Skip to main content

Switching Energy Loss in Fractional-Order Time-Varying Heat Diffusion Model

  • Conference paper
  • First Online:
Advances in Non-Integer Order Calculus and Its Applications (RRNR 2018)

Abstract

Anomalous heat diffusion process is one of the most popular examples of real world fractional-order system modelling. It has been shown, that such approach is well suited for modelling diffusion in fractal, porous media. A number of papers examining this problem have been published, either for constant- or variable-order systems. However, few of them addressed energy-related issues of such process. Better understanding of the relationship between the energy and order would have a great impact on fractional order modelling, helping to predict the results of stochastic processes in varying, complicated systems and making it easier to find the real order of the system.

In this paper a relationship between switching orders and integral energy loss of the system is being investigated.

Two-dimensional time-varying numerical model and its simulation based on finite element method is being considered in order to provide consistent data for further real-case experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borino, G., Di Paola, M., Zingales, M.: A non-local model of fractional heat conduction in rigid bodies. Eur. Phy. J. Spec. Top. 193(1), 173–184 (2011)

    Article  Google Scholar 

  2. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics (1998)

    Google Scholar 

  3. Chen, W., Sun, H., Zhang, X., Korošak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59(5), 1754–1758 (2010). Fractional Differentiation and Its Applications

    Article  MathSciNet  Google Scholar 

  4. Chen, Y., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivativesan expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)

    Article  Google Scholar 

  5. Havlin, S., Ben-Avraham, D.: Diffusion in disordered media. Adv. Phys. 36(6), 695–798 (1987)

    Article  Google Scholar 

  6. Koch, D.L., Brady, J.F.: Anomalous diffusion in heterogeneous porous media. Phys. Fluids (1958–1988) 31(5), 965–973 (1988)

    Article  Google Scholar 

  7. Kosztolowicz, T.: Subdiffusion in a system with a thick membrane. J. Membr. Sci. 320(1–2), 492–499 (2008)

    Article  Google Scholar 

  8. Macias, M., Sierociuk, D.: An alternative recursive fractional variable-order derivative definition and its analog validation. In: 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA), pp. 1–6. IEEE (2014)

    Google Scholar 

  9. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  Google Scholar 

  10. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  11. Sakrajda, P., Sierociuk, D.: Modeling heat transfer process in grid-holes structure changed in time using fractional variable order calculus. In: Theory and Applications of Non-integer Order Systems, pp. 297–306. Springer, Heidelberg (2017)

    Google Scholar 

  12. Sakrajda, P., Wiraszka, M.S.: Fractional variable-order model of heat transfer in time-varying fractal media. In: 2018 19th International Carpathian Control Conference (ICCC), pp. 297–306, February 2018 (submitted)

    Google Scholar 

  13. Sierociuk, D.: Fractional Order Discrete State-Space System Simulink Toolkit User Guide (2005). http://www.ee.pw.edu.pl/~dsieroci/fsst/fsst.htm

  14. Sierociuk, D., Dzieliński, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous media using fractional calculus. Phil. Trans. R. Soc. A 371(1990), 20120146 (2013)

    Article  MathSciNet  Google Scholar 

  15. Sierociuk, D., Malesza, W., Macias, M.: Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model. 39(13), 3876–3888 (2015)

    Article  MathSciNet  Google Scholar 

  16. Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A., Ziubinski, P.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257, 2–11 (2015)

    Google Scholar 

  17. Sierociuk, D., Ziubinski, P.: Fractional order estimation schemes for fractional and integer order systems with constant and variable fractional order colored noise. Circ. Syst. Sig. Process. 33(12), 3861–3882 (2014)

    Article  MathSciNet  Google Scholar 

  18. Stanisławski, R., Latawiec, K.J.: Normalized finite fractional differences: computational and accuracy breakthroughs. Int. J. Appl. Math. Comput. Sci. 22(4), 907–919 (2012)

    Article  MathSciNet  Google Scholar 

  19. Voller, V.R.: Fractional Stefan problems. Int. J. Heat Mass Transf. 74, 269–277 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Polish National Science Center with the decision number UMO-2014/15/B/ST7/00480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Sławomir Wiraszka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wiraszka, M.S., Sakrajda, P. (2020). Switching Energy Loss in Fractional-Order Time-Varying Heat Diffusion Model. In: Malinowska, A., Mozyrska, D., Sajewski, Ł. (eds) Advances in Non-Integer Order Calculus and Its Applications. RRNR 2018. Lecture Notes in Electrical Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-030-17344-9_22

Download citation

Publish with us

Policies and ethics