67–76 (1969)

    Article  MathSciNet  Google Scholar 

  21. Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on \(\ell ^p\) and \(c_0\). Integr. Equ. Oper. Theory 80, 61–77 (2014)

    Article  Google Scholar 

  22. Curbera, G.P., Ricker, W.J.: A feature of averaging. Integr. Equ. Oper. Theory 76, 447–449 (2013)

    Article  MathSciNet  Google Scholar 

  23. Díaz, J.-C.: An example of a Fréchet space, not Montel, without infinite-dimensional normable subspaces. Proc. Am. Math. Soc. 96, 721 (1986)

    Article  Google Scholar 

  24. Edwards, R.E.: Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York Chicago San Francisco (1965)

    Google Scholar 

  25. Grosse-Erdmann, K.-G.: The Blocking Technique, Weighted Mean Operators and Hardy’s Inequality. Lecture Notes in Mathematics, vol. 1679. Springer, Berlin (1998)

    Google Scholar 

  26. Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1973)

    MATH  Google Scholar 

  27. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1964)

    MATH  Google Scholar 

  28. Jagers, A.A.: A note on Cesàro sequence spaces. Nieuw Arch. Wisk. 22, 113–124 (1974)

    MathSciNet  MATH  Google Scholar 

  29. Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)

    Book  Google Scholar 

  30. Köthe, G.: Topological Vector Spaces I, 2nd printing rev. Springer, New York (1983)

    Book  Google Scholar 

  31. Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)

    Book  Google Scholar 

  32. Krengel, U.: Ergodic Theorems, de Gruyter Studies in Mathematics, 6. Walter de Gruyter Co., Berlin (1985)

    Google Scholar 

  33. Lee, P.Y.: Cesàro sequence spaces. Math. Chronicle, New Zealand 13, 29–45 (1984)

    MATH  Google Scholar 

  34. Leibowitz, G.M.: A note on the Cesàro sequence spaces. Tamkang J. Math. 2, 151–157 (1971)

    MathSciNet  MATH  Google Scholar 

  35. Maligranda, L., Petrot, N., Suantai, S.: On the James constant and B-convexity of Cesàro and Cesàro-Orlicz sequence spaces. J. Math. Anal. Appl. 326, 312–331 (2007)

    Article  MathSciNet  Google Scholar 

  36. Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  37. Metafune, G., Moscatelli, V.B.: On the space \(\ell ^{p+}=\cap _{q>p}\ell ^q\). Math. Nachr. 147, 7–12 (1990)

    Article  MathSciNet  Google Scholar 

  38. Pietsch, A.: Nuclear Locally Convex Spaces. Springer, Heidelberg (1972)

    Book  Google Scholar 

  39. W.J. Ricker, Convolution operators in discrete Cesàro spaces. Arch. Math. (Basel) 121, 71–82 (2019)

    Article  Google Scholar 

  40. Shiue, J.S.: On the Cesàro sequence spaces. Tamkang J. Math. 1, 19–25 (1970)

    MathSciNet  MATH  Google Scholar 

  41. Taylor, A.E.: Introduction to Functional Analysis, Wiley, International edn. Wiley, Tokyo (1958)

    Google Scholar 

  42. Waelbroek, L.: Topological Vector Spaces and Algebras. Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971)

    Google Scholar 

  43. Wilansky, A.: Summability Through Functional Analysis. North Holland, Amsterdam (1984)

    MATH  Google Scholar 

Download references

Acknowledgements

The research of the first two authors was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102 (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Bonet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albanese, A.A., Bonet, J., Ricker, W.J. (2019). Linear Operators on the (LB)-Sequence Spaces \(\mathbf{ces(p-), 1< p \le \infty } \). In: Ferrando, J. (eds) Descriptive Topology and Functional Analysis II. TFA 2018. Springer Proceedings in Mathematics & Statistics, vol 286. Springer, Cham. https://doi.org/10.1007/978-3-030-17376-0_3

Download citation

Publish with us

Policies and ethics