Skip to main content

Abstract

During the evolution of Gram-negative bacteria, their outermost and major membrane components, lipopolysaccharides (LPS), the constituents of the so-called endotoxin, adapted to environmental changes. This helped pathogenic bacteria evade detection by the host immune system. The modifications were numerous and occurred in all three distinct LPS regions: lipid A, core, and O-chains.

In limited bacterial infections characterized by the presence of low LPS doses reaching bloodstream, the immune system responses are beneficial for the host and lead to the rapid clearing of pathogens. In contrast, in overwhelming infections, higher LPS doses lead to uncontrolled cytokine overproduction, and result in septic (endotoxic) shock, that is often lethal. This review describes the amazing diversity of these molecules, among genera, species and strains, and the high degree of their structural heterogeneity, together with the corresponding impact on their biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ala:

alanine

Lys:

lysine

Ara4N:

4-amino-4deoxy-ß-L-arabinose

DAG:

2,3-diamino-2,3-dideoxy-D-glucose

DC:

dendritic cells

EA:

ethanolamine

FA:

fatty acid

GalN:

galactosamine

GalNA:

galactosaminuronic acid

Glc:

glucose

GlcN:

glucosamine

GlcNAc:

N-acetyl-glucosamine.

Gly:

glycine

Hep:

L-glycero-D-manno-heptopyranose

IL:

Interleukin

Kdo:

3-deoxy-D-manno-oct-2-ulopyranosonic acid

Ko:

D-glycero-D-talo-oct-2-ulosylonate

LPS:

lipopolysaccharide

LOS:

lipooligosaccharide

Man:

mannose

NO:

nitric oxide

PBS:

phosphate buffered saline

P:

phosphate

PEA:

phosphoethanolamine

PS:

polysaccharide

TLR:

Toll-like receptor

TLC:

thin-layer chromatography

TNF:

tumor necrosis factor

References

  1. Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.

    Article  CAS  PubMed  Google Scholar 

  2. Caroff M, Karibian D. Structure of bacterial lipopolysaccharides. Carbohydr Res. 2003;338:2431–47.

    Article  CAS  PubMed  Google Scholar 

  3. Powers MJ, Trent MS. Expanding the paradigm for the outer membrane: acinetobacter baumannii in the absence of endotoxin. Mol Microbiol. 2018;107:47–56.

    Article  CAS  PubMed  Google Scholar 

  4. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:593–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794:808–16.

    Article  CAS  PubMed  Google Scholar 

  6. Henderson JC, et al. The power of asymmetry: architecture and assembly of the Gram- negative outer membrane lipid bilayer. Annu Rev Microbiol. 2016;70:255–78.

    Article  CAS  PubMed  Google Scholar 

  7. Belunis CJ, Clementz T, Carty SM, Raetz CR. Inhibition of lipopolysaccharide biosynthesis and cell growth following inactivation of the kdtA gene in Escherichia coli. J Biol Chem. 1995;270:27646–52.

    Article  CAS  PubMed  Google Scholar 

  8. Caroff M, Brisson J, Martin A, Karibian D. Structure of the Bordetella pertussis 1414 endotoxin. FEBS Lett. 2000;477:8–14.

    Article  CAS  PubMed  Google Scholar 

  9. Albitar-Nehme S, et al. Comparison of lipopolysaccharide structures of Bordetella pertussis clinical isolates from pre- and post-vaccine era. Carbohydr Res. 2013;378:56–62.

    Article  CAS  PubMed  Google Scholar 

  10. Kahler CM, Stephens DS. Genetic basis for biosynthesis, structure, and function of meningococcal lipooligosaccharide (endotoxin). Crit Rev Microbiol. 1998;24:281–334.

    Article  CAS  PubMed  Google Scholar 

  11. Phillips NJ, Apicella MA, Griffiss JM, Gibson BW. Structural studies of the lipooligosaccharides from Haemophilus influenzae type b strain A2. Biochemistry. 1993;32:2003–12.

    Article  CAS  PubMed  Google Scholar 

  12. Comstock LE, Kasper DL. Bacterial glycans: key mediators of diverse host immune responses. Cell. 2006;126:847–50.

    Article  CAS  PubMed  Google Scholar 

  13. Le Blay K, Caroff M, Blanchard F, Perry MB, Chaby R. Epitopes of Bordetella pertussis lipopolysaccharides as potential markers for typing of isolates with monoclonal antibodies. Microbiology. 1996;142(Pt 4):971–8.

    Article  PubMed  Google Scholar 

  14. Hoshino K, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162:3749–52.

    CAS  PubMed  Google Scholar 

  15. Ulevitch RJ, Tobias PS. Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol. 1999;11:19–22.

    Article  CAS  PubMed  Google Scholar 

  16. Shimazu R, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999;189:1777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caroff M, Karibian D, Cavaillon JM, Haeffner-Cavaillon N. Structural and functional analyses of bacterial lipopolysaccharides. Microbes Infect. 2002;4:915–26.

    Article  CAS  PubMed  Google Scholar 

  18. Gutsmann T, Schromm AB, Brandenburg K. The physicochemistry of endotoxins in relation to bioactivity. Int J Med Microbiol. 2007;297:341–52.

    Article  CAS  PubMed  Google Scholar 

  19. Pasteur L. Recherches sur la putrefaction. Comptes Rendus Hebd Seances Acad Sci. 1863;56:1189–94.

    Google Scholar 

  20. Cavaillon J-M. Historical links between toxinology and immunology. Pathog Dis. 2018;76(3):fty019.

    Article  CAS  Google Scholar 

  21. Kaufmann SHE, Schaible UE. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends Microbiol. 2005;13:469–75.

    Article  CAS  PubMed  Google Scholar 

  22. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–16.

    CAS  PubMed  Google Scholar 

  23. Beutler B, et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature. 1985;316:552–4.

    Article  CAS  PubMed  Google Scholar 

  24. Boivin A, Mesrobeanu J, Mesrobeanu L. Technique pour la preparation des polysaccharides microbiens specifiques. Compt Rend Soc Biol. 1933;113:490.

    CAS  Google Scholar 

  25. Westphal O, Lüderitz O, Bister F. Über die extraktion von bakterien mit phenol/wasser. Z Für Naturforschung B. 1952;7:148–55.

    Article  Google Scholar 

  26. Staub AM, Tinelli R. Attempted identification of O antigens of Salmonellae by means of periodic oxidation of specific polysaccharides. Comptes Rendus Hebd Seances Acad Sci. 1956;243:1460–3.

    CAS  Google Scholar 

  27. Staub AM, Tinelli R, Luderitz O, Westphal O. Immunochemical study of Salmonella. V. Role of various sugars, especially 3, 6-bis-desoxyhexoses, in the specificity of Kauffmann-White O antigens. Ann Inst Pasteur. 1959;96:303–32.

    CAS  Google Scholar 

  28. Galanos C, Lüderitz O, Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969;9:245–9.

    Article  CAS  PubMed  Google Scholar 

  29. Sonesson A, Jantzen E, Bryn K, Larsson L, Eng J. Chemical composition of a lipopolysaccharide from Legionella pneumophila. Arch Microbiol. 1989;153:72–8.

    Article  CAS  PubMed  Google Scholar 

  30. Morrison DC, Leive L. Fractions of lipopolysaccharide from Escherichia coli O111:B4 prepared by two extraction procedures. J Biol Chem. 1975;250:2911–9.

    CAS  PubMed  Google Scholar 

  31. Nurminen M, Vaara M. Methanol extracts LPS from deep rough bacteria. Biochem Biophys Res Commun. 1996;219:441–4.

    Article  CAS  PubMed  Google Scholar 

  32. Delahooke DM, Barclay GR, Poxton IR. A re-appraisal of the biological activity of bacteroides LPS. J Med Microbiol. 1995;42:102–12.

    Article  CAS  PubMed  Google Scholar 

  33. Eidhin DN, Mouton C. A rapid method for preparation of rough and smooth lipopolysaccharide from Bacteroides, Porphyromonas and Prevotella. FEMS Microbiol Lett. 1993;110:133–8.

    Article  CAS  PubMed  Google Scholar 

  34. Caroff M. Novel method for isolating endotoxins. WO/2004/062690. International Application N° PCT/FR2003/003617. 2004.

    Google Scholar 

  35. Latino L, Caroff M, Pourcel C. Fine structure analysis of lipopolysaccharides in bacteriophage-resistant Pseudomonas aeruginosa PAO1 mutants. Microbiol Read Engl. 2017;163:848–55.

    Article  CAS  Google Scholar 

  36. Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev. 2002;26:17–47.

    Article  CAS  PubMed  Google Scholar 

  37. Stenutz R, Weintraub A, Widmalm G. The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev. 2006;30:382–403.

    Article  CAS  PubMed  Google Scholar 

  38. Liu B, et al. Structure and genetics of Shigella O antigens. FEMS Microbiol Rev. 2008;32:627–53.

    Article  PubMed  CAS  Google Scholar 

  39. Wang L, Andrianopoulos K, Liu D, Popoff MY, Reeves PR. Extensive variation in the O-antigen gene cluster within one Salmonella enterica serogroup reveals an unexpected complex history. J Bacteriol. 2002;184:1669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chatterjee SN, Chaudhuri K. Lipopolysaccharides of Vibrio cholerae. I Physical and chemical characterization. Biochim Biophys Acta. 2003;1639:65–79.

    Article  CAS  PubMed  Google Scholar 

  41. Vinogradov E, St Michael F, Cox AD. Structure of the LPS O-chain from Fusobacterium nucleatum strain MJR 7757 B. Carbohydr Res. 2018;463:37–9.

    Article  CAS  PubMed  Google Scholar 

  42. Di Lorenzo F, et al. Xanthomonas citri pv. citri Pathotypes: LPS structure and function as microbe-associated molecular patterns. ChemBiochem. 2017;18:772–81.

    Article  PubMed  CAS  Google Scholar 

  43. Caroff M, Bundle DR, Perry MB, Cherwonogrodzky JW, Duncan JR. Antigenic S-type lipopolysaccharide of Brucella abortus 1119-3. Infect Immun. 1984;46:384–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Caroff M, Bundle DR, Perry MB. Structure of the O-chain of the phenol-phase soluble cellular lipopolysaccharide of Yersinia enterocolitica serotype O:9. Eur J Biochem. 1984;139:195–200.

    Article  CAS  PubMed  Google Scholar 

  45. Lee C-H, Schaffner CP. Perimycin: chemistry of perosamine. Tetrahedron Lett. 1966;7:5837–40.

    Article  Google Scholar 

  46. Perry MB, MacLean L, Griffith DW. Structure of the O-chain polysaccharide of the phenol-phase soluble lipopolysaccharide of Escherichia coli 0:157:H7. Biochem Cell Biol. 1986;64:21–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jones MD, Vinogradov E, Nomellini JF, Smit J. The core and Opolysaccharide structure of the Caulobacter crescentus lipopolysaccharide. Carbohydr Res. 2015;402:111–7.

    Article  CAS  PubMed  Google Scholar 

  48. Smit J, et al. Structure of a novel lipid A obtained from the lipopolysaccharide of Caulobacter crescentus. Innate Immun. 2008;14:25–37.

    Article  CAS  PubMed  Google Scholar 

  49. Cabeen MT, et al. Mutations in the lipopolysaccharide biosynthesis pathway interfere with Crescentin-mediated cell curvature in Caulobacter crescentus. J Bacteriol. 2010;192:3368–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiol. 2011;2:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rocchetta HL, Burrows LL, Lam JS. Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 1999;63:523–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol. 2007;297:277–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Joiner KA. Complement evasion by bacteria and parasites. Annu Rev Microbiol. 1988;42:201–30.

    Article  CAS  PubMed  Google Scholar 

  54. Saldías MS, Ortega X, Valvano MA. Burkholderia cenocepacia O antigen lipopolysaccharide prevents phagocytosis by macrophages and adhesion to epithelial cells. J Med Microbiol. 2009;58:1542–8.

    Article  PubMed  CAS  Google Scholar 

  55. Fernandez-Prada CM, et al. Interactions between Brucella melitensis and human phagocytes: bacterial surface O-Polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect Immun. 2003;71:2110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moran AP. Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori. Carbohydr Res. 2008;343:1952–65.

    Article  CAS  PubMed  Google Scholar 

  57. Jacques M. Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends Microbiol. 1996;4:408–9.

    Article  CAS  PubMed  Google Scholar 

  58. Edwards NJ, et al. Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Mol Microbiol. 2000;35:1530–9.

    Article  CAS  PubMed  Google Scholar 

  59. Clements A, et al. The major surface-associated saccharides of Klebsiella pneumoniae contribute to host cell association. PLoS One. 2008;3:e3817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ivanov IE, et al. Relating the physical properties of Pseudomonas aeruginosa lipopolysaccharides to virulence by atomic force microscopy. J Bacteriol. 2011;193:1259–66.

    Article  CAS  PubMed  Google Scholar 

  61. Bilge SS, Vary JC, Dowell SF, Tarr PI. Role of the Escherichia coli O157:H7 O side chain in adherence and analysis of an rfb locus. Infect Immun. 1996;64:4795–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hölzer SU, Schlumberger MC, Jäckel D, Hensel M. Effect of the O-antigen length of lipopolysaccharide on the functions of Type III secretion systems in Salmonella enterica. Infect Immun. 2009;77:5458–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. West NP, et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science. 2005;307:1313–7.

    Article  CAS  PubMed  Google Scholar 

  64. Liu D, Reeves PR. Escherichia coli K12 regains its O antigen. Microbiology. 1994;140(Pt 1):49–57.

    Article  CAS  PubMed  Google Scholar 

  65. Holst O. Structure of the lipopolysaccharide core region. In: Knirel YA, Valvano MA, editors. Bacterial Lipopolysaccharides. Wien: Springer; 2011. p. 21–39. https://doi.org/10.1007/978-3-7091-0733-1_2.

    Chapter  Google Scholar 

  66. Amor K, et al. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infect Immun. 2000;68:1116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Currie CG, Poxton IR. The lipopolysaccharide core type of Escherichia coli O157:H7 and other non-O157 verotoxin-producing E. coli. FEMS Immunol Med Microbiol. 1999;24:57–62.

    Article  CAS  PubMed  Google Scholar 

  68. Yethon JA, Heinrichs DE, Monteiro MA, Perry MB, Whitfield C. Involvement of waaY, waaQ, and waaP in the modification of Escherichia coli Lipopolysaccharide and their role in the formation of a stable outer membrane. J Biol Chem. 1998;273:26310–6.

    Article  CAS  PubMed  Google Scholar 

  69. Reynolds CM, Kalb SR, Cotter RJ, Raetz CRH. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide identification of the eptB gene and ca2+ hypersensitivity of an eptB deletion mutant. J Biol Chem. 2005;280:21202–11.

    Article  CAS  PubMed  Google Scholar 

  70. Kaca W, et al. Serotyping of Proteus mirabilis clinical strains based on lipopolysaccharide O-polysaccharide and core oligosaccharide structures. Biochem Mosc. 2011;76:851–61.

    Article  CAS  Google Scholar 

  71. Aquilini E, Merino S, Knirel YA, Regué M, Tomás JM. Functional identification of Proteus mirabilis eptC gene encoding a core lipopolysaccharide phosphoethanolamine transferase. Int J Mol Sci. 2014;15:6689–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kocincova D, Lam JS. Structural diversity of the core oligosaccharide domain of Pseudomonas aeruginosa lipopolysaccharide. Biochem Mosc. 2011;76:755–60.

    Article  CAS  Google Scholar 

  73. Schweda EKH, Richards JC, Hood DW, Moxon ER. Expression and structural diversity of the lipopolysaccharide of Haemophilus influenzae: implication in virulence. Int J Med Microbiol IJMM. 2007;297:297–306.

    Article  CAS  PubMed  Google Scholar 

  74. Silipo A, et al. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J Biol Chem. 2005;280:33660–8.

    Article  CAS  PubMed  Google Scholar 

  75. Isshiki Y, Zähringer U, Kawahara K. Structure of the core-oligosaccharide with a characteristic D-glycero-alpha-D-talo-oct-2-ulosylonate-(2-->4)-3-deoxy-D-manno-oct-2- ulosonate [alpha-Ko-(2-->4)-Kdo] disaccharide in the lipopolysaccharide from Burkholderia cepacia. Carbohydr Res. 2003;338:2659–66.

    Article  CAS  PubMed  Google Scholar 

  76. Kawahara K, Brade H, Rietschel ET, Zähringer U. Studies on the chemical structure of the core-lipid A region of the lipopolysaccharide of Acinetobacter calcoaceticus NCTC 10305. Detection of a new 2-octulosonic acid interlinking the core oligosaccharide and lipid A component. Eur J Biochem. 1987;163:489–95.

    Article  CAS  PubMed  Google Scholar 

  77. Rosner MR, Tang J, Barzilay I, Khorana HG. Structure of the lipopolysaccharide from an Escherichia coli heptose-less mutant. I. Chemical degradations and identification of products. J Biol Chem. 1979;254:5906–17.

    CAS  PubMed  Google Scholar 

  78. Weissbach A, Hurwitz J. The formation of 2-keto-3-deoxyheptonic acid in extractsof Escherichia coli B. I. Identification. J Biol Chem. 1959;234:705–9.

    CAS  PubMed  Google Scholar 

  79. Caroff M, Lebbar S, Szabó L. Do endotoxins devoid of 3-deoxy-D-manno-2- octulosonic acid exist? Biochem Biophys Res Commun. 1987;143:845–7.

    Article  CAS  PubMed  Google Scholar 

  80. Sioud S, Jahouh F, Nashed M, Joly N, Banoub JH. Determination of distinctive carbohydrate signatures obtained from the Aeromonas hydrophila (chemotype II) core oligosaccharide pinpointing the presence of the 4-O-phosphorylated 5-O-linked Kdo reducing end group using electrospray ionization quadrupole orthogonal time-of-flight mass spectrometry and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24:2475–90.

    Article  CAS  PubMed  Google Scholar 

  81. Post DMB, et al. Comparative analyses of the lipooligosaccharides from nontypeable Haemophilus influenzae and Haemophilus haemolyticus show differences in sialic acid and phosphorylcholine modifications. Infect Immun. 2016;84:765–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Apicella MA, et al. Nontypeable haemophilus influenzae lipooligosaccharide expresses a terminal ketodeoxyoctanoate in vivo, which can be used as a target for bactericidal antibody. MBio. 2018;9:e01401–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. John CM, et al. Lipooligosaccharide structures of invasive and carrier isolates of Neisseria meningitidis are correlated with pathogenicity and carriage. J Biol Chem. 2015;291:3224–38. https://doi.org/10.1074/jbc.M115.666214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Richards SM, Strandberg KL, Gunn JS. Salmonella-regulated lipopolysaccharide modifications. Subcell Biochem. 2010;53:101–22.

    Article  CAS  PubMed  Google Scholar 

  85. Ram S, et al. Neisserial lipooligosaccharide is a target for complement component C4b. Inner core phosphoethanolamine residues define C4b linkage specificity. J Biol Chem. 2003;278:50853–62.

    Article  CAS  PubMed  Google Scholar 

  86. Moran AP, Prendergast MM, Appelmelk BJ. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol Med Microbiol. 1996;16:105–15.

    Article  CAS  PubMed  Google Scholar 

  87. Severi E, Hood DW, Thomas GH. Sialic acid utilization by bacterial pathogens. Microbiology. 2007;153:2817–22.

    Article  CAS  PubMed  Google Scholar 

  88. Rioux S, Bégin C, Dubreuil JD, Jacques M. Isolation and characterization of LPS mutants of Actinobacillus pleuropneumoniae serotype 1. Curr Microbiol. 1997;35:139–44.

    Article  CAS  PubMed  Google Scholar 

  89. Rioux S, et al. Isolation and characterization of mini-Tn10 lipopolysaccharide mutants of Actinobacillus pleuropneumoniae serotype 1. Can J Microbiol. 1999;45:1017–26.

    Article  CAS  PubMed  Google Scholar 

  90. Labrie J, et al. Identification of genes involved in biosynthesis of Actinobacillus pleuropneumoniae serotype 1 O-antigen and biological properties of rough mutants. J Endotoxin Res. 2002;8:27–38.

    Article  CAS  PubMed  Google Scholar 

  91. Ramjeet M, et al. Truncation of the lipopolysaccharide outer core affects susceptibility to antimicrobial peptides and virulence of Actinobacillus pleuropneumoniae serotype 1. J Biol Chem. 2005;280:39104–14.

    Article  CAS  PubMed  Google Scholar 

  92. Aussel L, et al. Novel variation of lipid A structures in strains of different Yersinia species. FEBS Lett. 2000;465:87–92.

    Article  CAS  PubMed  Google Scholar 

  93. Therisod H, Karibian D, Perry MB, Caroff M. Structural analysis of Yersiniapseudotuberculosis ATCC 29833 lipid A. Int J Mass Spectrom. 2002;219:549–57.

    Article  CAS  Google Scholar 

  94. Rebeil R, Ernst RK, Gowen BB, Miller SI, Hinnebusch BJ. Variation in lipid A structure in the pathogenic yersiniae. Mol Microbiol. 2004;52:1363–73.

    Article  CAS  PubMed  Google Scholar 

  95. Thérisod H, Monteiro MA, Perry MB, Caroff M. Helicobacter mustelae lipid A structure differs from that of Helicobacter pylori. FEBS Lett. 2001;499:1–5.

    Article  PubMed  Google Scholar 

  96. Mattsby-Baltzer I, Mielniczuk Z, Larsson L, Lindgren K, Goodwin S. Lipid A in Helicobacter pylori. Infect Immun. 1992;60:4383–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zähringer U, et al. The lipopolysaccharide of legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res. 1995;392:113–39.

    PubMed  Google Scholar 

  98. Carillo S, et al. Structural characterization of the lipid A from the LPS of the haloalkaliphilic bacterium Halomonas pantelleriensis. Extremophiles. 2016;20:687–94.

    Article  CAS  PubMed  Google Scholar 

  99. Moskowitz SM, Ernst RK, Miller SI. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of Aminoarabinose to Lipid A. J Bacteriol. 2004;186:575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shaffer SA, Harvey MD, Goodlett DR, Ernst RK. Structural heterogeneity and environmentally regulated remodeling of Francisella tularensis subspecies novicida lipid A Characterized by tandem mass spectrometry. J Am Soc Mass Spectrom. 2007;18:1080–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marr N, Tirsoaga A, Blanot D, Fernandez R, Caroff M. Glucosamine found as a substituent of both phosphate groups in Bordetella lipid A backbones: role of a BvgASactivated ArnT ortholog. J Bacteriol. 2008;190:4281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Marr N, et al. Substitution of the Bordetella pertussis lipid A phosphate groups with glucosamine is required for robust NF-kappaB activation and release of proinflammatory cytokines in cells expressing human but not murine Toll-like receptor 4-MD-2-CD14. Infect Immun. 2010;78:2060–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brunner K, et al. Novel campylobacter concisus lipooligosaccharide is a determinant of inflammatory potential and virulence. J Lipid Res. 2018;59:1893–905. https://doi.org/10.1194/jlr.M085860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Velasco J, et al. Structural studies on the lipopolysaccharide from a rough strain of Ochrobactrum anthropi containing a 2,3-diamino-2,3-dideoxy-D-glucose disaccharide lipid A backbone. Carbohydr Res. 1998;306:283–90.

    Article  CAS  PubMed  Google Scholar 

  105. Lapaque N, et al. Characterization of Brucella abortus lipopolysaccharide macrodomains as mega rafts. Cell Microbiol. 2006;8:197–206.

    Article  CAS  PubMed  Google Scholar 

  106. Bundle DR, Cherwonogrodzky JW, Caroff M, Perry MB. The lipopolysaccharides of Brucella abortus and B. melitensis. Ann Inst Pasteur Microbiol. 1987;138:92–8.

    Article  CAS  PubMed  Google Scholar 

  107. Zähringer U, et al. Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T. J Biol Chem. 2004;279:21046–54.

    Article  PubMed  CAS  Google Scholar 

  108. Moran AP, et al. Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-D-glucose and 2,3-diamino-2,3-dideoxy-Dglucose. Eur J Biochem. 1991;198:459–69.

    Article  CAS  PubMed  Google Scholar 

  109. Holst O, Borowiak D, Weckesser J, Mayer H. Structural studies on the phosphate-free lipid A of Rhodomicrobium vannielii ATCC 17100. Eur J Biochem. 1983;137:325–32.

    Article  CAS  PubMed  Google Scholar 

  110. Okamura K, Takata K, Hiraishi A. Intrageneric relationships of members of the genus Rhodopseudomonas. J Gen Appl Microbiol. 2009;55:469–78.

    Article  CAS  PubMed  Google Scholar 

  111. Di Lorenzo F, et al. The lipid A from Rhodopseudomonas palustris strain BisA53 LPS possesses a unique structure and low Immunostimulant properties. Chem Eur J. 2017;23:3637–47.

    Article  PubMed  CAS  Google Scholar 

  112. Rau H, Seydel U, Freudenberg M, Weckesser J, Mayer H. Lipopolysaccharide of the Phototrophic BacteriumRhodospirillum fulvum. Syst Appl Microbiol. 1995;18:154–63.

    Article  CAS  Google Scholar 

  113. Komaniecka I, Choma A, Lindner B, Holst O. The structure of a novel neutral lipid A from the lipopolysaccharide of Bradyrhizobium elkanii containing three mannose units in the backbone. Chem Weinh Bergstr Ger. 2010;16:2922–9.

    CAS  Google Scholar 

  114. Schwudke D, et al. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing α-D-Mannoses that replace phosphate residues similarities and differences between the lipid as and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J Biol Chem. 2003;278:27502–12.

    Article  CAS  PubMed  Google Scholar 

  115. Komaniecka I, et al. Occurrence of an unusual hopanoid-containing lipid A among lipopolysaccharides from Bradyrhizobium species. J Biol Chem. 2014;289:35644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huber R, et al. Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine Hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol. 1992;15:340–51.

    Article  Google Scholar 

  117. Plötz BM, Lindner B, Stetter KO, Holst O. Characterization of a novel Lipid A Containing D-galacturonic acid that replaces phosphate residues the structure of the lipid A of the lipopolysaccharide from the hyperthermophilic bacterium Aquifex pyrophilus. J Biol Chem. 2000;275:11222–8.

    Article  PubMed  Google Scholar 

  118. Park BS, et al. The structural basis of lipopolysaccharide recognition by the TLR4- MD-2 complex. Nature. 2009;458:1191–5.

    Article  CAS  PubMed  Google Scholar 

  119. Molinaro A, et al. Chemistry of lipid A: at the heart of innate immunity. Chem Weinh Bergstr Ger. 2015;21:500–19.

    CAS  Google Scholar 

  120. Caroff M, Cavaillon JM, Fitting C, Haeffner-Cavaillon N. Inability of pyrogenic, purified Bordetella pertussis lipid A to induce interleukin-1 release by human monocytes. Infect Immun. 1986;54:465–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Caroff M. DSc Thesis (Université Paris-Sud XI, 1982).

    Google Scholar 

  122. Masihi KN, Lange W, Brehmer W, Ribi E. Immunobiological activities of nontoxic lipid A: enhancement of nonspecific resistance in combination with trehalose dimycolate against viral infection and adjuvant effects. Int J Immunopharmacol. 1986;8:339–45.

    Article  CAS  PubMed  Google Scholar 

  123. Cluff CW. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv Exp Med Biol. 2010;667:111–23.

    Article  PubMed  Google Scholar 

  124. Awasthi S. Toll-like Receptor-4 modulation for cancer immunotherapy. Front Immunol. 2014;5:328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14:685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Garidou L, et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 2015;22:100–12.

    Article  CAS  PubMed  Google Scholar 

  127. Cani PD, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang-Sun W, et al. Structure function relationships in the lipids A from Ralstonia species rising in obese patients. Biochimie. 2019;159:72–80.

    Article  PubMed  CAS  Google Scholar 

  129. Raetz CR. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–70.

    Article  CAS  PubMed  Google Scholar 

  130. Banoub JH, Aneed AE, Cohen AM, Joly N. Structural investigation of bacterial lipopolysaccharides by mass spectrometry and tandem mass spectrometry. Mass Spectrom Rev. 2010;29:606–50.

    CAS  PubMed  Google Scholar 

  131. Novikov A, Marr N, Caroff M. A comparative study of the complete lipopolysaccharide structures and biosynthesis loci of Bordetella avium, B. Hinzii, and B. Trematum. Biochimie. 2018;159:81–92. https://doi.org/10.1016/j.biochi.2018.12.011.

    Article  CAS  PubMed  Google Scholar 

  132. Tang G, Wang Y, Luo L. Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis. Appl Environ Microbiol. 2014;80:5265–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Trent MS, Stead CM, Tran AX, Hankins JV. Diversity of endotoxin and its impact on pathogenesis. J Endotoxin Res. 2006;12:205–23.

    CAS  PubMed  Google Scholar 

  134. Kawasaki K, Ernst RK, Miller SI. Deacylation and palmitoylation of lipid A by Salmonellae outer membrane enzymes modulate host signaling through Toll-like receptor 4. J Endotoxin Res. 2004;10:439–44.

    Article  CAS  PubMed  Google Scholar 

  135. Ciornei CD, et al. Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immun. 2010;16:288–301.

    Article  CAS  PubMed  Google Scholar 

  136. Lam MY, et al. Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa. J Clin Microbiol. 1989;27:962–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z. Interactions between biofilms and the environment. FEMS Microbiol Rev. 1997;20:291–303.

    Article  CAS  PubMed  Google Scholar 

  138. Murphy K, et al. Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1. J Bacteriol. 2014;196:1306–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Delgado MA, Mouslim C, Groisman EA. The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol. 2006;60:39–50.

    Article  CAS  PubMed  Google Scholar 

  140. Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev. 2005;18:326–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang JC, et al. Planktonic growth of Pseudomonas aeruginosa around a dual- species biofilm supports the growth of fusobacterium nucleatum within that biofilm. Int J Otolaryngol. 2017;2017:1–12. https://doi.org/10.1155/2017/3037191.

    Article  Google Scholar 

  142. Chalabaev S, et al. Biofilms formed by gram-negative bacteria undergo increased lipid A palmitoylation, enhancing in vivo survival. MBio. 2014;5:e01116-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Le Coustumier A, Njamkepo E, Cattoir V, Guillot S, Guiso N. Bordetella petrii infection with long-lasting persistence in human. Emerg Infect Dis. 2011;17:612–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Vandamme PA, et al. Bordetella bronchialis sp. nov., Bordetella flabilis sp. nov. and Bordetella sputigena sp. nov., isolated from human respiratory specimens, and reclassification of Achromobacter sediminum Zhang et al. 2014 as Verticia sediminum gen. nov., comb. nov. Int J Syst Evol Microbiol. 2015;65:3674–82.

    Article  CAS  PubMed  Google Scholar 

  145. Diavatopoulos DA, et al. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 2005;1:e45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Gueirard P, Weber C, Le Coustumier A, Guiso N. Human Bordetellabronchiseptica infection related to contact with infected animals: persistence of bacteria in host. J Clin Microbiol. 1995;33:2002–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. World Health Organisation. https://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/passive/pertussis/en/.

  148. Goodnow RA. Biology of Bordetella bronchiseptica. Microbiol Rev. 1980;44:722–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Harrington AT, Castellanos JA, Ziedalski TM, Clarridge JE, Cookson BT. Isolation of Bordetella avium and novel Bordetella strain from patients with respiratory disease. Emerg Infect Dis. 2009;15:72–4.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Cookson BT, et al. Bacteremia caused by a novel Bordetella species, ‘B. hinzii’. J Clin Microbiol. 1994;32:2569–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Weyant RS, et al. Bordetella holmesii sp. nov., a new gram-negative species associated with septicemia. J Clin Microbiol. 1995;33:1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. von Wintzingerode F, et al. Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. Int J Syst Evol Microbiol. 2001;51:1257–65.

    Article  Google Scholar 

  153. Ko KS, et al. New species of Bordetella, Bordetella ansorpii sp. nov., isolated from the purulent exudate of an epidermal cyst. J Clin Microbiol. 2005;43:2516–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Guiso N, Hegerle N. Other Bordetellas, lessons for and from pertussis vaccines. Expert Rev Vaccines. 2014;13:1125–33.

    Article  CAS  PubMed  Google Scholar 

  155. Sugiyama J, et al. Polyphasic insights into the microbiomes of the Takamatsuzuka Tumulus and Kitora Tumulus. J Gen Appl Microbiol. 2017;63:63–113.

    Article  CAS  PubMed  Google Scholar 

  156. Tazato N, et al. Novel environmental species isolated from the plaster wall surface of mural paintings in the Takamatsuzuka tumulus: Bordetella muralis sp. nov., Bordetella tumulicola sp. nov. and Bordetella tumbae sp. nov. Int J Syst Evol Microbiol. 2015;65:4830–8.

    Article  CAS  PubMed  Google Scholar 

  157. Caroff M, et al. Variations in the carbohydrate regions of Bordetella pertussis lipopolysaccharides: electrophoretic, serological, and structural features. J Bacteriol. 1990;172:1121–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Novikov A, et al. Complete Bordetella avium, Bordetella hinzii and Bordetella trematum lipid A structures and genomic sequence analyses of the loci involved in their modifications. Innate Immun. 2014;20:659–72.

    Article  PubMed  CAS  Google Scholar 

  159. Larocque S, Brisson J-R, Thérisod H, Perry MB, Caroff M. Structural characterization of the O-chain polysaccharide isolated from Bordetella avium ATCC 5086: variation on a theme. FEBS Lett. 2003;535(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  160. Vinogradov E, Caroff M. Structure of the Bordetella trematum LPS O-chain subunit. FEBS Lett. 2005;579:18–24.

    Article  CAS  PubMed  Google Scholar 

  161. Vinogradov E. The structure of the carbohydrate backbone of the lipopolysaccharides from Bordetella hinzii and Bordetella bronchiseptica. Eur J Biochem. 2000;267:4577–82.

    Article  CAS  PubMed  Google Scholar 

  162. Vinogradov E. The structure of the core-O-chain linkage region of the lipopolysaccharide from Bordetella hinzii. Carbohydr Res. 2007;342:638–42.

    Article  CAS  PubMed  Google Scholar 

  163. Caroff M, Deprun C, Richards JC, Karibian D. Structural characterization of the lipid A of Bordetella pertussis 1414 endotoxin. J Bacteriol. 1994;176:5156–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bouchez V, AlBitar-Nehmé S, Novikov A, Guiso N, Caroff M. Bordetella holmesii: lipid A structures and corresponding genomic sequences comparison in three clinical isolates and the reference strain ATCC 51541. Int J Mol Sci. 2017;18:E1080.

    Article  PubMed  CAS  Google Scholar 

  165. El Hamidi A, Novikov A, Karibian D, Perry MB, Caroff M. Structural characterization of Bordetella parapertussis lipid A. J Lipid Res. 2009;50:854–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Preston A, et al. Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Mol Microbiol. 2003;48:725–36.

    Article  CAS  PubMed  Google Scholar 

  167. Basheer SM, et al. Structure activity characterization of Bordetella petrii lipid A, from environment to human isolates. Biochimie. 2016;120:87–95.

    Article  CAS  PubMed  Google Scholar 

  168. Cavaillon JM, Fitting C, Caroff M, Haeffner-Cavaillon N. Dissociation of cell associated interleukin-1 (IL-1) and IL-1 release induced by lipopolysaccharide and lipid A. Infect Immun. 1989;57:791–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Marr N, Novikov A, Hajjar AM, Caroff M, Fernandez RC. Variability in the lipooligosaccharide structure and endotoxicity among Bordetella pertussis strains. J Infect Dis. 2010;202:1897–906.

    Article  CAS  PubMed  Google Scholar 

  170. Shah NR, et al. Minor modifications to the phosphate groups and the C3’ acyl chain length of lipid A in two Bordetella pertussis strains, BP338 and 18-323, independently affect Toll-like receptor 4 protein activation. J Biol Chem. 2013;288:11751–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Basheer SM, Guiso N, Tirsoaga A, Caroff M, Novikov A. Structural modifications occurring in lipid A of Bordetella bronchiseptica clinical isolates as demonstrated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2011;25:1075–81.

    Article  CAS  PubMed  Google Scholar 

  172. Lebbar S, Karibian D, Deprun C, Caroff M. Distribution of lipid A species between long and short chain lipopolysaccharides isolated from Salmonella, Yersinia, and Escherichia as seen by 252Cf plasma desorption mass spectrometry. J Biol Chem. 1994;269:31881–4.

    CAS  PubMed  Google Scholar 

  173. Peppler MS. Two physically and serologically distinct lipopolysaccharide profiles instrains of Bordetella pertussis and their phenotype variants. Infect Immun. 1984;43:224–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Caroff M, et al. Structural variability and originality of the Bordetella endotoxins. J Endotoxin Res. 2001;7:63–8.

    Article  CAS  PubMed  Google Scholar 

  175. Le Blay K, Caroff M, Richards JC, Perry MB, Chaby R. Specific and crossreacting monoclonal antibodies to Bordetella parapertussis and Bordetella bronchiseptica lipopolysaccharides. Microbiology. 1994;140(Pt 9):2459–65.

    Article  PubMed  Google Scholar 

  176. Di Fabio JL, Caroff M, Karibian D, Richards JC, Perry MB. Characterization of the common antigenic lipopolysaccharide O-chains produced by Bordetella bronchiseptica and Bordetella parapertussis. FEMS Microbiol Lett. 1992;76:275–81.

    Article  PubMed  Google Scholar 

  177. Preston A, et al. Complete structures of Bordetella bronchiseptica and Bordetella parapertussis lipopolysaccharides. J Biol Chem. 2006;281:18135–44.

    Article  CAS  PubMed  Google Scholar 

  178. Lebbar S, et al. Molecular requirement for interleukin 1 induction by lipopolysaccharide-stimulated human monocytes: involvement of the heptosyl-2-keto-3-deoxyoctulosonate region. Eur J Immunol. 1986;16:87–91.

    Article  CAS  PubMed  Google Scholar 

  179. Schaeffer LM, McCormack FX, Wu H, Weiss AA. Interactions of pulmonary collectins with Bordetella bronchiseptica and Bordetella pertussis lipopolysaccharide elucidate the structural basis of their antimicrobial activities. Infect Immun. 2004;72:7124–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Gueirard P, Le Blay K, Le Coustumier A, Chaby R, Guiso N. Variation in Bordetella bronchiseptica lipopolysaccharide during human infection. FEMS Microbiol Lett. 1998;162:331–7.

    Article  CAS  PubMed  Google Scholar 

  181. Spears PA, Temple LM, Orndorff PE. A role for lipopolysaccharide in Turkey tracheal colonization by Bordetella avium as demonstrated in vivo and in vitro. Mol Microbiol. 2000;36:1425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Caroff M, Deprun C, Karibian D, Szabó L. Analysis of unmodified endotoxin preparations by 252Cf plasma desorption mass spectrometry. Determination of molecular masses of the constituent native lipopolysaccharides. J Biol Chem. 1991;266:18543–9.

    CAS  PubMed  Google Scholar 

  183. Caroff M, Deprun C, Karibian D. 252Cf plasma desorption mass spectrometry applied to the analysis of underivatized rough-type endotoxin preparations. J Biol Chem. 1993;268:12321–4.

    CAS  PubMed  Google Scholar 

  184. Karibian D, Deprun C, Caroff M. Comparison of lipids A of several Salmonella and Escherichia strains by 252Cf plasma desorption mass spectrometry. J Bacteriol. 1993;175:2988–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Novikov A, Breton A, Caroff M. Micromethods for isolation and structural characterization of lipid A, and polysaccharide regions of bacterial lipopolysaccharides. Methods Mol Biol. 2017;1600:167–86.

    Article  CAS  PubMed  Google Scholar 

  186. Faruque SM, et al. Emergence and evolution of Vibrio cholerae O139. Proc Natl Acad Sci. 2003;100:1304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ramamurthy T, et al. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 1993;341:703–4.

    Article  CAS  PubMed  Google Scholar 

  188. Redmond JW. The structure of the O-antigenic side chain of the lipopolysaccharide of Vibrio cholerae 569B (Inaba). Biochim Biophys Acta. 1979;584:346–52.

    Article  CAS  PubMed  Google Scholar 

  189. Kenne L, Lindberg B, Unger P, Holme T, Holmgren J. Structural studies of the Vibrio cholerae O-antigen. Carbohydr Res. 1979;68:C14–6.

    Article  CAS  PubMed  Google Scholar 

  190. Kenne L, Lindberg B, Unger P, Gustafsson B, Holme T. Structural studies of the Vibrio cholerae O-antigen. Carbohydr Res. 1982;100:341–9.

    Article  CAS  PubMed  Google Scholar 

  191. Hisatsune K, Kondo S, Isshiki Y, Iguchi T, Haishima Y. Occurrence of 2-Omethyl-N-(3-deoxy-L-glycero-tetronyl)-D-perosamine (4-amino-4,6-dideoxy-D-mannopyranose) in lipopolysaccharide from Ogawa but not from Inaba O forms of O1 Vibrio cholerae. Biochem Biophys Res Commun. 1993;190:302–7.

    Article  CAS  PubMed  Google Scholar 

  192. Cox AD, Brisson JR, Varma V, Perry MB. Structural analysis of the lipopolysaccharide from Vibrio cholerae O139. Carbohydr Res. 1996;290:43–58.

    Article  CAS  PubMed  Google Scholar 

  193. Knirel YA, Widmalm G, Senchenkova SN, Jansson PE, Weintraub A. Structural studies on the short-chain lipopolysaccharide of Vibrio cholerae O139 Bengal. Eur J Biochem. 1997;247:402–10.

    Article  CAS  PubMed  Google Scholar 

  194. Hankins JV, et al. Elucidation of a novel Vibrio cholerae lipid A secondary hydroxyacyltransferase and its role in innate immune recognition. Mol Microbiol. 2011;81:1313–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hankins JV, Madsen JA, Giles DK, Brodbelt JS, Trent MS. Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in grampositive and gram-negative bacteria. Proc Natl Acad Sci U S A. 2012;109:8722–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Henderson JC, Herrera CM, Trent MS. AlmG, responsible for polymyxin resistance in pandemic Vibrio cholerae, is a glycyltransferase distantly related to lipid A late acyltransferases. J Biol Chem. 2017;292:21205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Phillips NJ, et al. The lipid A from Vibrio fischeri lipopolysaccharide: a unique structure bearing a phosphoglycerol moiety. J Biol Chem. 2011;286:21203–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Luis Augusto from I2BC, Paris-Saclay University, for his participation to testing TNF-α and IL-6 with some of the Bordetella LPS, and to Benjamin Gensburger, from LPS-BioSciences, for performing the SDS-PAGE analysis of the Bordetella LPS. Prof. Dr. Babatosh Das from Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India, is acknowledged for providing the different V. cholerae strains studied. Prof. Dr. David R. Bundle from University of Alberta, Canada, is acknowledged for his help at editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Caroff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caroff, M., Novikov, A. (2019). LPS Structure, Function, and Heterogeneity. In: Williams, K. (eds) Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-17148-3_3

Download citation

Publish with us

Policies and ethics