Skip to main content

Non-interactive Keyed-Verification Anonymous Credentials

Part of the Lecture Notes in Computer Science book series (LNSC,volume 11442)

Abstract

Anonymous credential (\(\mathsf {AC}\)) schemes are protocols which allow for authentication of authorized users without compromising their privacy. Of particular interest are non-interactive anonymous credential (\(\mathsf {NIAC}\)) schemes, where the authentication process only requires the user to send a single message that still conceals its identity. Unfortunately, all known \(\mathsf {NIAC}\) schemes in the standard model require pairing based cryptography, which limits them to a restricted set of specific assumptions and requires expensive pairing computations. The notion of keyed-verification anonymous credential (\(\mathsf {KVAC}\)) was introduced in (Chase et al., CCS’14) as an alternative to standard anonymous credential schemes allowing for more efficient instantiations; yet, making existing \(\mathsf {KVAC}\) non-interactive either requires pairing-based cryptography, or the Fiat-Shamir heuristic.

In this work, we construct the first non-interactive keyed-verification anonymous credential (\(\mathsf {NIKVAC}\)) system in the standard model, without pairings. Our scheme is efficient, attribute-based, supports multi-show unlinkability, and anonymity revocation. We achieve this by building upon a combination of algebraic \(\mathsf {MAC}\) with the recent designated-verifier non-interactive zero-knowledge (\(\mathsf {DVNIZK}\)) proof of knowledge of (Couteau and Chaidos, Eurocrypt’18). Toward our goal of building \(\mathsf {NIKVAC}\), we revisit the security analysis of a \(\mathsf {MAC}\) scheme introduced in (Chase et al., CCS’14), strengthening its guarantees, and we introduce the notion of oblivious non-interactive zero-knowledge proof system, where the prover can generate non-interactive proofs for statements that he cannot check by himself, having only a part of the corresponding witness, and where the proof can be checked efficiently given the missing part of the witness. We provide an efficient construction of an oblivious \(\mathsf {DVNIZK}\), building upon the specific properties of the \(\mathsf {DVNIZK}\) proof system of (Couteau and Chaidos, Eurocrypt’18).

Keywords

  • Anonymous credentials
  • Keyed-verification anonymous credentials
  • Non-interactive anonymous credentials
  • Designated-verifier non-interactive zero-knowledge proofs

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In [11], the size of the group must be equal to the size of the plaintext space of a \(\mathsf {DVNIZK}\)-friendly encryption scheme, such as Paillier.

  2. 2.

    The protocol depends highly on the chosen \(\mathsf {MAC}\) scheme. Thus, we omit details in abstract instantiation.

  3. 3.

    The parameters \(({\mathsf {crs}},\mathsf {pk},\mathsf {ipp} _M)\) are fixed for all \(\Phi \in \varvec{\Phi } \), since they do not depend on the particular choice of \(\Phi \).

  4. 4.

    In this proof, this refers to the first property of definition 14.

References

  1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 423–440. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_26

    CrossRef  Google Scholar 

  2. Barki, A., Brunet, S., Desmoulins, N., Traoré, J.: Improved algebraic MACs and practical keyed-verification anonymous credentials. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 360–380. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_20

    CrossRef  Google Scholar 

  3. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_7

    CrossRef  Google Scholar 

  4. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_20

    CrossRef  Google Scholar 

  5. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge arguments and applications to the malicious setting. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 107–129. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_6

    CrossRef  Google Scholar 

  6. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_27

    CrossRef  Google Scholar 

  7. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. Cryptology ePrint Archive, Report 2001/019 (2001). http://eprint.iacr.org/2001/019

  8. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5

    CrossRef  Google Scholar 

  9. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_4

    CrossRef  Google Scholar 

  10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998

    Google Scholar 

  11. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 193–221. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_7

    CrossRef  Google Scholar 

  12. Chaidos, P., Groth, J.: Making Sigma-protocols non-interactive without random oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650–670. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_29

    CrossRef  Google Scholar 

  13. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification anonymous credentials. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 1205–1216. ACM Press, November 2014

    Google Scholar 

  14. Chaum, D.: Showing credentials without identification. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 241–244. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39805-8_28

    CrossRef  Google Scholar 

  15. Couteau, G., Reichle, M.: Non-interactive keyed-verification anonymous credentials (2018, to appear)

    Google Scholar 

  16. Cramer, R., et al.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_31

    CrossRef  Google Scholar 

  17. Damgård, I.B.: Payment systems and credential mechanisms with provable security against abuse by individuals. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 328–335. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_26

    CrossRef  Google Scholar 

  18. Damgård, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homomorphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 41–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_3

    CrossRef  Google Scholar 

  19. Damgård, I., Jurik, M., Nielsen, J.B.: A generalization of paillier’s public-key system with applications to electronic voting. Int. J. Inf. Secur. 9(6), 371–385 (2010)

    CrossRef  Google Scholar 

  20. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th FOCS, pp. 523–534. IEEE Computer Society Press, October 1999

    Google Scholar 

  21. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS 2014. The Internet Society, February 2014

    Google Scholar 

  22. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press, October 2003

    Google Scholar 

  23. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_26

    CrossRef  Google Scholar 

  24. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25516-8_26

    CrossRef  MATH  Google Scholar 

  25. Lipmaa, H.: Optimally sound sigma protocols under DCRA. Cryptology ePrint Archive, Report 2017/703 (2017). http://eprint.iacr.org/2017/703

  26. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46513-8_14

    CrossRef  Google Scholar 

  27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    CrossRef  Google Scholar 

  28. Paquin, C., Zaverucha, G.: U-prove cryptographic specification V1.1 (revision 2) (2013). www.microsoft.com/uprove

  29. Sadiah, S., Nakanishi, T., Funabiki, N.: Anonymous credential system with efficient proofs for monotone formulas on attributes. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp. 262–278. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22425-1_16

    CrossRef  Google Scholar 

  30. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM (JACM) 27(4), 701–717 (1980)

    CrossRef  MathSciNet  Google Scholar 

  31. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffroy Couteau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Couteau, G., Reichle, M. (2019). Non-interactive Keyed-Verification Anonymous Credentials. In: Lin, D., Sako, K. (eds) Public-Key Cryptography – PKC 2019. PKC 2019. Lecture Notes in Computer Science(), vol 11442. Springer, Cham. https://doi.org/10.1007/978-3-030-17253-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17253-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17252-7

  • Online ISBN: 978-3-030-17253-4

  • eBook Packages: Computer ScienceComputer Science (R0)