Skip to main content

Aspects of the Finite Step Observability of Fractional Order Discrete-Time Polynomial Systems

  • Conference paper
  • First Online:
Advances in Non-Integer Order Calculus and Its Applications (RRNR 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 559))

Included in the following conference series:

Abstract

Discrete-time polynomial control systems described by the Grünwald-Letnikov h-type difference operator are considered. For this class of systems the observability problem is studied. Since the crucial idea of systems’ observability is related to choosing inputs based only on output measurements, different aspects to this problem are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If \(\varOmega =\mathcal {K}^m\), then as B one can choose the set of m-variable monomials. If \(\varOmega \) is a proper algebraic set then B can be a linearly independent subset of such monomials, see for example [4, 20].

References

  1. Ambroziak, L., Lewon, D., Pawluszewicz, E.: The use of fractional order operators in modeling of RC-electrical systems. Control Cybern. 45(3), 275–288 (2016)

    MATH  Google Scholar 

  2. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäser, Boston (2001)

    Book  Google Scholar 

  3. Busłowicz, M., Nartowicz, T.: Design of fractional order controller for a class of plants with delay. Meas. Autom. Robot. 2, 398–405 (2009)

    Google Scholar 

  4. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, Heidelberg (1992)

    Book  Google Scholar 

  5. Craig, J.J.: Introduction to Robotis: Mechanics and Control. Pearson Education, Inc., Upper Saddle River (2005)

    Google Scholar 

  6. Das, S.: Functional Fractional Calculus for System Identyfication and Controls. Springer, Heidelberg (2008)

    Google Scholar 

  7. Djennoune, S., Bettayeb, M., Al-Saggaf, U.M.: Synchronization of fractional-order discrete-time chaotic systems by exact delayed state reconstructor: application to secure communication. Int. J. Appl. Math. Comput. Sci. 29(1), 179–194 (2019)

    Article  Google Scholar 

  8. Koszewnik, A., Nartowicz, T., Pawluszewicz, E.: Fractional order controller to control pump in FESTO MPS PA compact workstation. In: Proceedings of the International Carpathian Control Conference, pp. 364–367 (2016)

    Google Scholar 

  9. Lorenzo, C.F., Hartley, T.T.: On self-consistent operators with application to operators of fractional order. In: Proceedings of the ASME: International Design Engineering technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2009, San Diego, California, USA (2009)

    Google Scholar 

  10. Mozyrska, D., Bartosiewicz, Z.: On observability concepts for nonlinear discrete-time fractional order control systems. In: Baleanu, D., Guvenc, Z. (eds.) New Trends in Nanotechnology and Fractional Order Calculus Applications, pp. 305–312. Springer, Dordrecht (2010)

    Chapter  Google Scholar 

  11. Mozyrska, D., Pawluszewicz, E.: Delta and Nabla monomials and generalized polynomial series on time scales. In: Leizarowitz, A., Mordukhovich, B.S., Shafrir, I., Zaslavski, A.J. (eds.) Nonlinear Analysis and Optimization Series. Contemporary Mathematics, vol. 514, pp. 199–211 (2010)

    Google Scholar 

  12. Mozyrska, D., Pawluszewicz, E.: Observability of linear \(q\)-difference fractional-order systems with finite initial memory. Pol. Acad. Sci. Tech. Sci. 58(4), 601–605 (2010)

    MATH  Google Scholar 

  13. Mozyrska, D., Pawluszewicz, E., Wyrwas, M.: The \(h\)-difference approach to controllability and observability of fractional linear systems. Asian J. Control 17(6), 1–11 (2015). https://doi.org/10.1002/asjc.1034

    Article  MathSciNet  MATH  Google Scholar 

  14. Mozyrska, D., Pawluszewicz, E., Wyrwas, M.: Local observability and controllability of nonlinear discrete-time fractional order systems based on their linearisation. Int. J. Syst. Sci. 48(4), 788–794 (2017)

    Article  MathSciNet  Google Scholar 

  15. Nijmeijer, H., van der Schaft, A.J.: Nonlinear Dynamical Control Systems. Springer, Heidelberg (1990)

    Book  Google Scholar 

  16. Oprzedkiewicz, K., Gawin, E.: A non integer order, state space model for one dimensional heat transfer process. Arch. Control Sci. 26(2), 261–275 (2016)

    Article  MathSciNet  Google Scholar 

  17. Podlubny, I.: Fractional Differential Systems. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  18. Sierociuk, D., Dzieliski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogenous media using fractional calculus. Phylosophical Trans. Roy. Soc. A–Math. Phys. Eng. Sci. 371(1990) (2013). Article ID 20120146

    Article  MathSciNet  Google Scholar 

  19. Sontag, E.: On the internal realization of polynomial response map. Ph.D. thesis, University of Florida, USA (1976)

    Google Scholar 

  20. Sontag, E.: On the observability of polynomial systems, I: finite-time problems. SIAM J. Control Optim. 17(1), 139–151 (1979)

    Article  MathSciNet  Google Scholar 

  21. Sontag, E.: Mathematical Control Theory. Springer, Heidelberg (1998)

    Book  Google Scholar 

  22. Stanislawski, R., Latawiec, K.: Normalized finite fractional differences: computational and accuracy breakthroughs. Int. J. Appl. Math. Comput. Sci. 22(4), 907–919 (2012)

    Article  MathSciNet  Google Scholar 

  23. Wu, G.-Ch., Baleanu, D., Zeng, S.-D., Deng, Z.-G.: Discrete fractional diffusion equation. Nonlinear Dyn. (2015). https://doi.org/10.1007/s11071-014-1867-2

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The work has been supported by grant No. S/WM/1/2016 of Bialystok University of Technology, financed by Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Pawluszewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pawluszewicz, E. (2020). Aspects of the Finite Step Observability of Fractional Order Discrete-Time Polynomial Systems. In: Malinowska, A., Mozyrska, D., Sajewski, Ł. (eds) Advances in Non-Integer Order Calculus and Its Applications. RRNR 2018. Lecture Notes in Electrical Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-030-17344-9_14

Download citation

Publish with us

Policies and ethics