Abstract
The main goal of these lectures is to give a brief introduction to application of contact geometry to Monge–Ampère equations.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Akhmetzianov, A.V., Kushner, A.G., Lychagin, V.V. Integrability of Buckley–Leverett’s filtration model. In: IFAC Proceedings Volumes (IFAC-PapersOnline). 49(12), pp. 1251–1254 (2016)
Cotton, E. Sur les invariants différentiels de quelques équations lineaires aux dérivées partielles du second ordre. In: Ann. Sci. Ecole Norm. Sup. 17, pp. 211–244 (1900)
Darboux, G. Leçons sur la théorie générale des surfaces. Vol. I. Paris, Gauthier-Villars, Imprimeur–Libraire, 1887, vi+514 pp.
Darboux, G. Leçons sur la théorie générale des surfaces. Vol. II. Paris, Gauthier-Villars, 1915, 579 pp.
Darboux, G. Leçons sur la théorie générale des surfaces. Vol. III. Paris, Gauthier-Villars at fils, Imprimeur– Libraire, 1894, viii+512 pp.
Hunter, J.K., Saxton, R. Dynamics of director fields. In: SIAM J. Appl. Math. 51(6), pp. 1498–1521 (1991)
Kantorovich, L. On the translocation of masses. // C.R. (Doklady) Acad. Sci. URSS (N.S.), 37, 199–201 (1942)
Krasil’shchik, I.S., Lychagin, V.V., Vinogradov, A.M. Geometry of jet spaces and nonlinear partial differential equations. Advanced Studies in Contemporary Mathematics, 1, Gordon and Breach Science Publishers, New York, 1986, xx+441 pp.
Kushner, A.G. Classification of mixed type Monge-Ampère equations. In: Pràstaro, A., Rassias, Th.M. (eds) Geometry in Partial Differential Equations, pp. 173–188. World Scientific (1993)
Kushner, A.G. Symplectic geometry of mixed type equations. In: Lychagin, V.V. (ed) The Interplay between Differential Geometry and Differential Equations. Amer. Math. Soc. Transl. Ser. 2, 167, pp. 131–142 (1995)
Kushner, A.G. Monge–Ampère equations and e-structures. In: Dokl. Akad. Nauk 361(5), pp. 595–596 (1998) (Russian). English translation in Doklady Mathematics, 58(1), pp. 103–104 (1998)
Kushner, A.G. A contact linearization problem for Monge–Ampère equations and Laplace invariants. In: Acta Appl. Math. 101(1–3), pp. 177–189 (2008)
Kushner, A.G. Classification of Monge-Ampère equations. In: “Differential Equations: Geometry, Symmetries and Integrability”. Proceedings of the Fifth Abel Symposium, Tromso, Norway, June 17–22, 2008 (Editors: B. Kruglikov, V. Lychagin, E. Straume) pp. 223–256.
Kushner, A.G. On contact equivalence of Monge–Ampère equations to linear equations with constant coefficients. Acta Appl. Math. 109(1), pp. 197–210 (2010)
Kushner, A.G., Lychagin, V.V., Rubtsov, V.N. Contact geometry and nonlinear differential equations. Encyclopedia of Mathematics and Its Applications 101, Cambridge University Press, Cambridge, 2007, xxii+496 pp.
Lychagin, V.V. Contact geometry and nonlinear second-order partial differential equations. In: Dokl. Akad. Nauk SSSR 238(5), pp. 273–276 (1978). English translation in Soviet Math. Dokl. 19(5), pp. 34–38 (1978)
Lychagin, V.V. Contact geometry and nonlinear second-order differential equations. In: Uspekhi Mat. Nauk 34(1 (205)), pp. 137–165 (1979). English translation in Russian Math. Surveys 34(1), pp. 149–180 (1979)
Lychagin, V.V. Lectures on geometry of differential equations. Vol. 1,2. “La Sapienza”, Rome, 1993.
Lychagin, V.V., Rubtsov, V.N. The theorems of Sophus Lie for the Monge–Ampère equations (Russian). In: Dokl. Akad. Nauk BSSR 27(5), pp. 396–398 (1983)
Lychagin, V.V., Rubtsov, V.N. Local classification of Monge–Ampère differential equations. In: Dokl. Akad. Nauk SSSR 272(1), pp. 34–38 (1983)
Lychagin, V.V., Rubtsov, V.N., Chekalov, I.V. A classification of Monge–Ampère equations. In: Ann. Sci. Ecole Norm. Sup. (4) 26(3), pp. 281–308 (1993)
Ovsyannikov, L.V. Group Analysis of Differential Equations. New York, Academic Press, 1982, 416 pp.
Tunitskii, D.V. On the contact linearization of Monge-Ampère equations. In: Izv. Ross. Akad. Nauk, Ser. Matem. 60(2), pp. 195–220 (1996)
Acknowledgements
This work is partially supported by the Russian Foundation for Basic Research (project 18-29-10013). The third author was also supported by the Czech Grant Agency, grant no. GA17-01171S.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kushner, A., Lychagin, V.V., Slovák, J. (2019). Lectures on Geometry of Monge–Ampère Equations with Maple. In: Kycia, R., Ułan, M., Schneider, E. (eds) Nonlinear PDEs, Their Geometry, and Applications. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-17031-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-17031-8_2
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-030-17030-1
Online ISBN: 978-3-030-17031-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)