Skip to main content

Introduction

  • Chapter
  • First Online:
Hydropower Plants and Power Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 801 Accesses

Abstract

Hydropower has played an important role in the safe, stable and efficient operation of electric power systems for a long time. Hydropower not only generates electricity as the largest global renewable source, but also shoulders a large portion of the regulation and balancing duty in many power systems all over the world. In this chapter, power system stability and features of hydropower generating systems are briefly introduced; the related previous research and the hydropower research at Uppsala University is reviewed; then the scope and outline of this thesis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.modelon.com/products/modelica-libraries/hydro-power-library/ (accessed on March 22nd, 2017).

  2. 2.

    https://alabdocs.atlassian.net/wiki/display/Public/Alab+-+The+Hydropower+Workbench (accessed on March 22nd, 2017).

References

  1. Schiermeier Q, Tollefson J, Scully T, Witze A, Morton O (2008) Electricity without carbon. Nature 454:816–823

    Article  Google Scholar 

  2. Mitchell C (2016) Momentum is increasing towards a flexible electricity system based on renewables. Nat Energy 1:15030

    Article  Google Scholar 

  3. Rintamäki T, Siddiqui AS, Salo A (2016) How much is enough? Optimal support payments in a renewable-rich power system. Energy 117:300–313

    Article  Google Scholar 

  4. Brouwer AS, van den Broek M, Seebregts A, Faaij A (2015) Operational flexibility and economics of power plants in future low-carbon power systems. Appl Energy 156:107–128

    Article  Google Scholar 

  5. Elliott D (2016) A balancing act for renewables. Nat Energy 1:15003

    Article  Google Scholar 

  6. Brouwer AS, van den Broek M, Zappa W, Turkenburg WC, Faaij A (2016) Least-cost options for integrating intermittent renewables in low-carbon power systems. Appl Energy 161:48–74

    Article  Google Scholar 

  7. Olauson J et al (2016) Net load variability in Nordic countries with a highly or fully renewable power system. Nat Energy 1:16175

    Article  Google Scholar 

  8. Ørum E, Kuivaniemi M, Laasonen M, Bruseth AI, Jansson EA, Danell A, Elkington K, Modig N (2015) Future system inertia. ENTSO- E

    Google Scholar 

  9. Chang X, Liu X, Zhou W (2010) Hydropower in China at present and its further development. Energy 35:4400–4406

    Article  Google Scholar 

  10. Jia J (2016) A technical review of hydro-project development in China. Eng 2:302–312

    Article  Google Scholar 

  11. Shen J, Cheng C, Cheng X, Lund JR (2016) Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid. Energy 95:433–446

    Article  Google Scholar 

  12. Zhou H, Su Y, Chen Y, Ma Q, Mo W (2016) The China southern power grid: solutions to operation risks and planning challenges. IEEE Power Energ Mag 14:72–78

    Article  Google Scholar 

  13. Storli P, Nielsen T (2014) Dynamic load on a Francis turbine runner from simulations based on measurements. In: IOP conference series: earth and environmental science, vol 22. IOP Publishing, p 032056

    Google Scholar 

  14. Doujak E (2014) Effects of increased solar and wind energy on hydro plant operation. Hydro Rev Worldwide 2:28–31

    Google Scholar 

  15. Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control. McGraw-Hill, New York

    Google Scholar 

  16. Kundur P et al (2004) Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans Power Syst 19:1387–1401

    Article  Google Scholar 

  17. Prasertwong K, Mithulananthan N, Thakur D (2010) Understanding low-frequency oscillation in power systems. Int J Electr Eng Educ 47:248–262

    Article  Google Scholar 

  18. Pico HV, McCalley JD, Angel A, Leon R, Castrillon NJ (2012) Analysis of very low frequency oscillations in hydro-dominant power systems using multi-unit modeling. IEEE Trans Power Syst 27:1906–1915

    Article  Google Scholar 

  19. Machowski J, Bialek J, Bumby J (2011) Power system dynamics: stability and control. Wiley

    Google Scholar 

  20. Demello FP, Concordia C (1969) Concepts of synchronous machine stability as affected by excitation control. IEEE Trans Power Appar Syst 88:316–329

    Article  Google Scholar 

  21. Moussa HAM, Yu Y-N (1972) Optimal power system stabilization through excitation and/or governor control. IEEE Trans Power Appar Syst 3:1166–1174

    Article  Google Scholar 

  22. Grondin R, Kamwa I, Soulieres L, Potvin J, Champagne R (1993) An approach to PSS design for transient stability improvement through supplementary damping of the common low-frequency. IEEE Trans Power Syst 8:954–963

    Article  Google Scholar 

  23. Robert G, Hurtado D (2008) Optimal design of reactive power PI regulator for hydro power plants. IEEE, pp 775–780

    Google Scholar 

  24. Alizadeh Bidgoli M, Bathaee SMT (2015) Full-state variables control of a grid-connected pumped storage power plant using non-linear controllers. Electr Power Compon Syst 43:260–270

    Article  Google Scholar 

  25. Dai J, Xiao D, Shokooh F, Schaeffer C, Benge A (2004) Emergency generator startup study of a hydro turbine unit for a nuclear generation facility. IEEE Trans Ind Appl 40:1191–1199

    Article  Google Scholar 

  26. Rimorov D, Kamwa I, Joós G (2016) Quasi-steady-state approach for analysis of frequency oscillations and damping controller design. IEEE Trans Power Syst 31:3212–3220

    Article  Google Scholar 

  27. Tan W (2010) Unified tuning of PID load frequency controller for power systems via IMC. IEEE Trans Power Syst 25:341–350

    Article  Google Scholar 

  28. Sarmadi SAN, Venkatasubramanian V (2016) Inter-area resonance in power systems from forced oscillations. IEEE Trans Power Syst 31:378–386

    Article  Google Scholar 

  29. Jiang L, Yao W, Wu QH, Wen JY, Cheng SJ (2012) Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE Trans Power Syst 27:932–941

    Article  Google Scholar 

  30. Sanathanan CK (1987) Accurate low order model for hydraulic turbine-penstock. IEEE Trans Energy Convers 2:196–200

    Article  Google Scholar 

  31. Vournas CD (1990) Second order hydraulic turbine models for multimachine stability studies. IEEE Trans Energy Convers 5:239–244

    Article  Google Scholar 

  32. Demello F et al (1992) Hydraulic-turbine and turbine control-models for system dynamic studies. IEEE Trans Power Syst 7:167–179

    Google Scholar 

  33. De Jaeger E, Janssens N, Malfliet B, Van De Meulebroeke F (1994) Hydro turbine model for system dynamic studies. IEEE Trans Power Syst 9:1709–1715

    Article  Google Scholar 

  34. Hannett LN, Feltes JW, Fardanesh B (1994) Field tests to validate hydro turbine-governor model structure and parameters. IEEE Trans Power Syst 9:1744–1751

    Article  Google Scholar 

  35. Hannett LN, Feltes JW, Fardanesh B, Crean W (1999) Modeling and control tuning of a hydro station with units sharing a common penstock section. IEEE Trans Power Syst 14:1407–1414

    Article  Google Scholar 

  36. Souza O Jr, Barbieri N, Santos A (1999) Study of hydraulic transients in hydropower plants through simulation of nonlinear model of penstock and hydraulic turbine model. IEEE Trans Power Syst 14:1269–1272

    Article  Google Scholar 

  37. Fang H, Chen L, Dlakavu N, Shen Z (2008) Basic modeling and simulation tool for analysis of hydraulic transients in hydroelectric power plants. IEEE Trans Energy Convers 23:834–841

    Article  Google Scholar 

  38. Pennacchi P, Chatterton S, Vania A (2012) Modeling of the dynamic response of a Francis turbine. Mech Syst Signal Process 29:107–119

    Article  Google Scholar 

  39. Chen D et al (2014) Nonlinear dynamic analysis for a Francis hydro-turbine governing system and its control. J Franklin Inst 351:4596–4618

    Article  MATH  Google Scholar 

  40. Wang C, Nilsson H, Yang J, Petit O (2017) 1D–3D coupling for hydraulic system transient simulations. Comput Phys Commun 210:1–9

    Article  MathSciNet  MATH  Google Scholar 

  41. Giosio DR, Henderson AD, Walker JM, Brandner PA (2016) Physics based hydraulic turbine model for system dynamics studies. IEEE Trans Power Syst 32:1161–1168

    Google Scholar 

  42. Brezovec M, Kuzle I, Tomisa T (2006) Nonlinear digital simulation model of hydroelectric power unit with Kaplan turbine. IEEE Trans Energy Convers 21:235–241

    Article  Google Scholar 

  43. Kranjcic D, Štumberger G (2014) Differential evolution-based identification of the nonlinear kaplan turbine model. IEEE Trans Energy Convers 29:178–187

    Article  Google Scholar 

  44. Kishor N, Saini R, Singh S (2007) A review on hydropower plant models and control. Renew Sustain Energy Rev 11:776–796

    Article  Google Scholar 

  45. Kishor N, Fraile-Ardanuy J (2017) Modeling and dynamic behaviour of hydropower plants. IET

    Google Scholar 

  46. Munoz-Hernandez GA, Mansoor SAP, Jones DI (2013) Modelling and controlling hydropower plants. Springer

    Google Scholar 

  47. Nicolet C et al (2007) High-order modeling of hydraulic power plant in islanded power network. IEEE Trans Power Syst 22:1870–1880

    Article  Google Scholar 

  48. Padoan A et al (2010) Dynamical behavior comparison between variable speed and synchronous machines with pss. IEEE Trans Power Syst 25:1555–1565

    Article  Google Scholar 

  49. Zhao G (2004) Study on the united transient process for hydraulic, mechanical and power system (In Chinese). Wuhan University

    Google Scholar 

  50. Bao H (2010) Research on setting condition of surge chamber and operation control of the hydropower station (In Chinese). Wuhan University, Wuhan

    Google Scholar 

  51. Li W, Vanfretti L, Chompoobutrgool Y (2012) Development and implementation of hydro turbine and governor models in a free and open source software package. Simul Model Pract Theory 24:84–102

    Article  Google Scholar 

  52. Svingen B (2005) Application of LabVIEW for dynamic simulations of hydraulic piping systems. In: SIMS 2005 46th conference on simulation and modeling. Citeseer

    Google Scholar 

  53. Sena JAS et al (2011) An object-oriented framework applied to the study of electromechanical oscillations at Tucuruí hydroelectric power plant. Electr Power Syst Res 81:2081–2087

    Article  Google Scholar 

  54. Tsotie JW, Wamkeue R (2016) Advanced-model of synchronous generator for hydropower plants numerical simulations. Electr Power Syst Res 140:663–670

    Article  Google Scholar 

  55. Liang J, Yuan X, Yuan Y, Chen Z, Li Y (2017) Nonlinear dynamic analysis and robust controller design for Francis hydraulic turbine regulating system with a straight-tube surge tank. Mech Syst Signal Process 85:927–946

    Article  Google Scholar 

  56. Wei S (2009) Hydraulic turbine regulation. Huazhong University of Science and Technology Press, Wuhan (in Chinese)

    Google Scholar 

  57. Mansoor S, Jones D, Bradley DA, Aris F, Jones G (2000) Reproducing oscillatory behaviour of a hydroelectric power station by computer simulation. Control Eng Pract 8:1261–1272

    Article  Google Scholar 

  58. Kosterev D (2004) Hydro turbine-governor model validation in pacific northwest. IEEE Trans Power Syst 19:1144–1149

    Article  Google Scholar 

  59. Cebeci ME, Karaağaç U, Tör OB, Ertaş A (2007) The effects of hydro power plants’ governor settings on the stability of Turkish power system frequency. In: ELECO conference

    Google Scholar 

  60. Pico HNV, Aliprantis DC, McCalley JD, Elia N, Castrillon NJ (2015) Analysis of hydro-coupled power plants and design of robust control to damp oscillatory modes. IEEE Trans Power Syst 30:632–643

    Article  Google Scholar 

  61. Strah B, Kuljaca O, Vukic Z (2005) Speed and active power control of hydro turbine unit. IEEE Trans Energy Convers 20:424–434

    Article  Google Scholar 

  62. Aguero J et al (2008) Hydraulic transients in hydropower plant impact on power system dynamic stability. In: IEEE power and energy society general meeting. IEEE, Pittsburgh

    Google Scholar 

  63. Zhao J et al (2015) Dynamic model of Kaplan turbine regulating system suitable for power system analysis. Math Probl Eng 2015(294523)

    Google Scholar 

  64. Pérez-Díaz JI, Sarasúa JI, Wilhelmi JR (2014) Contribution of a hydraulic short-circuit pumped-storage power plant to the load–frequency regulation of an isolated power system. Int J Electr Power Energy Syst 62:199–211

    Article  Google Scholar 

  65. Martínez-Lucas G, Sarasúa JI, Sánchez-Fernández JÁ, Wilhelmi JR (2015) Power-frequency control of hydropower plants with long penstocks in isolated systems with wind generation. Renew Energy 83:245–255

    Article  Google Scholar 

  66. Martínez-Lucas G, Sarasúa JI, Sánchez-Fernández JÁ, Wilhelmi JR (2016) Frequency control support of a wind-solar isolated system by a hydropower plant with long tail-race tunnel. Renew Energy 90:362–376

    Article  Google Scholar 

  67. Landry C, Nicolet C, Giacomini S, Avellan F (2014) Influence of the hydraulic system layout on the stability of a mixed islanded power network. In: Advances in hydroinformatics. Springer, pp 307–323

    Google Scholar 

  68. Nielsen TK (2015) The importance of including elastic property of penstock in the evaluation of stability of hydropower plants. In: 6th IAHR international meeting of the workgroup on cavitation and dynamic problems in hydrauli machinery and systems. Ljubljana, Slovenia

    Google Scholar 

  69. Vereide K, Svingen B, Nielsen T, Lia L (2016) The effect of surge tank throttling on governor stability, power control, and hydraulic transients in hydropower plants. IEEE Trans Energy Convers 32:91–98

    Article  Google Scholar 

  70. Yu X, Zhang J, Fan C, Chen S (2016) Stability analysis of governor-turbine-hydraulic system by state space method and graph theory. Energy 114:613–622

    Article  Google Scholar 

  71. Yuan X, Chen Z, Yuan Y, Huang Y (2015) Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method. Energy 93:173–187

    Article  Google Scholar 

  72. Li H, Chen D, Zhang H, Wu C, Wang X (2017) Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing. Appl Energy 185:244–253

    Article  Google Scholar 

  73. Xu B, Chen D, Zhang H, Zhou R (2015) Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit. Nonlinear Dyn 81:1263–1274

    Article  Google Scholar 

  74. Zhang H, Chen D, Xu B, Wang F (2015) Nonlinear modeling and dynamic analysis of hydro-turbine governing system in the process of load rejection transient. Energy Convers Manag 90:128–137

    Article  Google Scholar 

  75. Xu B, Wang F, Chen D, Zhang H (2016) Hamiltonian modeling of multi-hydro-turbine governing systems with sharing common penstock and dynamic analyses under shock load. Energy Convers Manag 108:478–487

    Article  Google Scholar 

  76. Wang L, Han Q, Chen D, Wu C, Wang X (2017) Nonlinear modeling and stability analysis of the pump-turbine governing system at pump mode. In: IET renewable power generation 11(6)

    Google Scholar 

  77. Guo W, Yang J, Wang M, Lai X (2015) Nonlinear modeling and stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel under load disturbance. Energy Convers Manag 106:127–138

    Article  Google Scholar 

  78. Guo W, Yang J, Chen J, Wang M (2016) Nonlinear modeling and dynamic control of hydro-turbine governing system with upstream surge tank and sloping ceiling tailrace tunnel. Nonlinear Dyn 84:1383–1397

    Article  MathSciNet  Google Scholar 

  79. Wang B, Guo W, Yang J (2017) Analytical solutions for determining extreme water levels in surge tank of hydropower station under combined operating conditions. Commun Nonlinear Sci Numer Simul 47:394–406

    Article  MathSciNet  Google Scholar 

  80. Guo W, Yang J, Teng Y (2017) Surge wave characteristics for hydropower station with upstream series double surge tanks in load rejection transient. Renew Energy 108:488–501

    Article  Google Scholar 

  81. Akhrif O, Okou FA, Dessaint LA, Champagne R (1999) Application of a multivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Trans Power Syst 14:620–628

    Article  Google Scholar 

  82. Dobrijevic DM, Jankovic MV (1999) An approach to the damping of local modes of oscillations resulting from large hydraulic transients. IEEE Trans Energy Convers 14:754–759

    Article  Google Scholar 

  83. Lu Q et al (2004) Nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems. Int J Electr Power Energy Syst 26:333–339

    Article  Google Scholar 

  84. Jin MJ, Hu W, Liu F, Mei SW, Lu Q (2005) Nonlinear co-ordinated control of excitation and governor for hydraulic power plants. IEE Proc Gener Transm Distrib 152:544–548

    Article  Google Scholar 

  85. Mei S, Gui X, Shen C, Lu Q (2007) Dynamic extending nonlinear H control and its application to hydraulic turbine governor. Sci China Ser E Technol Sci 50:618–635

    Article  MathSciNet  MATH  Google Scholar 

  86. Weixelbraun M, Renner H, Kirkeluten O, Lovlund S (2013) Damping low frequency oscillations with hydro governors. In: 2013 IEEE Grenoble PowerTech (POWERTECH). IEEE, pp 1–6

    Google Scholar 

  87. Gencoglu C, Tor OB, Cebeci E, Yilmaz O, Guven AN (2010) Assessment of the effect of hydroelectric power plants’ governor settings on low frequency inter area oscillations. In: 2010 international conference on power system technology (POWERCON). IEEE, pp 1–8

    Google Scholar 

  88. Silva PCO, Alligné S, Allenbach P, Nicolet C, Kawkabani B (2014) A fully modular tool for small-signal stability analysis of hydroelectric systems. In: 2014 international conference on electrical machines (ICEM). IEEE, pp 1697–1703

    Google Scholar 

  89. Silva PCO, Nicolet C, Grillot P, Drommi JL, Kawkabani B (2017) Assessment of power swings in hydropower plants through high-order modelling and eigenanalysis. IEEE Trans Ind Appl 53(1)

    Google Scholar 

  90. Liu X, Liu C (2007) Eigenanalysis of oscillatory instability of a hydropower plant including water conduit dynamics. IEEE Trans Power Syst 22:675–681

    Article  Google Scholar 

  91. Gao H, Xie X, Zhang J, Wu C, Sun K (2016) Second-order oscillation mode study of hydropower system based on linear elastic model and modal series method. Int Trans Electr Energy Syst 27:e2233

    Article  Google Scholar 

  92. Dorji U, Ghomashchi R (2014) Hydro turbine failure mechanisms: an overview. Eng Fail Anal 44:136–147

    Article  Google Scholar 

  93. Liu X, Luo Y, Wang Z (2016) A review on fatigue damage mechanism in hydro turbines. Renew Sustain Energy Rev 54:1–14

    Article  Google Scholar 

  94. Huth H-J (2005) Fatigue design of hydraulic turbine runners. Norwegian University of Science and Technology

    Google Scholar 

  95. Gagnon M, Tahan S, Bocher P, Thibault D (2010) Impact of startup scheme on Francis runner life expectancy. In: IOP conference series: earth and environmental science, vol 12. IOP Publishing, p 012107

    Google Scholar 

  96. Trivedi C, Gandhi B, Michel CJ (2013) Effect of transients on Francis turbine runner life: a review. J Hydraul Res 51:121–132

    Article  Google Scholar 

  97. Wurm E (2013) Consequences of primary control to the residual service life of Kaplan runners. In: Russia power 2013 & hydrovision Russia 2013. PennWell, Moscow

    Google Scholar 

  98. Seidel U, Mende C, Hübner B, Weber W, Otto A (2014) Dynamic loads in Francis runners and their impact on fatigue life. In: IOP conference series: earth and environmental science, vol 22. IOP Publishing, p 032054

    Google Scholar 

  99. Ukonsaari J (2003) Wear and friction of synthetic esters in a boundary lubricated journal bearing. Tribol Int 36:821–826

    Article  Google Scholar 

  100. Gawarkiewicz R, Wasilczuk M (2007) Wear measurements of self-lubricating bearing materials in small oscillatory movement. Wear 263:458–462

    Article  Google Scholar 

  101. Simmons GF (2013) Journal bearing design, lubrication and operation for enhanced performance. Luleå University of Technology

    Google Scholar 

  102. Liu G, Daley S (2000) Optimal-tuning nonlinear PID control of hydraulic systems. Control Eng Pract 8:1045–1053

    Article  Google Scholar 

  103. Çam E (2007) Application of fuzzy logic for load frequency control of hydroelectrical power plants. Energy Convers Manag 48:1281–1288

    Article  Google Scholar 

  104. Doolla S, Bhatti T (2006) Load frequency control of an isolated small-hydro power plant with reduced dump load. IEEE Trans Power Syst 21:1912–1919

    Article  Google Scholar 

  105. EPRI (2000) Hydro life extension modernization guides—volume 2: hydromechanical equipment. https://www.epri.com/#/pages/product/TR-112350-V2/?lang=en-US

  106. Liu X, Luo Y, Karney BW, Wang W (2015) A selected literature review of efficiency improvements in hydraulic turbines. Renew Sustain Energy Rev 51:18–28

    Article  Google Scholar 

  107. Soares S, Salmazo CT (1997) Minimum loss predispatch model for hydroelectric power systems. IEEE Trans Power Syst 12:1220–1228

    Article  Google Scholar 

  108. Arce A, Ohishi T, Soares S (2002) Optimal dispatch of generating units of the Itaipú hydroelectric plant. IEEE Trans Power Syst 17:154–158

    Article  Google Scholar 

  109. Soares S, Ohishi T, Cicogna M, Arce A (2003) Dynamic dispatch of hydro generating units. In: 2003 IEEE Bologna Power tech: conference proceedings, vol 2. IEEE

    Google Scholar 

  110. Ma C, Wang H, Lian J (2011) Short-term electricity dispatch optimization of Ertan hydropower plant based on data by field tests. J Renew Sustain Energy 3:063109

    Article  Google Scholar 

  111. Bortoni EC, Bastos GS, Abreu TM, Kawkabani B (2015) Online optimal power distribution between units of a hydro power plant. Renew Energy 75:30–36

    Article  Google Scholar 

  112. Siu TK, Nash GA, Shawwash ZK (2001) A practical hydro, dynamic unit commitment and loading model. IEEE Trans Power Syst 16:301–306

    Article  Google Scholar 

  113. Dal’Santo T, Costa AS (2016) Hydroelectric unit commitment for power plants composed of distinct groups of generating units. Electr Power Syst Res 137:16–25

    Article  Google Scholar 

  114. Mulu BG, Jonsson PP, Cervantes MJ (2012) Experimental investigation of a Kaplan draft tube—part I: best efficiency point. Appl Energy 93:695–706

    Article  Google Scholar 

  115. Jonsson PP, Mulu BG, Cervantes MJ (2012) Experimental investigation of a Kaplan draft tube—part II: off-design conditions. Appl Energy 94:71–83

    Article  Google Scholar 

  116. Schniter P, Wozniak L (1995) Efficiency based optimal control of Kaplan hydrogenerators. IEEE Trans Energy Convers 10:348–353

    Article  Google Scholar 

  117. Atta KT, Johansson A, Cervantes MJ, Gustafsson T (2014) Phasor extremum seeking and its application in kaplan turbine control. In: 2014 IEEE conference on control applications (CCA), part of 2014 IEEE multi-conference on systems and control. IEEE, Antibes, pp 298–303

    Google Scholar 

  118. Oak Ridge National Laboratory (2011) Best practice catalog propeller-kaplan turbine. https://hydropower.ornl.gov/docs/HAP/MechKaplanPropTurbineBestPractice1.pdf

  119. Nilsson O, Sjelvgren D (1997) Variable splitting applied to modelling of start-up costs in short term hydro generation scheduling. IEEE Trans Power Syst 12:770–775

    Article  Google Scholar 

  120. Nilsson O, Sjelvgren D (1997) Hydro unit start-up costs and their impact on the short term scheduling strategies of Swedish power producers. IEEE Trans Power Syst 12:38–44

    Article  Google Scholar 

  121. Bakken BH, Bjorkvoll T (2002) Hydropower unit start-up costs. In: 2002 IEEE power engineering society summer meeting, vol 3. IEEE, pp 1522–1527

    Google Scholar 

  122. Bean NG, O’Reilly MM, Sargison JE (2010) A stochastic fluid flow model of the operation and maintenance of power generation systems. IEEE Trans Power Syst 25:1361–1374

    Article  Google Scholar 

  123. Aggidis GA, Luchinskaya E, Rothschild R, Howard D (2010) The costs of small-scale hydro power production: impact on the development of existing potential. Renew Energy 35:2632–2638

    Article  Google Scholar 

  124. Guisández I, Pérez-Díaz JI, Wilhelmi JR (2013) Assessment of the economic impact of environmental constraints on annual hydropower plant operation. Energy Policy 61:1332–1343

    Article  Google Scholar 

  125. Huang S-R, Chang P-L, Hwang Y-W, Ma Y-H (2014) Evaluating the productivity and financial feasibility of a vertical-axis micro-hydro energy generation project using operation simulations. Renew Energy 66:241–250

    Article  Google Scholar 

  126. Ranlöf M (2011) Electromagnetic analysis of hydroelectric generators. Uppsala University

    Google Scholar 

  127. Bladh J (2012) Hydropower generator and power system interaction. Uppsala University

    Google Scholar 

  128. Wallin M (2013) Measurement and modelling of unbalanced magnetic pull in hydropower generators. Uppsala University

    Google Scholar 

  129. Saarinen L (2017) The frequency of the frequency: on hydropower and grid frequency control. Uppsala University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijia Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, W. (2019). Introduction. In: Hydropower Plants and Power Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-17242-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17242-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17241-1

  • Online ISBN: 978-3-030-17242-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics