Ajabshir S, Asif A, Nayer A. The effects of vitamin D on the renin-angiotensin system. J Nephropathol. 2014;3(2):41–3. https://doi.org/10.12860/jnp.2014.09.
CrossRef
PubMed
PubMed Central
Google Scholar
Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83(1):84–92. Epub 2007 Jan 18.
CAS
PubMed
CrossRef
Google Scholar
Cohen BH, Gold DR. Mitochondrial cytopathy in adults: what we know so far. Cleve Clin J Med. 2001;68(7):625–42.
CAS
PubMed
CrossRef
Google Scholar
Vanderplasschen W, et al. Poly substance use and mental health among individuals presenting for substance abuse treatment. Science and society series. Ghent: Academia Press; 2012.
Google Scholar
Yankey BA, Rothenberg R, Strasser S, Ramsey-White K, Okosun IS. Effect of marijuana use on cardiovascular and cerebrovascular mortality: a study using the National Health and Nutrition Examination Survey linked mortality file. Eur J Prev Cardiol. 2017;24(17):1833–40. https://doi.org/10.1177/2047487317723212. Epub 2017 Aug 8.
CrossRef
PubMed
Google Scholar
Desbois AC, Cacoub P. Cannabis-associated arterial disease. Ann Vasc Surg. 2013;27(7):996–1005. https://doi.org/10.1016/j.avsg.2013.01.002. Epub 2013 Jul 10. Review.
CrossRef
PubMed
Google Scholar
Thomas G, Kloner RA, Rezkalla S. Adverse cardiovascular, cerebrovascular, and peripheral vascular effects of marijuana inhalation: what cardiologists need to know. Am J Cardiol. 2014;113(1):187–90. https://doi.org/10.1016/j.amjcard.2013.09.042. Epub 2013 Oct 5. Review.
CAS
CrossRef
PubMed
Google Scholar
Gorelick DA, Heishman SJ, Preston KL, Nelson RA, Moolchan ET, Huestis MA. The cannabinoid CB1 receptor antagonist rimonabant attenuates the hypotensive effect of smoked marijuana in male smokers. Am Heart J. 2006;151(3):754.e1–5.
CrossRef
CAS
Google Scholar
Mittleman MA, Lewis RA, Maclure M, Sherwood JB, Muller JE. Triggering myocardial infarction by marijuana. Circulation. 2001;103(23):2805–9.
CAS
PubMed
CrossRef
Google Scholar
Mukamal KJ, Maclure M, Muller JE, Mittleman MA. An exploratory prospective study of marijuana use and mortality following acute myocardial infarction. Am Heart J. 2008;155(3):465–70. https://doi.org/10.1016/j.ahj.2007.10.049.
CrossRef
PubMed
PubMed Central
Google Scholar
Mehra R, Moore BA, Crothers K, Tetrault J, Fiellin DA. The association between marijuana smoking and lung cancer: a systematic review. Arch Intern Med. 2006;166(13):1359–67. Review.
CAS
PubMed
CrossRef
Google Scholar
Korantzopoulos P, Liu T, Papaioannides D, Li G, Goudevenos JA. Atrial fibrillation and marijuana smoking. Int J Clin Pract. 2008;62(2):308–13. Epub 2007 Nov 21. Review.
CAS
PubMed
CrossRef
Google Scholar
Korantzopoulos P. Marijuana smoking is associated with atrial fibrillation. Am J Cardiol. 2014;113(6):1085–6. https://doi.org/10.1016/j.amjcard.2014.01.001. Epub 2014 Jan 8.
CrossRef
PubMed
Google Scholar
Hackam DG. Cannabis and stroke: systematic appraisal of case reports. Stroke. 2015;46(3):852–6. https://doi.org/10.1161/STROKEAHA.115.008680. Review.
CAS
CrossRef
PubMed
Google Scholar
Desbois AC, Cacoub P. Cannabis-associated arterial disease. Ann Vasc Surg. 2013;27(7):996–1005. https://doi.org/10.1016/j.avsg.2013.01.002. Epub 2013 Jul 10. Review.
CrossRef
PubMed
Google Scholar
Shi H, Enriquez A, Rapadas M, Martin EMMA, Wang R, Moreau J, Lim CK, Szot JO, Ip E, Hughes JN, Sugimoto K, Humphreys DT, McInerney-Leo AM, Leo PJ, Maghzal GJ, Halliday J, Smith J, Colley A, Mark PR, Collins F, Sillence DO, Winlaw DS, Ho JWK, Guillemin GJ, Brown MA, Kikuchi K, Thomas PQ, Stocker R, Giannoulatou E, Chapman G, Duncan EL, Sparrow DB, Dunwoodie SL. NAD deficiency, congenital malformations, and niacin supplementation. N Engl J Med. 2017;377(6):544–52. https://doi.org/10.1056/NEJMoa1616361.
CAS
CrossRef
PubMed
Google Scholar
Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22:31–53.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Huang J-Y, Hirschey MD, Shimazu T, Ho L, Verdin E. Mitochondrial sirtuins. Biochim Biophys Acta. 2010;1804:1645–51.
CAS
PubMed
CrossRef
Google Scholar
Cheng H-L, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003;100:10794–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Vander Heiden MG. Metabolism and congenital malformations – NAD’s effects on development. N Engl J Med. 2017;377(6):509–11. https://doi.org/10.1056/NEJMp1707487.
CrossRef
PubMed
Google Scholar
Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc. 2012;87(12):1196–201. https://doi.org/10.1016/j.mayocp.2012.10.013.
CrossRef
PubMed
PubMed Central
Google Scholar
Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc. 2012;87(12):1196–201. https://doi.org/10.1016/j.mayocp.2012.10.013.
CrossRef
PubMed
PubMed Central
Google Scholar
Treister R, O’Neil K, Downs HM, Oaklander AL. Validation of the composite autonomic symptom scale 31 (COMPASS-31) in patients with and without small fiber polyneuropathy. Eur J Neurol. 2015;22(7):1124–30. https://doi.org/10.1111/ene.12717. Epub 2015 Apr 23.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Bowling A, Bond M, Jenkinson C, Lamping DL. Short Form 36 (SF-36) health survey questionnaire: which normative data should be used? Comparisons between the norms provided by the Omnibus Survey in Britain, the Health Survey for England and the Oxford Healthy Life Survey. J Public Health Med. 1999;21(3):255–70.
CAS
PubMed
CrossRef
Google Scholar
Hunt SM, McKenna SP, McEwen J, Backett EM, Williams J, Papp E. A quantitative approach to perceived health status: a validation study. J Epidemiol Community Health. 1980;34(4):281–6.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
https://www.ehlers-danlos.com/assessing-joint-hypermobility/
Naal FD, Hatzung G, Müller A, Impellizzeri F, Leunig M. Validation of a self-reported Beighton score to assess hypermobility in patients with femoroacetabular impingement. Int Orthop. 2014;38(11):2245–50. https://doi.org/10.1007/s00264-014-2424-9. Epub 2014 Jul 5.
CrossRef
PubMed
Google Scholar
Smits-Engelsman B, Klerks M, Kirby A. Beighton score: a valid measure for generalized hypermobility in children. J Pediatr. 2011;158(1):119–23, 123.e1–4. https://doi.org/10.1016/j.jpeds.2010.07.021. Epub 2010 Sep 17.
CrossRef
Google Scholar
Tobias H, Vinitsky A, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic nervous system monitoring of patients with excess parasympathetic responses to sympathetic challenges – clinical observations. US Neurol. 2010;5(2):62–6.
CrossRef
Google Scholar
Low PA. Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc. 1993;68(8):748–52.
CAS
PubMed
CrossRef
Google Scholar
Nabavi SM, Daglia M, Braidy N, Nabavi SF. Natural products, micronutrients, and nutraceuticals for the treatment of depression: a short review. Nutr Neurosci. 2017;20(3):180–94. https://doi.org/10.1080/1028415X.2015.1103461. Epub 2015 Nov 27.
CAS
CrossRef
PubMed
Google Scholar
Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, Spielholz C, Frye R. Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev. 2015;55:294–321. https://doi.org/10.1016/j.neubiorev.2015.04.015. Epub 2015 May 6.
CAS
CrossRef
PubMed
Google Scholar
Mathew SJ. Treatment-resistant depression: recent developments and future directions. Depress Anxiety. 2008;25(12):989–92. https://doi.org/10.1002/da.20540.
CrossRef
PubMed
PubMed Central
Google Scholar
Kumar A, Chanana P. Role of nitric oxide in stress-induced anxiety: from pathophysiology to therapeutic target. Vitam Horm. 2017;103:147–67. https://doi.org/10.1016/bs.vh.2016.09.004. Epub 2016 Dec 2.
CAS
CrossRef
PubMed
Google Scholar
Müller CP, Reichel M, Mühle C, Rhein C, Gulbins E, Kornhuber J. Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta. 2015;1851(8):1052–65. https://doi.org/10.1016/j.bbalip.2014.12.014. Epub 2014 Dec 24.
CAS
CrossRef
PubMed
Google Scholar
Hennebelle M, Champeil-Potokar G, Lavialle M, Vancassel S, Denis I. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus. Nutr Rev. 2014;72(2):99–112. https://doi.org/10.1111/nure.12088. Epub 2014 Jan 13.
CrossRef
PubMed
Google Scholar
Appleton KM, Sallis HM, Perry R, Ness AR, Churchill R. ω-3 fatty acids for major depressive disorder in adults: an abridged Cochrane. BMJ Open. 2016;6(3):e010172. https://doi.org/10.1136/bmjopen-2015-010172.
CrossRef
PubMed
PubMed Central
Google Scholar
Vesco AT, Lehmann J, Gracious BL, Arnold LE, Young AS, Fristad MA. Omega-3 supplementation for psychotic mania and comorbid anxiety in children. J Child Adolesc Psychopharmacol. 2015;25(7):526–34. https://doi.org/10.1089/cap.2013.0141. Epub 2015 Aug 19.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ball J, Carrington MJ, McMurray JJ, Stewart S. Atrial fibrillation: profile and burden of an evolving epidemic in the 21st century. Int J Cardiol. 2013;167:1807–24.
PubMed
CrossRef
Google Scholar
Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–6.
PubMed
CrossRef
Google Scholar
Fenger-Grøn M, Overvad K, Tjønneland A, Frost L. Lean body mass is the predominant anthropometric risk factor for atrial fibrillation. J Am Coll Cardiol. 2017;69(20):2488–97. https://doi.org/10.1016/j.jacc.2017.03.558.
CrossRef
PubMed
Google Scholar
Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386:154–62.
PubMed
PubMed Central
CrossRef
Google Scholar
Nattel S. Atrial fibrillation and body composition: is it fat or lean that ultimately determines the risk? J Am Coll Cardiol. 2017;69(20):2498–501. https://doi.org/10.1016/j.jacc.2017.03.566.
CrossRef
PubMed
Google Scholar
Colombo J, Arora RR, DePace NL, Vinik AI. Clinical autonomic dysfunction: measurement, indications, therapies, and outcomes. New York: Springer Science + Business Media; 2014.
Google Scholar
Garrey WE. The nature of fibrillatory contraction of the heart: its relation to tissue mass and form. Am J Phys. 1914;33:397–414.
CrossRef
Google Scholar
Moore EN, Spear JF. Electrophysiological studies on atrial fibrillation. Heart Vessels Suppl. 1987;2:32–9.
CAS
PubMed
Google Scholar
Zou R, Kneller J, Leon LJ, Nattel S. Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium. Am J Physiol Heart Circ Physiol. 2005;289:H1002–12.
CAS
PubMed
CrossRef
Google Scholar
Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.
PubMed
CrossRef
Google Scholar
https://www.psychiatry.org/psychiatrists/practice/dsm
Rowney J, Hermida T, Malone D. Definition and etiology. 2010. http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/psychiatry-psychology/anxiety-disorder/
Weissman M, Wickramaratne P, Nomura Y, et al. Offspring of depressed parents: 20 years later. Am J Psychiatry. 2006;163:1001–8.
PubMed
CrossRef
Google Scholar
Cardinali DP. Autonomic nervous system: basic and clinical aspects. Cham: Springer International Publishing AG; 2018.
CrossRef
Google Scholar
Grases G, Colom MA, Fernandez RA, Costa-Bauzá A, Grases F. Evidence of higher oxidative status in depression and anxiety. Oxidative Med Cell Longev. 2014;2014:430216. https://doi.org/10.1155/2014/430216. Epub 2014 Apr 29.
CAS
CrossRef
Google Scholar
McIntyre RS, Soczynska JK, Lewis GF, MacQueen GM, Konarski JZ, Kennedy SH. Managing psychiatric disorders with antidiabetic agents: translational research and treatment opportunities. Expert Opin Pharmacother. 2006;7(10):1305–21.
CAS
PubMed
CrossRef
Google Scholar
Fernandes BS, Dean OM, Dodd S, Malhi GS, Berk M. N-acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis. J Clin Psychiatry. 2016;77(4):e457–66. https://doi.org/10.4088/JCP.15r09984.
CrossRef
PubMed
Google Scholar
Kinrys G, Coleman E, Rothstein E. Natural remedies for anxiety disorders: potential use and clinical applications. Depress Anxiety. 2009;26(3):259–65. https://doi.org/10.1002/da.20460.
CrossRef
PubMed
Google Scholar
Lakhan SE, Vieira KF. Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J. 2010;9:42. https://doi.org/10.1186/1475-2891-9-42.
CrossRef
PubMed
PubMed Central
Google Scholar
Smaga I, Niedzielska E, Gawlik M, Moniczewski A, Krzek J, Przegaliński E, Pera J, Filip M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep. 2015;67(3):569–80. https://doi.org/10.1016/j.pharep.2014.12.015. Epub 2015 Jan 5.
CAS
CrossRef
PubMed
Google Scholar
Gulati K, Rai N, Ray A. Nitric oxide and anxiety. Vitam Horm. 2017;103:169–92. https://doi.org/10.1016/bs.vh.2016.09.001. Epub 2016 Oct 31.
CAS
CrossRef
PubMed
Google Scholar
Qato DM, Ozenberger K, Olfson M. Prevalence of prescription medications with depression as a potential adverse effect among adults in the United States. JAMA. 2018;319(22):2289. https://doi.org/10.1001/jama.2018.6741.
CrossRef
PubMed
PubMed Central
Google Scholar
Haas H, Panula P. The role of histamine and the tuberomammillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4:121–30.
CAS
PubMed
CrossRef
Google Scholar
Piña IL, Di Palo KE, Ventura HO. Psychopharmacology and cardiovascular disease. J Am Coll Cardiol. 2018;71(20):2346–59.
PubMed
CrossRef
CAS
Google Scholar
American Heart Association Nutrition Committee, Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, Franklin B, Kris-Etherton P, Harris WS, Howard B, Karanja N, Lefevre M, Rudel L, Sacks F, Van Horn L, Winston M, Wylie-Rosett J. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114(1):82–96. Epub 2006 Jun 19. Erratum in: Circulation. 2006 Dec 5;114(23):e629. Circulation. 2006 Jul 4;114(1):e27.
CrossRef
Google Scholar
Nemeroff CB, Evans DL. Correlation between the dexamethasone suppression test in depressed patients and clinical response. Am J Psychiatry. 1984;141:247–9.
CAS
PubMed
CrossRef
Google Scholar
Nemeroff CB, Widerlov E, Bissette G, et al. Elevated concentrations of CSF corticotropin releasing factor-like immunoreactivity in depressed patients. Science. 1984;226:1342–4.
CAS
PubMed
CrossRef
Google Scholar
Musselman DL, Tomer A, Manatunga AK, et al. Exaggerated platelet reactivity in major depression. Am J Psychiatry. 1996;153:1313–7.
CAS
PubMed
CrossRef
Google Scholar
Carney RM, Saunders RD, Freedland KE, Stein P, Rich MW, Jaffe AS. Association of depression with reduced heart rate variability in coronary artery disease. Am J Cardiol. 1995;76(8):562–4.
CAS
PubMed
CrossRef
Google Scholar
Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999;99(16):2192–217.
CAS
PubMed
CrossRef
Google Scholar
Khan SG, Melikian N, Shabeeh H, Cabaco AR, Martin K, Khan F, O’Gallagher K, Chowienczyk PJ, Shah AM. The human coronary vasodilatory response to acute mental stress is mediated by neuronal nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2017;313(3):H578–83. https://doi.org/10.1152/ajpheart.00745.2016. Epub 2017 Jun 23.
CrossRef
PubMed
PubMed Central
Google Scholar
Preisig M, Waeber G, Mooser V, Vollenweider P. PsyCoLaus: mental disorders and cardiovascular diseases: spurious association? Rev Med Suisse. 2011;7:2127–9.
CAS
PubMed
Google Scholar
Chaddha A, Robinson EA, Kline-Rogers E, Alexandris-Souphis T, Rubenfire M. Mental health and cardiovascular disease. Am J Med. 2016;129:1145–8.
PubMed
CrossRef
Google Scholar
Rugulies R. Depression as a predictor for coronary heart disease: a review and meta-analysis1. Am J Prev Med. 2002;23:51–61.
PubMed
CrossRef
Google Scholar
Denollet J, Maas K, Knottnerus A, Keyzer JJ, Pop VJ. Anxiety predicted premature all-cause and cardiovascular death in a 10-year follow-up of middle-aged women. J Clin Epidemiol. 2009;62:452–6.
PubMed
CrossRef
Google Scholar
Blumenthal JA, Babyak MA, O’Connor C, Keteyian S, Landzberg J, Howlett J, et al. Effects of exercise training on depressive symptoms inpatients with chronic heart failure: the HF-ACTION randomized trial. JAMA. 2012;308:465–74.
CAS
PubMed
PubMed Central
Google Scholar
Janszky I, Ahnve S, Lundberg I, Hemmingsson T. Early-onset depression, anxiety, and risk of subsequent coronary heart disease: 37- year follow-up of 49,321 young Swedish men. J Am Coll Cardiol. 2010;56:31–7.
PubMed
CrossRef
Google Scholar
Phillips AC, Batty GD, Gale CR, et al. Generalized anxiety disorder, major depressive disorder, and their comorbidity as predictors of all-cause and cardiovascular mortality: the Vietnam experience study. Psychosom Med. 2009;71:395–403.
CAS
PubMed
CrossRef
Google Scholar
Rutledge T, Linke SE, Krantz DS, et al. Comorbid depression and anxiety symptoms as predictors of cardiovascular events: results from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. Psychosom Med. 2009;71:958–64.
PubMed
PubMed Central
CrossRef
Google Scholar
Chida Y, Steptoe A. The association of anger and hostility with future coronary heart disease: a meta-analytic review of prospective evidence. J Am Coll Cardiol. 2009;53:936–46.
PubMed
CrossRef
Google Scholar
Lampert R, Joska T, Burg MM, Batsford WP, McPherson CA, Jain D. Emotional and physical precipitants of ventricular arrhythmia. Circulation. 2002;106:1800–5.
CrossRef
PubMed
Google Scholar
Krantz DS, Kop WJ, Santiago HT, Gottdiener JS. Mental stress as a trigger of myocardial ischemia and infarction. Cardiol Clin. 1996;14(2):271–87.
CAS
PubMed
CrossRef
Google Scholar
Krantz DS, McCeney MK. Effects of psychological and social factors on organic disease: a critical assessment of research on coronary heart disease. Annu Rev Psychol. 2002;53:341–69.
PubMed
CrossRef
Google Scholar
Karasek R, Baker D, Marxer F, Ahlbom A, Theorell T. Job decision latitude, job demands, and cardiovascular disease: a prospective study of Swedish men. Am J Public Health. 1981;71:694–705.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Greenlund KJ, Kiefe CI, Giles WH, Liu K. Associations of job strain and occupation with subclinical atherosclerosis: the CARDIA study. Ann Epidemiol. 2010;20:323–31.
PubMed
PubMed Central
CrossRef
Google Scholar
Eller NH, Netterstrøm B, Gyntelberg F, et al. Work-related psychosocial factors and the development of ischemic heart disease: a systematic review. Cardiol Rev. 2009;17:83–97.
PubMed
CrossRef
Google Scholar
Leor J, Poole WK, Kloner RA. Sudden cardiac death triggered by an earthquake. N Engl J Med. 1996;334:413–9.
CAS
PubMed
CrossRef
Google Scholar
Ader R, Felten DL, Cohen N, editors. Psychoneuroimmunology, vol. 2. Waltham Abbey: Academic Press; 2000. ISBN 978-0-12-0443147.
Google Scholar
Rosengren A, Hawken S, Ôunpuu S, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:953–62.
PubMed
CrossRef
Google Scholar
Orth-Gomer K, Wamala SP, Horsten M, Schenck-Gustafsson K, Schneiderman N, Mittleman MA. Marital stress worsens prognosis in women with coronary heart disease: the Stockholm Female Coronary Risk Study. JAMA. 2000;284:3008–14.
CAS
PubMed
CrossRef
Google Scholar
Gabbay FH, Krantz DS, Kop WJ, et al. Triggers of myocardial ischemia during daily life in patients with coronary artery disease: physical and mental activities, anger and smoking. J Am Coll Cardiol. 1996;27:585–92.
CAS
PubMed
CrossRef
Google Scholar
Gullette EC, Blumenthal JA, Babyak M, et al. Effects of mental stress on myocardial ischemia during daily life. JAMA. 1997;277:1521–6.
CAS
PubMed
CrossRef
Google Scholar
Jiang W, Babyak M, Krantz DS, et al. Mental stress–induced myocardial ischemia and cardiac events. JAMA. 1996;275:1651–6.
CAS
PubMed
CrossRef
Google Scholar
Williams RB, Haney TL, Lee KL, Kong Y-H, Blumenthal JA, Whalen RE. Type A behavior, hostility, and coronary atherosclerosis. Psychosom Med. 1980;42:539–49.
PubMed
CrossRef
Google Scholar
Tindle HA, Chang YF, Kuller LH, et al. Optimism, cynical hostility, and incident coronary heart disease and mortality in the Women’s Health Initiative. Circulation. 2009;120:656–62.
PubMed
PubMed Central
CrossRef
Google Scholar
Mc Donnell CG, Shorten G, Van Pelt FN. Effect of atorvastatin and fluvastatin on the metabolism of midazolam by cytochrome P450 in vitro. Anaesthesia. 2005;60:747–53.
CAS
PubMed
CrossRef
Google Scholar
Jiang W, O’Connor C, Silva SG, et al. Safety and efficacy of sertraline for depression in patients with CHF (SADHART-CHF): a randomized, doubleblind, placebo-controlled trial of sertraline for major depression with congestive heart failure. Am Heart J. 2008;156:437–44.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pizzi C, Mancini S, Angeloni L, Fontana F, Manzoli L, Costa G. Effects of selective serotonin reuptake inhibitor therapy on endothelial function and inflammatory markers in patients with coronary heart disease. Clin Pharmacol Ther. 2009;86:527–32.
CAS
PubMed
CrossRef
Google Scholar
Beach SR, Kostis WJ, Celano CM, et al. Metaanalysis of selective serotonin reuptake inhibitor associated QTc prolongation. J Clin Psychiatry. 2014;75:e441–9.
PubMed
CrossRef
Google Scholar
Pizzi C, Rutjes AWS, Costa GM, Fontana F, Mezzetti A, Manzoli L. Meta-analysis of selective serotonin reuptake inhibitors in patients with depression and coronary heart disease. Am J Cardiol. 2011;107:972–9.
CAS
PubMed
CrossRef
Google Scholar
Ho JM, Gomes T, Straus SE, Austin PC, Mamdani M, Juurlink DN. Adverse cardiac events in older patients receiving venlafaxine: a population-based study. J Clin Psychiatry. 2014;75:e552–8.
CAS
PubMed
CrossRef
Google Scholar
Shah S, Iqbal Z, White A, White S. Heart and mind: (2) psychotropic and cardiovascular therapeutics. Postgrad Med J. 2005;81:33–40.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mackin P. Cardiac side effects of psychiatric drugs. Hum Psychopharmacol Clin Exp. 2008;23(S1):3–14.
CAS
CrossRef
Google Scholar
Kovacs D, Arora R. Cardiovascular effects of psychotropic drugs. Am J Ther. 2008;15:474–83.
PubMed
CrossRef
Google Scholar
Giardina E-GV, Johnson LL, Vita J, Bigger JT Jr, Brem RF. Effect of imipramine and nortriptyline on left ventricular function and blood pressure in patients treated for arrhythmias. Am Heart J. 1985;109:992–8.
CAS
PubMed
CrossRef
Google Scholar
Roose SP, Dalack GW. Cardiovascular effects of bupropion in depressed patients with heart disease. Am J Psychiatry. 1991;148:512.
CAS
PubMed
CrossRef
Google Scholar
Roose SP, Glassman AH, Giardina EG, Johnson LL, Walsh BT, Bigger JT Jr. Cardiovascular effects of imipramine and bupropion in depressed patients with congestive heart failure. J Clin Psychopharmacol. 1987;7:247–51.
CAS
PubMed
CrossRef
Google Scholar
Vitullo RN, Wharton JM, Allen NB, Pritchett EL. Trazodone-related exercise-induced nonsustained ventricular tachycardia. Chest. 1990;98:247–8.
CAS
PubMed
CrossRef
Google Scholar
Boschmans S, Perkin M, Terblanche S, Opie L. The effects of imipramine, mianserin and trazodone on the chronotropic, inotropic and coronary vascular responses in the isolated perfused rat heart. Gen Pharmacol. 1989;20:233–7.
CAS
PubMed
CrossRef
Google Scholar
Mazur A, Strasberg B, Kusniec J, Sclarovsky S. QT prolongation and polymorphous ventricular tachycardia associated with trazodone amiodarone combination. Int J Cardiol. 1995;52:27–9.
CAS
PubMed
CrossRef
Google Scholar
Libert J, Amoros C, Muzet A, Ehrhart J, Di Nisi J. Effects of triazolam on heart rate level and on phasic cardiac response to noise during sleep. Psychopharmacology. 1988;96:188–93.
CAS
PubMed
CrossRef
Google Scholar
Lapane KL, Zierler S, Lasater TM, Barbour MM, Carleton R, Hume AL. Is the use of psychotropic drugs associated with increased risk of ischemic heart disease? Epidemiology. 1995;6:376–81.
CAS
PubMed
CrossRef
Google Scholar
Kim YH, Kim HB, Kim DH, Kim JY, Shin HY. Use of hypnotics and the risk of or mortality from heart disease: a meta-analysis of observational studies. Korean J Intern Med. 2017;33(4):727–36. [E-pub ahead of print].
PubMed
PubMed Central
CrossRef
Google Scholar
Schneier FR. Social anxiety disorder. N Engl J Med. 2006;355:1029–36.
CAS
PubMed
CrossRef
Google Scholar
Hoogwegt MT, Kupper N, Theuns DA, Jordaens L, Pedersen SS. Beta-blocker therapy is not associated with symptoms of depression and anxiety in patients receiving an implantable cardioverter-defibrillator. Europace. 2011;14:74–80.
PubMed
CrossRef
Google Scholar
Hammond DC. What is neurofeedback: an update. J Neurother. 2011;15:305–36.
CrossRef
Google Scholar
Scott WC, Kaiser D, Othmer S, Sideroff SI. Effects of an EEG biofeedback protocol on a mixed substance abusing population. Am J Drug Alcohol Abuse. 2005;3:1455–69.
Google Scholar
Kaiser DA, Othmer S. Effect of neurofeedback on variables of attention in a large multi-center trial. J Neurother. 2000;4(1):5–28.
CrossRef
Google Scholar
Demos JN. Getting started with neurofeedback. New York/London: Norton & company; 2005.
Google Scholar
Gunkelman JD, Johnstone J. Neurofeedback and the brain. J Adult Dev. 2005;12:93–100.
CrossRef
Google Scholar
Kropotov JD, Grin-Yatsenko VA, Ponomarev VA, Chutko LS, Yakovenko EA, Nikishena IS. Changes in EEG spectrograms, event-related potentials and event-related desynchronization induced by relative beta training in ADHD children. J Neurother. 2007;11(2):3–11.
CrossRef
Google Scholar
Strehl U, Leins U, Goth G, Klinger C, Hinterberger T, Birbaumer N. Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder. J Pediatr. 2006;118:1530–40.
CrossRef
Google Scholar
Rossiter T. The effectiveness of neurofeedback and stimulant drugs in treating AD/HD: part I. Review of methodological issues. Appl Psychophysiol Biofeedback. 2004;29(2):95–112.
PubMed
CrossRef
Google Scholar
Fuchs T, Birbaumer N, Lutzenberger W, Gruzelier JH, Kaiser J. Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: a comparison with methylphenidate. Appl Psychophysiol Biofeedback. 2003;28(1):1–12.
PubMed
CrossRef
Google Scholar
Kotchoubey B, Strehl U, Uhlmann C, Holzapfel S, Konig M, Froscher W, et al. Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsies. 2001;42(3):406–16.
CAS
CrossRef
Google Scholar
Putman JA. EEG biofeedback on a female patient stroke patient with depression: a case study. J Neurother. 2001;5(3):27–38.
CrossRef
Google Scholar
Hammond DC. Neurofeedback with anxiety and affective disorders. Child Adolesc Psychiatr. 2005;14(1):105–23.
CrossRef
Google Scholar
Vanathy S, Sharma PSVN, Kumar KB. The efficacy of alpha and theta neurofeedback training in treatment of generalized anxiety disorder. Indian J Clin Psychol. 1998;25(2):136–43.
Google Scholar
Muller HH, Donaldson CCS, Nelson DV, Layman M. Treatment of fibromyalgia incorporating EEG-driven stimulation: a clinical study. J Clin Psychol. 2001;57(7):925–33.
Google Scholar
Hammond DC. QEEG-guided neurofeedback in the treatment of obsessive compulsive disorder. J Neurother. 2003;7(2):25–52.
CrossRef
Google Scholar
Wilson VE, Peper E, Moss D. Professional issue “the mind room” in Italian soccer training: the use of biofeedback and neurofeedback for optimum performance. Biofeedback. 2006;34:79–810.
Google Scholar
Hanslmayr S, Sauseng P, Doppelmayr M, Schabus M, Klimesch W. Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl Psychophysiol Biofeedback. 2005;30(1):1–10.
PubMed
CrossRef
Google Scholar
Egner T, Strawson E, Gruzelier JH. EEG signature and phenomenology of alpha-theta neurofeedback training versus mock feedback. Appl Psychophysiol Biofeedback. 2002;27:4–18.
CrossRef
Google Scholar
Vernon D, Egner T, Nick C, et al. The effect of training distinct neurofeedback protocols on aspects of cognitive performance. J Psychophysiol. 2003;47(1):75–85.
CrossRef
Google Scholar
Sokhadze TM, Cannon RL, Trudeau DL. EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy, and recommendations for further research. Appl Psychophysiol Biofeedback. 2008;33(1):1–28.
PubMed
PubMed Central
CrossRef
Google Scholar
Frederick JA, Timmermann DL, Russell HL, Lubar JF. EEG coherence effects of audio-visual stimulation (AVS) at dominant alpha frequency. J Neurother. 2005;8(4):25–42.
CrossRef
Google Scholar
Burkett VS, Cummins JM, Dickson RM, Skolnick MH. Treatment effects related to EEG-biofeedback for crack cocaine dependency in a faith-based homeless mission. J Neurother. 2004;8(2):138–40.
CrossRef
Google Scholar
Masterpasqua F, Healey KN. Neurofeedback in psychological practice. Prof Psychol Res Pract. 2003;34(6):652–6.
CrossRef
Google Scholar
Kaiser DA, Othmer S, Scott B. Effect of neurofeedback on chemical dependency treatment. Biofeedback Self Regul. 1999;20(3):304–5.
Google Scholar
Peniston EG, Saxby E. Alpha-theta brainwave neurofeedback training: an effective treatment for male and female alcoholics with depression symptoms. Biofeedback Cent. 1995;51(5):685–93.
Google Scholar
Hammond DC. The need for individualization in neurofeedback: heterogeneity in qEEG patterns associated with diagnoses and symptoms. Appl Psychophysiol Biofeedback. 2010;35(1):31–6.
PubMed
CrossRef
Google Scholar
Ross SM. Neurofeedback: an integrative treatment of substance use disorders. Holist Nurs Pract. 2013;27(4):246–50.
PubMed
CrossRef
Google Scholar
Dehghani-Arani F, Rostami R, Nadali H. Neurofeedback training for opiate addiction: improvement of mental health and craving. Appl Psychophysiol Biofeedback. 2013;38:133–41. https://doi.org/10.1007/s10484-013-9218-5.
CrossRef
PubMed
PubMed Central
Google Scholar
Peniston EG, Kulkosky PJ. Alpha-theta brainwave training and beta endorphin levels in alcoholics. Alcohol Clin Exp Res. 1989;13:271–9.
CAS
PubMed
CrossRef
Google Scholar
Peniston EG, Kulkosky PJ. Alcoholic personality and alpha-theta brainwave training. Med Psychother. 1990;2:37–55.
Google Scholar
Peniston EG, Marriman DA, Deming WA, Kulkosky PG. EEG alpha theta brain wave synchronization in Vietnam theater veterans with combat related post traumatic stress disorder and alcohol abuse. Adv Med Psychol. 1993;6:37–49.
Google Scholar
Gruzelier J, Egner T. Critical validation studies of neurofeedback. Child Adolesc Psychiatr Clin N Am. 2005;14:83–104.
PubMed
CrossRef
Google Scholar
Singer W, Spies JM, McArthur J, Low J, Griffin JW, Nickander KK, Gordon V, Low PA. Prospective evaluation of somatic and autonomic small fibers in selected autonomic neuropathies. Neurology. 2004;62:612–8.
CAS
PubMed
CrossRef
Google Scholar
Dabby R, Vaknine H, Gilad R, Djaldetti R, Sadeh M. Evaluation of cutaneous autonomic innervation in idiopathic sensory small-fiber neuropathy. J Peripher Nerv Syst. 2007;12:98–101.
PubMed
CrossRef
Google Scholar
Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, Smith AG, Hsieh ST, Mellgren SI, Umapathi T, Ziegler D, Faber CG, Merkies IS. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15:202–7.
PubMed
CrossRef
Google Scholar
Jacobs AM, Cheng D. Management of diabetic small-fiber neuropathy with combination L-methylfolate, methylcobalamin, and pyridoxal 5′-phosphate. Rev Neurol Dis. 2011;8(1–2):39–47.
PubMed
Google Scholar
Hovaguimian A, Gibbons CH. Diagnosis and treatment of pain in small fiber neuropathy. Curr Pain Headache Rep. 2011;15(3):193–200. https://doi.org/10.1007/s11916-011-0181-7.
CrossRef
PubMed
PubMed Central
Google Scholar
Brannagan TH 3rd, Hays AP, Chin SS, Sander HW, Chin RL, Magda P, Green PH, Latov N. Small-fiber neuropathy/neuronopathy associated with celiac disease: skin biopsy findings. Arch Neurol. 2005;62(10):1574–8.
PubMed
CrossRef
Google Scholar
Ho TW, Backonja M, Ma J, Leibensperger H, Froman S, Polydefkis M. Efficient assessment of neuropathic pain drugs in patients with small fiber sensory neuropathies. Pain. 2009;141:19–24.
CAS
PubMed
CrossRef
Google Scholar
Ametov AS, Barinov A, Dyck PJ, Hermann R, Kozlova N, Litchy WJ, Low PA, Nehrdich D, Novosadova M, O’Brien PC, Reljanovic M, Samigullin R, Schuette K, Strokov I, Tritschler HJ, Wessel K, Yakhno N, Ziegler D, SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care. 2003;26(3):770–6. Erratum in: Diabetes Care. 2003 Jul;26(7):2227.
CAS
PubMed
CrossRef
Google Scholar
Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med. 2004;21(2):114–21.
CAS
PubMed
CrossRef
Google Scholar
Ziegler D, Ametov A, Barinov A, Dyck PJ, Gurieva I, Low PA, Munzel U, Yakhno N, Raz I, Novosadova M, Maus J, Samigullin R. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care. 2006;29(11):2365–70.
CAS
PubMed
CrossRef
Google Scholar
Vinik AI. A medicinal food provides food for thought in managing diabetic neuropathy. Am J Med. 2013;126(2):95–6. https://doi.org/10.1016/j.amjmed.2012.08.008.
CrossRef
PubMed
Google Scholar
Head KA. Peripheral neuropathy: pathogenic mechanisms and alternative therapies. Altern Med Rev. 2006;11:294–329.
PubMed
Google Scholar
Zhang YF, Ning G. Mecobalamin. Expert Opin Ivestigat Drugs. 2008;17:953–64.
CrossRef
Google Scholar
Schrezenmaier C, Singer W, Muenter Swift N, Sletten D, Tanabe J, Low PA. Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch Neurol. 2007;64:381–6.
PubMed
CrossRef
Google Scholar
Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.
PubMed
CrossRef
Google Scholar
Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.
CrossRef
PubMed
Google Scholar
Low PA, The Therapeutics and Technology Assessment Subcommittee Assessment. Clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.
Google Scholar
Joint Editorial Statement by the American Diabetes Association; the National Heart, Lung, and Blood Institute; the Juvenile Diabetes Foundation International; the National Institute of Diabetes and Digestive and Kidney Diseases; and the American Heart Association. Diabetes mellitus: a major risk factor for cardiovascular disease. Circulation. 1999;100:1132–3.
CrossRef
Google Scholar
Grundy SM, Benjamin IJ, Burke GL, Chait A. AHA scientific statement: diabetes and cardiovascular disease, a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–46.
CAS
PubMed
CrossRef
Google Scholar
Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physicians. 2005;71:2123–30.
Google Scholar
Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocr Dis. 2007;2:2–9.
Google Scholar
Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.
PubMed
CrossRef
Google Scholar
Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):568–71.
CrossRef
Google Scholar
Arora RR, Ghosh Dastidar S, Colombo J Autonomic balance is associated with decreased morbidity. American Autonomic Society, 17th International Symposium, Kauai; 29 Oct–1 Nov 2008.
Google Scholar
Waheed A, Ali MA, Jurivich DA, et al. Gender differences in longevity and autonomic function. Presented at the Geriatric Medicine Society Meeting, Chicago; 3–7 May 2006.
Google Scholar
Arora RR, Aysin E, Aysin B, Colombo J. Therapeutic implications of Sympathetic stimulus in orthostatic patients: measured by spectral domain analysis. AHA Scientific Sessions, Orlando; 4–7 Nov 2007.
Google Scholar
Vinik AI, Murray GL. Autonomic neuropathy is treatable. US Endocrinol. 2008;2:82–4.
CrossRef
Google Scholar
Nemechek P, Ghosh Dastidar S, Colombo J. Early autonomic dysfunction is associated with secondary hypertension in HIV/AIDS patients. American Autonomic Society, St. Thomas, Virgin Islands; 31 Oct–3 Nov 2009.
Google Scholar
Nemechek P, Ghosh Dastidar S, Colombo J. HIV/AIDS leads to early cardiovascular autonomic neuropathy. American Autonomic Society, St. Thomas, Virgin Islands, 31 Oct–3 Nov 2009.
Google Scholar
Arora RR, Bulgarelli RJ, Hearyman M, Ghosh Dastidar S, Colombo J. Carvedilol reverses standing parasympathetic excess in non-diabetics. American Autonomic Society, St. Thomas, Virgin Islands; 31 Oct–3 Nov 2009.
Google Scholar
Nanavati SH, Bulgarelli RJ, Vazquez-Tanus J, Ghosh-Dastidar S, Colombo J, Arora RR. Altered autonomic activity with atrial fibrillation as demonstrated by non-invasive autonomic monitoring. US Cardiol. 2010;7(1):47–50.
Google Scholar
Vinik AI, Aysin B, Colombo J. Differentiation of autonomic dysfunction by enhanced frequency domain analysis reveals additional stages in the progression of autonomic decline in diabetics. Diabetes Technology Conference, San Francisco; 10–12 Nov 2005.
Google Scholar
Boyd GL, Taylor JA, Ovalle F, Stout DG, Aultman M, Garner VM, Morris RE, Witherspoon CD, Albert M, Vetter TR. Prevalence of advanced autonomic dysfunction in patients presenting for retinal surgery. Submitted, Anesthesiology; 2013.
Google Scholar
Wani AL, Bhat SA, Ara A. Omega-3 fatty acids and the treatment of depression: a review of scientific evidence. Integr Med Res. 2015;4(3):132–41.
PubMed
PubMed Central
CrossRef
Google Scholar
Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.
PubMed
CrossRef
Google Scholar
Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.
PubMed
CrossRef
Google Scholar
Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physicians. 2005;71:2123–30.
Google Scholar
Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60:2504–12.
CAS
PubMed
CrossRef
Google Scholar
Bowles EJA, Wellman R, Feigelson HS, et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst. 2012;104:1293–305.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lenihan DJ, Cardinale DM. Late cardiac effects of cancer treatment [published correction appears in J Clin Oncol 2012;30:4590]. J Clin Oncol. 2012;30:3657–64.
PubMed
CrossRef
Google Scholar
Mukhopadhyay P, Rajesh M, Bátkai S, et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol. 2009;296:1466–83.
CrossRef
CAS
Google Scholar
Weinstein DM, Mihm MJ, Bauer JA. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther. 2000;294:396–401.
CAS
PubMed
Google Scholar
Fogli S, Nieri P, Breschi MC. The role of nitric oxide in anthracycline toxicity and prospects for pharmacologic prevention of cardiac damage. FASEB J. 2004;18:664–75.
CAS
PubMed
CrossRef
Google Scholar
Ky B, Putt M, Sawaya H, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab [published correction appears in J Am Coll Cardiol 2016;67:1385]. J Am Coll Cardiol. 2014;63:809–16.
CAS
PubMed
CrossRef
Google Scholar
Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin induced cardiotoxicity. Nat Med. 2012;18:1639–42.
PubMed
CrossRef
CAS
Google Scholar
Wan A, Rodrigues B. Endothelial cell cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res. 2016;111:172–83.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hahn VS, Lenihan DJ, Ky B. Cancer therapy induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014;3:e000665.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol. 2009;157:527–36.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Milano G, Raucci A, Scopece A, et al. Doxorubicin and trastuzumab regimen induces biventricular failure in mice. J Am Soc Echocardiogr. 2014;27:568–79.
PubMed
CrossRef
Google Scholar
Aghajanian H, Cho YK, Manderfield LJ, et al. Coronary vasculature patterning requires a novel endothelial ErbB2 holoreceptor. Nat Commun. 2016;7:12038.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wolf MB, Baynes JW. The anti-cancer drug, doxorubicin, causes oxidant stress-induced endothelial dysfunction. Biochim Biophys Acta. 1760;2006:267–71.
Google Scholar
Finkelman BS, Putt M, Wang T, Wang L, Narayan H, Domchek S, DeMichele A, Fox K, Matro J, Shah P, Clark A, Bradbury A, Narayan V, Carver JR, Tang WHW, Ky B. Arginine-nitric oxide metabolites and cardiac dysfunction in patients with breast cancer. J Am Coll Cardiol. 2017;70(2):152–62. https://doi.org/10.1016/j.jacc.2017.05.019. Erratum in: J Am Coll Cardiol. 2017 Nov 28;70(21):2738.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Toya T, Hakuno D, Shiraishi Y, Kujiraoka T, Adachi T. Arginase inhibition augments nitric oxide production and facilitates left ventricular systolic function in doxorubicin-induced cardiomyopathy in mice. Physiol Rep. 2014;2:e12130.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Hammond J, Balligand J. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol. 2012;52:330–40.
CAS
PubMed
CrossRef
Google Scholar
Meinitzer A, Seelhorst U, Wellnitz B, et al. Asymmetrical dimethylarginine independently predicts total and cardiovascular mortality in individuals with angiographic coronary artery disease (the Ludwigshafen Risk and Cardiovascular Health Study). Clin Chem. 2007;53:273–83.
CAS
PubMed
CrossRef
Google Scholar
Boger RH, Sullivan LM, Schwedhelm E, et al. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation. 2009;119:1592–600.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Dückelmann C, Mittermayer F, Haider DG, Altenberger J, Eichinger J, Wolzt M. Asymmetric dimethylarginine enhances cardiovascular risk prediction in patients with chronic heart failure. Arterioscler Thromb Vasc Biol. 2007;27:2037–42.
PubMed
CrossRef
CAS
Google Scholar
Liu X, Hou L, Xu D, et al. Effect of asymmetric dimethylarginine (ADMA) on heart failure development. Nitric Oxide. 2016;54:73–81.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Myalgic encephalomyelitis, chronic fatigue syndrome. Centers for Disease Control and Prevention; 3 July 2007.
Google Scholar
Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, Staines D, Powles AC, Speight N, Vallings R, Bateman L, Baumgarten-Austrheim B, Bell DS, Carlo-Stella N, Chia J, Darragh A, Jo D, Lewis D, Light AR, Marshall-Gradisbik S, Mena I, Mikovits JA, Miwa K, Murovska M, Pall ML, Stevens S. Myalgic encephalomyelitis: international consensus criteria. J Intern Med. 2011;270(4):327–38. https://doi.org/10.1111/j.1365-2796.2011.02428.x. Epub 2011 Aug 22. Review. Erratum in: J Intern Med. 2017 Oct;282(4):353. PMID: 21777306.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Carruthers BM. Definitions and aetiology of myalgic encephalomyelitis: how the Canadian consensus clinical definition of myalgic encephalomyelitis works. J Clin Pathol. 2007;60(2):117–9. Epub 2006 Aug 25.
CAS
PubMed
CrossRef
Google Scholar
Barnden LR, Kwiatek R, Crouch B, Burnet R, Del Fante P. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome. Neuroimage Clin. 2016;11:530–7. https://doi.org/10.1016/j.nicl.2016.03.017. eCollection 2016. PMID: 27114901.
CrossRef
PubMed
PubMed Central
Google Scholar
Bested AC, Marshall LM. Review of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: an evidence-based approach to diagnosis and management by clinicians. Rev Environ Health. 2015;30(4):223–49. https://doi.org/10.1515/reveh-2015-0026. Review. PMID: 26613325.
CrossRef
PubMed
Google Scholar
Tanaka M, Tajima S, Mizuno K, Ishii A, Konishi Y, Miike T, Watanabe Y. Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder. J Physiol Sci. 2015;65(6):483–98. https://doi.org/10.1007/s12576-015-0399-y. Epub 2015 Sept 29. Review. PMID: 26420687.
CrossRef
PubMed
PubMed Central
Google Scholar
Van Cauwenbergh D, Nijs J, Kos D, Van Weijnen L, Struyf F, Meeus M. Malfunctioning of the autonomic nervous system in patients with chronic fatigue syndrome: a systematic literature review. Eur J Clin Investig. 2014;44(5):516–26. https://doi.org/10.1111/eci.12256.
CrossRef
Google Scholar
Lewis I, Pairman J, Spickett G, Newton JL. Clinical characteristics of a novel subgroup of chronic fatigue syndrome patients with postural orthostatic tachycardia syndrome. J Intern Med. 2013;273(5):501–10. https://doi.org/10.1111/joim.12022. Epub 2013 Jan 7. PMID: 23206180.
CAS
CrossRef
PubMed
Google Scholar
Myhill S, Booth NE, McLaren-Howard J. Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) – a clinical audit. Int J Clin Exp Med. 2013;6(1):1–15. Epub 2012 Nov 20. PMID: 23236553.
PubMed
Google Scholar
Booth NE, Myhill S, McLaren-Howard J. Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Clin Exp Med. 2012;5(3):208–20. Epub 2012 Jun 15. PMID: 22837795.
CAS
PubMed
PubMed Central
Google Scholar
Myhill S, Booth NE, McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med. 2009;2(1):1–16. Epub 2009 Jan 15. PMID: 19436827.
CAS
PubMed
PubMed Central
Google Scholar
World Health Association International Statistics Classification Disease and Related Health Problems, 10th revision, ICD-10, 2010, cited 2014, available from http/APPS.WHO.International Classifications, ICD-10, Brown, 2010, G90–G99. https://icd.who.int/browse10/2014/en#/
Morris G, Maes M. Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med. 2013;11:205. https://doi.org/10.1186/1741-7015-11-205. Review. PMID: 24229326.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Agarwal AK, Garg R, Ritch A, Sarkar P. Postural orthostatic tachycardia syndrome. Postgrad Med J. 2007;83(981):478–80. Review. PMID: 17621618.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Tomas C, Newton J, Watson S. A review of hypothalamic-pituitary-adrenal axis function in chronic fatigue syndrome. ISRN Neurosci. 2013;2013:784520. https://doi.org/10.1155/2013/784520. eCollection 2013. PMID: 24959566.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Jason L, Sorenson M, Sebally K, Alkazemi D, Lerch A, Porter N, Kubow S. Increased HDAC in association with decreased plasma cortisol in older adults with chronic fatigue syndrome. Brain Behav Immun. 2011;25(8):1544–7. https://doi.org/10.1016/j.bbi.2011.04.007. Epub 2011 Apr 28. PMID: 21549189.
CAS
CrossRef
PubMed
Google Scholar
Crofford LJ, Young EA, Engleberg NC, Korszun A, Brucksch CB, McClure LA, Brown MB, Demitrack MA. Basal circadian and pulsatile ACTH and cortisol secretion in patients with fibromyalgia and/or chronic fatigue syndrome. Brain Behav Immun. 2004;18(4):314–25.
CAS
PubMed
CrossRef
Google Scholar
Cairns R, Hotopf M. A systematic review describing the prognosis of chronic fatigue syndrome. Occup Med (Lond). 2005;55(1):20–31.
CAS
CrossRef
Google Scholar
Newton JL, Okonkwo O, Sutcliffe K, Seth A, Shin J, Jones DE. Symptoms of autonomic dysfunction in chronic fatigue syndrome. QJM. 2007;100(8):519–26. Epub 2007 Jul 7.
CAS
PubMed
CrossRef
Google Scholar
Costigan A, Elliott C, McDonald C, Newton JL. Orthostatic symptoms predict functional capacity in chronic fatigue syndrome: implications for management. QJM. 2010;103(8):589–95. https://doi.org/10.1093/qjmed/hcq094. Epub 2010 Jun 9.
CAS
CrossRef
PubMed
Google Scholar
Woltjer HH, Bogaard HJ, de Vries PM. The technique of impedance cardiography. Eur Heart J. 1997;18(9):1396–403.
CAS
PubMed
CrossRef
Google Scholar
Jones DE, Gray J, Frith J, Newton JL. Fatigue severity remains stable over time and independently associated with orthostatic symptoms in chronic fatigue syndrome: a longitudinal study. J Intern Med. 2011;269(2):182–8. https://doi.org/10.1111/j.1365-2796.2010.02306.x. Epub 2010 Nov 14. PMID: 21073560.
CAS
CrossRef
PubMed
Google Scholar
Hollingsworth KG, Jones DE, Taylor R, Blamire AM, Newton JL. Impaired cardiovascular response to standing in chronic fatigue syndrome. Eur J Clin Investig. 2010;40(7):608–15. https://doi.org/10.1111/j.1365-2362.2010.02310.x. Epub 2010 May 23. PMID: 20497461.
CrossRef
Google Scholar
Okamoto LE, Raj SR, Peltier A, Gamboa A, Shibao C, Diedrich A, Black BK, Robertson D, Biaggioni I. Neurohumoral and haemodynamic profile in postural tachycardia and chronic fatigue syndromes. Clin Sci (Lond). 2012;122(4):183–92. https://doi.org/10.1042/CS20110200. PMID: 21906029.
CrossRef
Google Scholar
Naschitz J, Dreyfuss D, Yeshurun D, Rosner I. Midodrine treatment for chronic fatigue syndrome. Postgrad Med J. 2004;80(942):230–2. PMID: 15082846.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Naschitz JE, Rosner I, Rozenbaum M, Naschitz S, Musafia-Priselac R, Shaviv N, Fields M, Isseroff H, Zuckerman E, Yeshurun D, Sabo E. The head-up tilt test with haemodynamic instability score in diagnosing chronic fatigue syndrome. QJM. 2003;96(2):133–42.
CAS
PubMed
CrossRef
Google Scholar
DuBois RE. Gamma globulin therapy for chronic mononucleosis syndrome. AIDS Res. 1986;2(Suppl 1):S191–5. PMID: 2435296.
PubMed
Google Scholar
Fluge Ø, Risa K, Lunde S, Alme K, Rekeland IG, Sapkota D, Kristoffersen EK, Sørland K, Bruland O, Dahl O, Mella O. B-lymphocyte depletion in myalgic encephalopathy/chronic fatigue syndrome. An open-label phase ii study with rituximab maintenance treatment. PLoS One. 2015;10(7):e0129898. https://doi.org/10.1371/journal.pone.0129898. eCollection 2015. PMID: 26132314.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Fluge Ø, Bruland O, Risa K, Storstein A, Kristoffersen EK, Sapkota D, Næss H, Dahl O, Nyland H, Mella O. Benefit from B-lymphocyte depletion using the anti-CD20 antibody rituximab in chronic fatigue syndrome. A double-blind and placebo-controlled study. PLoS One. 2011;6(10):e26358. https://doi.org/10.1371/journal.pone.0026358. Epub 2011 Oct 19. PMID: 22039471.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Papadopoulos A, Ebrecht M, Roberts AD, Poon L, Rohleder N, Cleare AJ. Glucocorticoid receptor mediated negative feedback in chronic fatigue syndrome using the low dose (0.5 mg) dexamethasone suppression test. J Affect Disord. 2009;112(1–3):289–94. https://doi.org/10.1016/j.jad.2008.05.001. Epub 2008 Jun 24. PMID: 18573538.
CAS
CrossRef
PubMed
Google Scholar
Filler K, Lyon D, Bennett J, McCain N, Elswick R, Lukkahatai N, Saligan LN. Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clin. 2014;1:12–23.
PubMed
PubMed Central
CrossRef
Google Scholar
Gerdle B, Forsgren MF, Bengtsson A, Leinhard OD, Sören B, Karlsson A, Brandejsky V, Lund E, Lundberg P. Decreased muscle concentrations of ATP and PCR in the quadriceps muscle of fibromyalgia patients – a 31P-MRS study. Eur J Pain. 2013;17(8):1205–15. https://doi.org/10.1002/j.1532-2149.2013.00284.x. Epub 2013 Jan 30.
CAS
CrossRef
PubMed
Google Scholar
Castro-Marrero J, Cordero MD, Sáez-Francas N, Jimenez-Gutierrez C, Aguilar-Montilla FJ, Aliste L, Alegre-Martin J. Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia? Antioxid Redox Signal. 2013;19(15):1855–60. https://doi.org/10.1089/ars.2013.5346. Epub 2013 May 29.
CAS
CrossRef
PubMed
Google Scholar
Singh B, Singh R. Mitochondrial dysfunction and chronic fatigue syndromes: issues in clinical care. IOSR-JDMS. 2014;13(5):30–3. e-ISSN: 2279-0853, p-ISSN: 2279-0861.
CrossRef
Google Scholar
Sarzi-Puttini P, Atzeni F, Mease PJ. Chronic widespread pain: from peripheral to central evolution. Best Pract Res Clin Rheumatol. 2011;25(2):133–9. https://doi.org/10.1016/j.berh.2011.04.001.
CrossRef
PubMed
Google Scholar
Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6:606–19.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e 28–292.
Google Scholar
Shah SJ, Kitzman DW, Borlaug BA, et al. Phenotype – specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2006;134:73–90.
CrossRef
Google Scholar
Zhang Y, Guallar E, Ashar FN, Longchamps RJ, Castellani CA, Lane J, Grove ML, Coresh J, Sotoodehnia N, Ilkhanoff L, Boerwinkle E, Pankratz N, Arking DE. Association between mitochondrial DNA copy number and sudden cardiac death: findings from the Atherosclerosis Risk in Communities study (ARIC). Eur Heart J. 2017. https://doi.org/10.1093/eurheartj/ehx354. [Epub ahead of print].
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Packer M, Kitzman DW. Obesity-related heart failure with a preserved ejection fraction: the mechanistic rationale for combining inhibitors of aldosterone, neprilysin, and sodium-glucose cotransporter. JACC Heart Fail. 2018;6(8):633–9.
PubMed
CrossRef
Google Scholar
Adabag AS, Luepker RV, Roger VL, Gersh BJ. Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol. 2010;7(4):216–25. https://doi.org/10.1038/nrcardio.2010.3.
CrossRef
PubMed
PubMed Central
Google Scholar
Haykowsky MJ, et al. Regional adipose distribution and its relation to excess intolerance in older obese patients who has heart failure with preserved ejection fraction. JACC Heart Fail. 2018;6(9):642–9.
Google Scholar
Bharadwaj MS, et al. Relationship between mitochondrial content and bioenergetics with obesity, body composition and fat distribution to healthy older adults. BMC Obes. 2015;2:40.
PubMed
PubMed Central
CrossRef
Google Scholar
Forman DE, Goodpasture BH. Weighty matters in HFpEF and aging. JACC Heart Fail. 2018;6(8):650–2.
PubMed
CrossRef
Google Scholar
Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial dysfunction. J Am Coll Cardiol. 2013;62:263–71.
PubMed
CrossRef
Google Scholar
Schmidt-Wilcke T, Clauw DJ. Fibromyalgia: from pathophysiology to therapy. Nat Rev Rheumatol. 2011;7(9):518–27. https://doi.org/10.1038/nrrheum.2011.98.
CrossRef
PubMed
Google Scholar
Fatima G, Das SK, Mahdi AA. Oxidative stress and antioxidative parameters and metal ion content in patients with fibromyalgia syndrome: implications in the pathogenesis of the disease. Clin Exp Rheumatol. 2013;31(6 Suppl 79):S128–33. Epub 2013 Dec 16.
PubMed
Google Scholar
Ohnishi H, Saito Y. Eicosapentaenoic acid (EPA) reduces cardiovascular events: relationship with the EPA/arachidonic acid ratio. J Atheroscler Thromb. 2013;20(12):861–77. Epub 2013 Sept 18. Review.
CrossRef
CAS
PubMed
Google Scholar
El-Sawya N, El-Tantawia G, Achmawib GAH, Sultana H, Younisa S. Autonomic changes in fibromyalgia: clinical and electrophysiological study. Alexandria J Med. 2012;48(3):215–22.
CrossRef
Google Scholar
Solano C, Martinez A, Becerril L, Vargas A, Figueroa J, Navarro C, Ramos-Remus C, Martinez-Lavin M. Autonomic dysfunction in fibromyalgia assessed by the Composite Autonomic Symptoms Scale (COMPASS). J Clin Rheumatol. 2009;15(4):172–6. https://doi.org/10.1097/RHU.0b013e3181a1083d.
CrossRef
PubMed
Google Scholar
Kadetoff D, Kosek E. The effects of static muscular contraction on blood pressure, heart rate, pain ratings and pressure pain thresholds in healthy individuals and patients with fibromyalgia. Eur J Pain. 2007;11(1):39–47. Epub 2006 Feb 9.
PubMed
CrossRef
Google Scholar
Ramírez M, Martínez-Martínez LA, Hernández-Quintela E, Velazco-Casapía J, Vargas A, Martínez-Lavín M. Small fiber neuropathy in women with fibromyalgia. An in vivo assessment using corneal confocal bio-microscopy. Semin Arthritis Rheum. 2015;45(2):214–9. https://doi.org/10.1016/j.semarthrit.2015.03.003. Epub 2015 Mar 19.
CrossRef
PubMed
Google Scholar
Clauw DJ. Fibromyalgia: a clinical review. JAMA. 2014;311(15):1547–55. https://doi.org/10.1001/jama.2014.3266.
CAS
CrossRef
PubMed
Google Scholar
Goldenberg DL, Burckhardt C, Crofford L. Management of fibromyalgia syndrome. JAMA. 2004;292(19):2388–95.
CAS
PubMed
CrossRef
Google Scholar
Dell’Osso L, Bazzichi L, Baroni S, Falaschi V, Conversano C, Carmassi C, Marazziti D. The inflammatory hypothesis of mood spectrum broadened to fibromyalgia and chronic fatigue syndrome. Clin Exp Rheumatol. 2015;33(1 Suppl 88):S109–16. Epub 2015 Mar 18.
PubMed
Google Scholar
Giles TD, Materson BJ, Cohn JN, Kostis JB. Definition and classification of hypertension: an update. J Clin Hypertens (Greenwich). 2009;11(11):611–4. https://doi.org/10.1111/j.1751-7176.2009.00179.x. Erratum in: J Clin Hypertens (Greenwich). 2010 Jan;12(1):13.
CrossRef
Google Scholar
Lüscher TF, Mahfoud F. Renal nerve ablation after SYMPLICITY HTN-3: confused at the higher level? Eur Heart J. 2014;35(26):1706–11. https://doi.org/10.1093/eurheartj/ehu195. Epub 2014 May 14.
CrossRef
PubMed
PubMed Central
Google Scholar
DePace NL, Bateman JA, Yayac M, Oh J, Siddique M. Acosta C, Pinales JM, Vinik AI, Bloom HL. Improved patient outcomes by normalizing sympathovagal balance: differentiating syncope – precise subtype differentiation leads to improved outcomes. Cardiol Res Pract. 2018, Article ID 9532141, 8 pages. https://doi.org/10.1155/2018/953214.
Murray GL, Colombo J. (R)alpha lipoic acid is a safe, effective pharmacologic therapy of chronic orthostatic hypotension associated with low sympathetic tone. Int J Angiol. 2019 (eFirst);1. https://doi.org/10.1055/s-0038-1676957.
Mohammadi V, Dehghani S, Askari G. Does alpha-lipoic acid supplement regulate blood pressure? A systematic review of randomized, double-blind placebo-controlled clinical trials. Int J Prev Med. 2017;8:33–8.
PubMed
PubMed Central
CrossRef
Google Scholar
Bangalore S, Messerlli F, Wun C, Zuckerman A, DeMicco D, Kostis J, et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) trial. Eur Heart J. 2010;31(23):2897–908.
CAS
PubMed
CrossRef
Google Scholar
Queiroz T, Guimaraes D, Medndes-Junior L, Braga V. α-lipoic acid reduces hypertension and increases baroreflex sensitivity in renovascular hypertensive rats. Molecules. 2012;17(11):13357–67.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gouty S, Regalia J, Cai F, Helke C. Alpha-lipoic acid treatment prevents the diabetes-induced attenuation of the afferent limb of the baroreceptor reflex in rats. Auton Neurosci. 2003;108(1–2):32–44.
CAS
PubMed
CrossRef
Google Scholar
Wray D, Nishiyama S, Harris R, Zhao J, McDaniel J, Fjeldstad A, et al. Acute reversal of endothelial dysfunction in the elderly after antioxidant consumption. Hypertension. 2012;59(4):818–24.
CAS
PubMed
CrossRef
Google Scholar
Rahman S, Merchant N, Haque T, Wahi J, Bhaheetharan S, Ferdinand K, Khan B. The impact of lipoic acid on endothelial function and proteinuria in quinapril-treated diabetic patients with stage 1 hypertension: results from the QUALITY study. J Cardiovasc Pharmacol Ther. 2012;17(2):139–45.
CAS
PubMed
CrossRef
Google Scholar
Xiang G, Pu J, Yue L, Hou J, Sun H. α-lipoic acid can improve endothelial dysfunction in subjects with impaired fasting glucose. Metabolism. 2011;60(4):480–5.
CAS
PubMed
CrossRef
Google Scholar
Tardif J, Rheaume E. Lipoic acid supplementation and endothelial function. Br J Pharmacol. 2008;153:1587–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Charles A. Advances in the basic and clinical science of migraine. Ann Neurol. 2009;65(5):491–8. https://doi.org/10.1002/ana.21691.
CrossRef
PubMed
Google Scholar
Leão AA. Spreading depression. Funct Neurol. 1986;1(4):363–6.
PubMed
Google Scholar
Headache classification committee of the international headache society IHS, The international classification headache disorders. 3rd ed, beta version, Cephalgia. 2013;33: 629–808.
Google Scholar
Yorns WR Jr, Hardison HH. Mitochondrial dysfunction in migraine. Semin Pediatr Neurol. 2013;20(3):188–93. https://doi.org/10.1016/j.spen.2013.09.002.
CrossRef
PubMed
Google Scholar
Stuart S, Griffiths LR. A possible role for mitochondrial dysfunction in migraine. Mol Gen Genomics. 2012;287(11–12):837–44. https://doi.org/10.1007/s00438-012-0723-7. Epub 2012 Oct 7.
CAS
CrossRef
Google Scholar
Millichap JG. Migraine and autonomic nervous system dysfunction. Pediatr Neurol Briefs. 2002;16(2):15–6.
Google Scholar
Vetvik KG, MacGregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017;16(1):76–87. https://doi.org/10.1016/S1474-4422(16)30293-9. Epub 2016 Nov 9.
CAS
CrossRef
PubMed
Google Scholar
Shechter A, Stewart WF, Silberstein SD, Lipton RB. Migraine and autonomic nervous system function: a population-based, case-control study. Neurology. 2002;58(3):422–7.
PubMed
CrossRef
Google Scholar
Millichap JG, Yee MM. The diet factor in pediatric and adolescent migraine. Pediatr Neurol. 2003;28(1):9–15.
PubMed
CrossRef
Google Scholar
Charles A. Migraine. N Engl J Med. 2017;377(17):1698–9. https://doi.org/10.1056/NEJMc1711803.
CrossRef
PubMed
Google Scholar
Natoli JL, Manack A, Dean B, Butler Q, Turkel CC, Stovner L, Lipton RB. Global prevalence of chronic migraine: a systematic review. Cephalalgia. 2010;30(5):599–609. https://doi.org/10.1111/j.1468-2982.2009.01941.x.
CAS
CrossRef
PubMed
Google Scholar
Minen MT, Begasse De Dhaem O, Kroon Van Diest A, Powers S, Schwedt TJ, Lipton R, Silbersweig D. Migraine and its psychiatric comorbidities. J Neurol Neurosurg Psychiatry. 2016;87(7):741–9. https://doi.org/10.1136/jnnp-2015-312233. Epub 2016 Jan 5.
CrossRef
PubMed
Google Scholar
Bigal ME, Lipton RB. Excessive acute migraine medication use and migraine progression. Neurology. 2008;71(22):1821–8. https://doi.org/10.1212/01.wnl.0000335946.53860.1d.
CAS
CrossRef
PubMed
Google Scholar
Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83(1):84–92. Epub 2007 Jan 18.
CAS
PubMed
CrossRef
Google Scholar
Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007;27(5):394–402. Epub 2007 Mar 30.
CAS
PubMed
CrossRef
Google Scholar
Elmenshawy E, Sakr S. Autonomic dysfunction in migraine; what do we need to know? Egypt J Neurol Psychiatr Neurosur. 2009;46:489–96.
Google Scholar
Gaul C, Diener HC, Danesch U, Migravent® Study Group. Improvement of migraine symptoms with a proprietary supplement containing riboflavin, magnesium and Q10: a randomized, placebo-controlled, double-blind, multicenter trial. J Headache Pain. 2015;16:516. https://doi.org/10.1186/s10194-015-0516-6. Epub 2015 Apr 3.
CAS
CrossRef
PubMed
Google Scholar
Reeve AK, Simcox EM, Duchen MR, Turnbull DM, editors. Mitochondrial dysfunction in neurodegenerative disorders. 2nd ed. Cham: Springer International Publishing; 2016.
Google Scholar
Vos M, Lauwers E, Verstreken P. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease Front Synaptic Neurosci. 2010. https://doi.org/10.3389/fnsyn.2010.00139
Lambert AJ, Brand MD. Reactive oxygen species production by mitochondria. Methods Mol Biol. 2009;554:165–81. https://doi.org/10.1007/978-1-59745-521-3_11.
CAS
CrossRef
PubMed
Google Scholar
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.
CAS
PubMed
CrossRef
Google Scholar
Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab. 2012;26(6):771–90. https://doi.org/10.1016/j.beem.2012.05.002. Epub 2012 Jun 16.
CAS
CrossRef
PubMed
Google Scholar
Glancy B, Balaban RS. Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry. 2012;51(14):2959–73. https://doi.org/10.1021/bi2018909. Epub 2012 Mar 29.
CAS
CrossRef
PubMed
Google Scholar
Chrysostomou A, Turnbull DM. Mitochondria, the synapse, and neurodegeneration. In: Reeve A, Simcox E, Duchen M, Turnbull D, editors. Mitochondrial dysfunction in neurodegenerative disorders. https://doi.org/10.1007/978-3-319-28637-2_9.
CrossRef
Google Scholar
Marland JRK, Hasel P, Bonnycastle K, Cousin MA. Mitochondrial calcium uptake modulates synaptic vesicle endocytosis in central nerve terminals. J Biol Chem. 2016;291(5):2080–6. https://doi.org/10.1074/jbc.M115.686956.
CAS
CrossRef
PubMed
Google Scholar
Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13(9):566–78. https://doi.org/10.1038/nrm3412. Epub 2012 Aug 1.
CAS
CrossRef
PubMed
Google Scholar
Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014;24(12):761–70. https://doi.org/10.1016/j.tcb.2014.08.005. Epub 2014 Sept 2.
CAS
CrossRef
PubMed
Google Scholar
Ahuja M, Muallem S. The gatekeepers of mitochondrial calcium influx: MICU1 and MICU2. EMBO Rep. 2014;15(3):205–6. https://doi.org/10.1002/embr.201438446. Epub 2014 Feb 14.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–22. Epub 2006 Nov 16.
CAS
PubMed
CrossRef
Google Scholar
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42. Epub 2006 Nov 1.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Shalev A, Liberzon I, Marmar C. Post traumatic stress disorder. (Longo DL, ed) NEJM. 2017;376:2459–69. https://doi.org/10.1056/NEJMra1612499.
PubMed
CrossRef
Google Scholar
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC; 2000.
Google Scholar
Brudey C, Park J, Wiaderkiewicz J, Kobayashi I, Mellman TA, Marvar PJ. Autonomic and inflammatory consequences of posttraumatic stress disorder and the link to cardiovascular disease. Am J Physiol Regul Integr Comp Physiol. 2015;309:R315–21.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun. 2007;21:736–45.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kanel von R, Hepp U, Kraemer B, Traber R, Keel M, Mica L, Schnyder U. Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J Psychiatr Res. 2007;41:744–52.
CrossRef
Google Scholar
Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–9.
PubMed
CrossRef
Google Scholar
Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30:297–306.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Song C, Phillips AG, Leonard B. Interleukin 1β enhances conditioned fear memory in rats: possible involvement of glucocorticoids. Eur J Neurosci. 2003;18:1739–43.
PubMed
CrossRef
Google Scholar
Wohleb ES, Patterson JM, Sharma V, Quan N, Godbout JP, Sheridan JF. Knockdown of interleukin-1 receptor type-1 on endothelial cells attenuated stress-induced neuroinflammation and prevented anxiety-like behavior. J Neurosci. 2014;34:2583–91.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Oosthuizen F, Wegener G, Harvey BH. Nitric oxide as inflammatory mediator in post-traumatic stress disorder (PTSD): evidence from an animal model. Neuropsychiatr Dis Treat. 2005;1:109–23.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
de Lange T. Protection of mammalian telomeres. Oncogene. 2002;21:532–40.
PubMed
CrossRef
Google Scholar
Roake CM, Artandi SE. Control of cellular aging, tissue function, and cancer by p53 downstream of telomeres. Cold Spring Harb Perspect Med. 2017;7(5):a026088. https://doi.org/10.1101/cshperspect.a026088.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Vera E, Blasco MA. Beyond average: potential for measurement of short telomeres. Aging (Albany NY). 2012;4(6):379–92.
CAS
PubMed Central
CrossRef
Google Scholar
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.
CAS
PubMed
CrossRef
Google Scholar
Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106:661–73.
CAS
CrossRef
PubMed
Google Scholar
Collins K, Mitchell JR. Telomerase in the human organism. Oncogene. 2002;21:564–79.
CAS
PubMed
CrossRef
Google Scholar
Canela A, Vera E, Klatt P, Blasco MA. High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A. 2007;104:5300–5.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 2008;22:654–67.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yui J, Chiu CP, Lansdorp PM. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood. 1998;91:3255–62.
CAS
PubMed
Google Scholar
Deng Y, Chan SS, Chang S. Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer. 2008;8:450–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.
CAS
PubMed
CrossRef
Google Scholar
Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol. 2007;3:640–9.
CAS
PubMed
CrossRef
Google Scholar
de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F. The search for antiaging interventions: from elixirs to fasting regimens. Cell. 2014;157(7):1515–26.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Aviv A. Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res. 2012;730:68–74.
CAS
PubMed
CrossRef
Google Scholar
Levy D, Neuhausen SL, Hunt SC, Kimura M, Hwang SJ, Chen W, Bis JC, Fitzpatrick AL, Smith E, Johnson AD, Gardner JP, Srinivasan SR, Schork N, Rotter JI, Herbig U, Psaty BM, Sastrasinh M, Murray SS, Vasan RS, Province MA, Glazer NL, Lu X, Cao X, Kronmal R, Mangino M, Soranzo N, Spector TD, Berenson GS, Aviv A. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci U S A. 2010;107:9293–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mangino M, Hwang SJ, Spector TD, Hunt SC, Kimura M, Fitzpatrick AL, Christiansen L, Petersen I, Elbers CC, Harris T, Chen W, Srinivasan SR, Kark JD, Benetos A, El Shamieh S, Visvikis-Siest S, Christensen K, Berenson GS, Valdes AM, Viñuela A, Garcia M, Arnett DK, Broeckel U, Province MA, Pankow JS, Kammerer C, Liu Y, Nalls M, Tishkoff S, Thomas F, Ziv E, Psaty BM, Bis JC, Rotter JI, Taylor KD, Smith E, Schork NJ, Levy D, Aviv A. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet. 2012;21:5385–94.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012;13:693–704.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Guarante L. The Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. 2011;364:2235–44.
CrossRef
Google Scholar
Cardus A, Uryga AK, Walters G, Erusalimsky JD. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res. 2013;97:571–9.
CAS
PubMed
CrossRef
Google Scholar
Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012;111:245–59.
CAS
PubMed
CrossRef
Google Scholar
Tzanetakou IP, Nzietchueng R, Perrea DN, Benetos A. Telomeres and their role in aging and longevity. Curr Vasc Pharmacol. 2014;12:726–34.
CAS
PubMed
CrossRef
Google Scholar
Kovacic JC, Moreno P, Nabel EG, Hachinski V, Fuster V. Cellular senescence, vascular disease, and aging: part 2 of a 2-part review. Circulation. 2011;123:1990–2010.
Google Scholar
Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013;10:274–83.
CAS
PubMed
CrossRef
Google Scholar
Nilsson PM, Tufvesson H, Leosdottir M, Melander O. Telomeres and cardiovascular disease risk: an update 2013. Transl Res. 2013;162:371–80.
CAS
PubMed
CrossRef
Google Scholar
de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2001–10.
CrossRef
CAS
Google Scholar
Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12:1133–8.
CAS
PubMed
CrossRef
Google Scholar
Campisi J. Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev. 2011;21:107–12.
CAS
PubMed
CrossRef
Google Scholar
von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP. Human cell senescence as a DNA damage response. Mech Ageing Dev. 2005;126:111–7.
CrossRef
CAS
Google Scholar
von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27:339–44.
CrossRef
Google Scholar
Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G, Pender SL, Fullard N, Nelson G, Mann J, van de Sluis B, Mann DA, von Zglinicki T. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172.
PubMed
CrossRef
CAS
Google Scholar
Correia-Melo C, Hewitt G, Passos JF. Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? Longev Healthspan. 2014;3(1):1.
PubMed
PubMed Central
CrossRef
Google Scholar
Erusalimsky JD, Kurz DJ. Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp Gerontol. 2005;40:634–42.
CAS
PubMed
CrossRef
Google Scholar
Savage SA, Stewart BJ, Eckert A, Kiley M, Liao JS, Channock SJ. Genetic variation, nucleotide diversity, and linkage disequilibrium in seven telomere stability genes suggest that these genes may be under constraint. Hum Mutat. 2005;26:343–50.
CAS
PubMed
CrossRef
Google Scholar
Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6:611–22.
CAS
PubMed
CrossRef
Google Scholar
Kosmadaki MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron. 2004;35:155–9.
CAS
PubMed
CrossRef
Google Scholar
de Jesus BB, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MA. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell. 2011;10:604–21.
CrossRef
CAS
Google Scholar
Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, Orimo A, Inoue M. Estrogen activates telomerase. Cancer Res. 1999;59:5917–21.
CAS
PubMed
Google Scholar
Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366:662–720.
CAS
PubMed
CrossRef
Google Scholar
Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkälä KH, Fyhrquist F. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011;66:815–20.
PubMed
CrossRef
CAS
Google Scholar
Gellert C, Schöttker B, Brenner H. Smoking and all-cause mortality in older people: systematic review and meta-analysis. Arch Intern Med. 2012;172:837–44.
PubMed
CrossRef
Google Scholar
Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkälä KH, Fyhrquist F. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol. 2012;27:815–22.
PubMed
CrossRef
Google Scholar
Müezzinler A, Zaineddin AK, Brenner H. Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis. Obes Rev. 2014;15:192–201.
PubMed
CrossRef
Google Scholar
Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89:122–35.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, Kimura M, Lu X, Spector TD, Aviv A. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168:154–8.
PubMed
CrossRef
Google Scholar
Njajou OT, Hsueh WC, Blackburn EH, Newman AB, Wu SH, Li R, Simonsick EM, Harris TM, Cummings SR, Cawthon RM. Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J Gerontol A Biol Sci Med Sci. 2009;64(8):860–4.
PubMed
CrossRef
CAS
Google Scholar
Kennedy BK, et al. Geroscience; linking aging to chronic disease. Cell. 2014;159:709–13.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101:17312–5.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J, Epel ES. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology. 2013;38:1835–42.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Krauss J, Farzaneh-Far R, Puterman E, Na B, Lin J, Epel E, Blackburn E, Whooley MA. Physical fitness and telomere length in patients with coronary heart disease: findings from the heart and soul study. PLoS One. 2011;6:e26983.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ornish D, Lin J, Daubenmier J, Weidner G, Epel E, Kemp C, Magbanua MJ, Marlin R, Yglecias L, Carroll PR, Blackburn EH. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9:1048–57.
CAS
PubMed
CrossRef
Google Scholar
Fontana L, Hu FB. Optimal body weight for health and longevity: bridging basic, clinical, and population research. Aging Cell. 2014;14:391–400.
CrossRef
CAS
Google Scholar
Ornish D, Lin J, Chan JM, Epel E, Kemp C, Weidner G, Marlin R, Frenda SJ, Magbanua MJ, Daubenmier J, Estay I, Hills NK, Chainani-Wu N, Carroll PR, Blackburn EH. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14:1112–20.
CAS
PubMed
CrossRef
Google Scholar
Rizzuto D, Fratiglioni L. Life style factors related to mortality and survival: a mini-review. Gerontology. 2014;60:327–35.
CAS
PubMed
CrossRef
Google Scholar
Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, Scharhag J, Büchner N, Meyer T, Kindermann W, Haendeler J, Böhm M, Laufs U. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120:2438–47.
PubMed
CrossRef
Google Scholar
Richards BJ, Valdes AM, Gardner JP, Paximadas D, Kimura M, Nessa A, Lu X, Surdulescu GL, Swaminathan R, Spector TD, Aviv A. Higher vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr. 2007;86:1420–5.
CAS
PubMed
CrossRef
Google Scholar
Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89:1857–63.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sen A, Marsche G, Freudenberger P, Schallert M, Toeglhofer AM, Nagl C, Schmidt R, Launer LJ, Schmidt H. Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: results of the Austrian Stroke Prevention Study. J Am Geriatr Soc. 2014;62(2):222–9.
PubMed
CrossRef
Google Scholar
Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303:250–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Paul L. Diet, nutrition and telomere length. J Nutr Biochem. 2011;20:895–901.
CrossRef
CAS
Google Scholar
Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, Polisso G. Mediterranean diet, telomere maintenance and health status among elderly. PLoS One. 2013;8:1–6.
CrossRef
CAS
Google Scholar
Crous-Bou M, Fung TF, Prescott J, Julin B, Du M, Sun Q, Rexrode KM, Hu FB, De Vivo I. Mediterranean diet and telomere length in Nurses’ health study: population based cohort study. BMJ. 2014;349:6674.
CrossRef
CAS
Google Scholar
Saliques S, Teyssier J-R, Vergely C, Lorgis L, Lorin J. Circulating leukocyte telomere length and oxidative stress: a new target for statin therapy. Atherosclerosis. 2011;219:753–60.
CAS
PubMed
CrossRef
Google Scholar
Rode L, Nordestgaard BG, Bojesen SE. Peripheral blood leukocyte telomere length and mortality among 64 637 individuals from the general population. J Natl Cancer Inst. 2015;107(6):107.
CrossRef
CAS
Google Scholar
Guarante L. The Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. 2011;364:2235–44.
CrossRef
Google Scholar
Armanios M, Alder JK, Parry EM, Karim B, Strong MA, Greider CW. Short telomeres are sufficient to cause the degenerative defects associated with aging. Am J Hum Genet. 2009;85(6):823–32.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Shimamoto A, Koutaro Y, Tahara H. Werner-syndrome-specific induced pluripotent stem cells: recovery of telomere function by reprogramming. Front Genet. 2015.
Google Scholar
Bär C, Blasco MA. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000 Research. 2016;5:F1000 Faculty Rev-89. https://doi.org/10.12688/f1000research.7020.1.
CrossRef
Google Scholar
López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130(2):223–33. https://doi.org/10.1016/j.cell.2007.07.003.
CAS
CrossRef
PubMed
Google Scholar
Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96. https://doi.org/10.1038/nrm3823.
CAS
CrossRef
PubMed
Google Scholar
Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science. 2005;309(5738):1253–6. https://doi.org/10.1126/science.1115025.
CrossRef
PubMed
Google Scholar
Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol. 2007;8(9):703–13. https://doi.org/10.1038/nrm2241.
CAS
CrossRef
PubMed
Google Scholar
Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361(24):2353–65. https://doi.org/10.1056/NEJMra0903373.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012;13(10):693–704. https://doi.org/10.1038/nrg3246.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Holohan B, Wright WE, Shay JW. Cell biology of disease: telomeropathies: an emerging spectrum disorder. J Cell Biol. 2014;205(3):289–99. https://doi.org/10.1083/jcb.201401012.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Townsley DM, Dumitriu B, Young NS. Bone marrow failure and the telomeropathies. Blood. 2014;124(18):2775–83. https://doi.org/10.1182/blood-2014-05-526285.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11(5):1921–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999;97(4):527–38. https://doi.org/10.1016/S0092-8674(00)80762-X.
CAS
CrossRef
PubMed
Google Scholar
Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470(7334):359–65. https://doi.org/10.1038/nature09787.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55(5):876–82.
CAS
PubMed
PubMed Central
Google Scholar
Canela A, Klatt P, Blasco MA. Telomere length analysis. Methods Mol Biol. 2007;371:45–72. https://doi.org/10.1007/978-1-59745-361-5_5.
CAS
CrossRef
PubMed
Google Scholar
von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44. https://doi.org/10.1016/S0968-0004(02)02110-2.
CrossRef
Google Scholar
Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4. https://doi.org/10.1016/S0140-6736(05)66630-5.
CAS
CrossRef
PubMed
Google Scholar
Strandberg TE, Saijonmaa O, Tilvis RS, et al. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011;66(7):815–20. https://doi.org/10.1093/gerona/glr064.
CAS
CrossRef
PubMed
Google Scholar
Verde Z, Reinoso-Barbero L, Chicharro L, et al. Effects of cigarette smoking and nicotine metabolite ratio on leukocyte telomere length. Environ Res. 2015;140:488–94. https://doi.org/10.1016/j.envres.2015.05.008.
CAS
CrossRef
PubMed
Google Scholar
Révész D, Milaneschi Y, Verhoeven JE, et al. Longitudinal associations between metabolic syndrome components and telomere shortening. J Clin Endocrinol Metab. 2015;100(8):3050–9. https://doi.org/10.1210/JC.2015-1995.
CAS
CrossRef
PubMed
Google Scholar
Strandberg TE, Strandberg AY, Saijonmaa O, et al. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol. 2012;27(10):815–22. https://doi.org/10.1007/s10654-012-9728-0.
CrossRef
PubMed
Google Scholar
Müezzinler A, Mons U, Dieffenbach AK, et al. Smoking habits and leukocyte telomere length dynamics among older adults: results from the ESTHER cohort. Exp Gerontol. 2015;70:18–25. https://doi.org/10.1016/j.exger.2015.07.002.
CAS
CrossRef
PubMed
Google Scholar
Wolkowitz OM, Mellon SH, Epel ES, et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress – preliminary findings. PLoS One. 2011;6(3):e17837. https://doi.org/10.1371/journal.pone.0017837.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Karabatsiakis A, Kolassa IT, Kolassa S, et al. Telomere shortening in leukocyte subpopulations in depression. BMC Psychiatry. 2014;14:192. https://doi.org/10.1186/1471-244X-14-192.
CrossRef
PubMed
PubMed Central
Google Scholar
O’Donovan A, Epel E, Lin J, et al. Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder. Biol Psychiatry. 2011;70(5):465–71. https://doi.org/10.1016/j.biopsych.2011.01.035.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lin J, Epel E, Blackburn E. Telomeres and lifestyle factors: roles in cellular aging. Mutat Res. 2012;730(1–2):85–9. https://doi.org/10.1016/j.mrfmmm.2011.08.003.
CAS
CrossRef
PubMed
Google Scholar
Kinser PA, Lyon DE. Major depressive disorder and measures of cellular aging: an integrative review. Nurs Res Pract. 2013;2013:469070. https://doi.org/10.1155/2013/469070.
CrossRef
PubMed
PubMed Central
Google Scholar
Lindqvist D, Epel ES, Mellon SH, et al. Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev. 2015;55:333–64. https://doi.org/10.1016/j.neubiorev.2015.05.007.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Simon NM, Smoller JW, McNamara KL, et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry. 2006;60(5):432–5. https://doi.org/10.1016/j.biopsych.2006.02.004.
CAS
CrossRef
PubMed
Google Scholar
Elvsåshagen T, Vera E, Bøen E, et al. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. J Affect Disord. 2011;135(1–3):43–50. https://doi.org/10.1016/j.jad.2011.08.006.
CrossRef
PubMed
Google Scholar
Canela A, Vera E, Klatt P, et al. High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A. 2007;104(13):5300–5. https://doi.org/10.1073/pnas.0609367104.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
De Jesus BB, Blasco MA. Telomerase at the intersection of cancer and aging. Trends Genet. 2013;29(9):513–20. https://doi.org/10.1016/j.tig.2013.06.007.
CAS
CrossRef
PubMed Central
Google Scholar
Kovacic JC, Moreno P, Hachinski V, et al. Cellular senescence, vascular disease, and aging: part 1 of a 2-part review. Circulation. 2011;123:1650–60.
PubMed
CrossRef
Google Scholar
Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35:112–31.
PubMed
PubMed Central
CrossRef
Google Scholar
D’Mello MJ, Ross SA, Briel M, et al. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet. 2015;8:82–90.
PubMed
CrossRef
CAS
Google Scholar
Haycock PC, Heydon EE, Kaptoge S, et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349:g4227.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Fernández-Alvira JM, Fuster V, Dorado B, Soberón N, Flores I, Gallardo M, Pocock S, Blasco MA, Andrés V. Short telomere load, telomere length, and subclinical atherosclerosis. J Am Coll Cardiol. 2016;67(21):2467–76. https://doi.org/10.1016/j.jacc.2016.03.530.
CAS
CrossRef
PubMed
Google Scholar
Rietzschel ER, Bekaert S, De Meyer T. Telomeres and atherosclerosis: the attrition of an attractive hypothesis. J Am Coll Cardiol. 2016;67(21):2477–9. https://doi.org/10.1016/j.jacc.2016.03.541.
CrossRef
PubMed
Google Scholar
Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55(5):876–82.
CAS
PubMed
PubMed Central
Google Scholar
Bischoff C, Graakjaer J, Petersen HC, et al. The heritability of telomere length among the elderly and oldest-old. Twin Res Hum Genet. 2005;8(5):433–9. https://doi.org/10.1375/183242705774310141.
CrossRef
PubMed
Google Scholar
Andrew T, Aviv A, Falchi M, et al. Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs. Am J Hum Genet. 2006;78(3):480–6. https://doi.org/10.1086/500052.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Broer L, Codd V, Nyholt DR, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21(10):1163–8. https://doi.org/10.1038/ejhg.2012.303.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44. https://doi.org/10.1016/S0968-0004(02)02110-2.
CrossRef
Google Scholar
Farzaneh-Far R, Lin J, Epel ES, et al. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303(3):250–7. https://doi.org/10.1001/jama.2009.2008.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Werner C, Fürster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120(24):2438–47. https://doi.org/10.1161/CIRCULATIONAHA.109.861005.
CrossRef
PubMed
Google Scholar
Song Z, von Figura G, Liu Y, et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010;9(4):607–15. https://doi.org/10.1111/j.1474-9726.2010.00583.x.
CAS
CrossRef
PubMed
Google Scholar
Soares-Miranda L, Imamura F, Siscovick D, et al. Physical activity, physical fitness, and leukocyte telomere length: the Cardiovascular Health Study. Med Sci Sports Exerc. 2015;47(12):2525–34. https://doi.org/10.1249/MSS.0000000000000720.
CrossRef
PubMed
PubMed Central
Google Scholar