Complexity of an Identification Problem of Sharp Local Density Loss in Fractional Body

  • Krzysztof SzajekEmail author
  • Wojciech Sumelka
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 559)


In this paper the complexity of identification of sharp local density loss in the framework of the space-fractional continuum mechanics (s-FCM) is presented. The linear dynamic solution in the form of eigenproblem is chosen as a main factor in the objective function - both eigenvalues and eigenmodes are considered. It is shown that the solution space is extremely complicated and densely covered with local minima. The obtained results aim in the classification of the problem hardness versus s-FCM fundamental parameters, namely fractional body order and length scale.


Optimization Complexity Non-locality Space-fractional continuum mechanics 



This work is supported by the National Science Centre, Poland, under Grant No. 2017/27/B/ST8/00351.


  1. 1.
    Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. (ASME) 106(4), 326–330 (1984)CrossRefGoogle Scholar
  2. 2.
    Bachmann, P.: Die Analytische Zahlentheorie. B.G. Teubner, Leipzig (1894). zahlentheorie, band 2 editionzbMATHGoogle Scholar
  3. 3.
    Borenstein, T., Poli, R.: Information landscapes and problem hardness. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 1425–1431. ACM Press (2005)Google Scholar
  4. 4.
    Cosserat, E., Cosserat, F.: Theorie des corps deformables. Librairie Scientifique A. Hermann et Fils, Paris (1909)zbMATHGoogle Scholar
  5. 5.
    Davidor, Y.: Epistasis variance: a viewpoint on GA-hardness. In: Rawlins, G.J.E. (ed.) FOGA, pp. 23–35. Morgan Kaufmann, Burlington (1990)Google Scholar
  6. 6.
    Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocations and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRefGoogle Scholar
  8. 8.
    Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2010)zbMATHGoogle Scholar
  9. 9.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman, L.J. (ed.) ICGA, pp. 184–192. Morgan Kaufmann (1995)Google Scholar
  11. 11.
    Lazopoulos, A.K.: On fractional peridynamic deformations. Arch. Appl. Mech. 86(12), 1987–1994 (2016)CrossRefGoogle Scholar
  12. 12.
    Lazopoulos, K.A., Lazopoulos, A.K.: Fractional vector calculus and fluid mechanics. J. Mech. Behav. Mater. 26(1–2), 43–54 (2017)Google Scholar
  13. 13.
    Lazopoulos, K.A., Lazopoulos, A.K.: On fractional bending of beams. Arch. Appl. Mech. 86(6), 1133–1145 (2016)CrossRefGoogle Scholar
  14. 14.
    Leszczyński, J.S.: An Introduction to Fractional Mechanics. Monographs No. 198. The Publishing Office of Czestochowa University of Technology (2011)Google Scholar
  15. 15.
    Malan, K.M., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes using entropy. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, Piscataway, NJ, USA, pp. 1440–1447. IEEE Press (2009)Google Scholar
  16. 16.
    Malinowska, A.B., Odzijewicz, T., Torres, D.F.M.: Advanced Methods in the Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology. Springer, Cham (2015)CrossRefGoogle Scholar
  17. 17.
    Manderick, B., de Weger, M.K., Spiessens, P.: The genetic algorithm and the structure of the fitness landscape. In: Belew, R.K., Booker, L.B. (eds.) ICGA, pp. 143–150. Morgan Kaufmann (1991)Google Scholar
  18. 18.
    Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)CrossRefGoogle Scholar
  19. 19.
    Nowacki, W.: Theory of Micropolar Elasticity. CISM, Udine (1972)zbMATHGoogle Scholar
  20. 20.
    Odibat, Z.: Approximations of fractional integrals and \(\rm C\)aputo fractional derivatives. Appl. Math. Comput. 178, 527–533 (2006)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Oprzedkiewicz, K., Gawin, E., Mitkowski, W.: Modeling heat distribution with the use of a non-integer order, state space model. Int. J. Appl. Math. Comput. Sci. 26(4), 749–756 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Oskouie, M.F., Ansari, R., Rouhi, H.: Bending analysis of functionally graded nanobeams based on the fractional nonlocal continuum theory by the variational Legendre spectral collocation method. Meccanica 53(4), 1115–1130 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Peddieson, J., Buchanan, G.R., McNitt, R.P.: The role of strain gradients in the grain size effect for polycrystals. Int. J. Eng. Sci. 41, 305–312 (2003)CrossRefGoogle Scholar
  24. 24.
    Peter, B.: Dynamical systems approach of internal length in fractional calculus. Eng. Trans. 65(1), 209–215 (2017)Google Scholar
  25. 25.
    Sapora, A., Cornetti, P., Chiaia, B., Lenzi, E.K., Evangelista, L.R.: Nonlocal diffusion in porous media: a spatial fractional approach. J. Eng. Mech. 143(5), 1–7 (2017)CrossRefGoogle Scholar
  26. 26.
    Sumelka, W.: Thermoelasticity in the framework of the fractional continuum mechanics. J. Therm. Stresses 37(6), 678–706 (2014)CrossRefGoogle Scholar
  27. 27.
    Sumelka, W.: Fractional calculus for continuum mechanics - anisotropic non-locality. Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 361–372 (2016)Google Scholar
  28. 28.
    Sumelka, W.: On fractional non-local bodies with variable length scale. Mech. Res. Commun. 86(Supplement C), 5–10 (2017)CrossRefGoogle Scholar
  29. 29.
    Szajek, K., Sumelka, W.: Identification of mechanical properties of 1D deteriorated non-local bodies. Struct. Multidiscip. Optim. 59(1), 185–200 (2019)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tomasz, B.: Analytical and numerical solution of the fractional Euler-Bernoulli beam equation. J. Mech. Mater. Struct. 12(1), 23–34 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Toupin, R.A.: Elastic materials with couple-stresses. ARMA 11, 385–414 (1962)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Poznan University of TechnologyPoznanPoland

Personalised recommendations