Advertisement

Mind-Body Wellness Program Benefits

  • Nicholas L. DePace
  • Joseph Colombo
Chapter
  • 358 Downloads

Abstract

To ensure that the supplements recommended with the Mind-Body Wellness Program do not add to stress through contraindications, the contraindications are described. For example, alpha-lipoic acid may lower resting blood pressure, contraindicating it for patients with low resting pressure. The recommended supplements and lifestyles form this kernel of a Wellness Program. The weight of scientifically rigorous and statistically significant evidence behind this program is brought to bear in this chapter as it subserves functional medicine as well as clinical medicine. For example, additions to this kernel that help to tailor the program to specific conditions are presented. For example, by adding cannabidiol, the program is customized for pain management (including fibromyalgia) or anxiety. Neurofeedback is also introduced as another means of treating P&S imbalance, as an adjunct to the program.

A series of quality of life questionnaires, specific for autonomic dysfunction conditions (e.g., diabetes, Ehlers-Danlos syndrome, and autonomic neuropathy), are presented to help in the clinic with diagnoses and therapy planning. To further support therapy planning, examples of the program’s application to various therapies and diseases are discussed, including: (1) evidence that supplements and nutraceuticals, augmented by the program, help to improve pharmacology in those patients that respond to the nutraceuticals (i.e., omega-3s help to close the Statin Gap and help to treat atherosclerosis); (2) evidence that various antioxidant treatments, augmented by the program, may treat atrial fibrillation or neurogenic orthostatic hypotension; (3) evidence that the program treats anxiety, depression-anxiety syndromes, PTSD, ADD/ADHD, some forms of migraine headache, chronic fatigue, and persistent fatigue by helping to restore and establish proper brain perfusion and energy production; (4) evidence that reducing stress (both oxidative and psychosocial) as part of the program helps to treat autonomic dysfunction and small fiber neuropathy, as well as cardiovascular diseases and cancer (including breast cancer); (5) forms of hypertension, specifically, hypertension secondary to parasympathetic excess and hypertension secondary to orthostatic dysfunction, are presented with therapy options; (6) mitochondrial dysfunction associated with neurodegenerative disorders is presented with therapy options; and (7) longevity which is addressed through a discussion of telomere length and its maintenance with the program, including fish oils and antioxidants.

Keywords

Alpha-lipoic acid Antioxidant Anxiety Atherosclerosis Atrial fibrillation Autonomic dysfunction Beetroot extract Breast cancer B vitamins Cannabidiol Cardiovascular disease Chronic fatigue syndrome Coenzyme Q-10 Congestive heart failure Depression Fibromyalgia Folic acid “Functional medicine” Hypertension L-Arginine L-Carnitine L-Citrulline Longevity Lysine Migraine headaches Mitochondrial dysfunction Neurodegenerative disorders Neurofeedback Omega-3 Fish oil Orthostatic dysfunction Oxidative stress Parasympathetic excess Persistent fatigue Posttraumatic stress disorder Quality of life questionnaires Small fiber neuropathy Supplement contraindications Telomere length 

References

  1. 1.
    Ajabshir S, Asif A, Nayer A. The effects of vitamin D on the renin-angiotensin system. J Nephropathol. 2014;3(2):41–3.  https://doi.org/10.12860/jnp.2014.09.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83(1):84–92. Epub 2007 Jan 18.PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen BH, Gold DR. Mitochondrial cytopathy in adults: what we know so far. Cleve Clin J Med. 2001;68(7):625–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Vanderplasschen W, et al. Poly substance use and mental health among individuals presenting for substance abuse treatment. Science and society series. Ghent: Academia Press; 2012.Google Scholar
  5. 5.
    Yankey BA, Rothenberg R, Strasser S, Ramsey-White K, Okosun IS. Effect of marijuana use on cardiovascular and cerebrovascular mortality: a study using the National Health and Nutrition Examination Survey linked mortality file. Eur J Prev Cardiol. 2017;24(17):1833–40.  https://doi.org/10.1177/2047487317723212. Epub 2017 Aug 8.CrossRefPubMedGoogle Scholar
  6. 6.
    Desbois AC, Cacoub P. Cannabis-associated arterial disease. Ann Vasc Surg. 2013;27(7):996–1005.  https://doi.org/10.1016/j.avsg.2013.01.002. Epub 2013 Jul 10. Review.CrossRefPubMedGoogle Scholar
  7. 7.
    Thomas G, Kloner RA, Rezkalla S. Adverse cardiovascular, cerebrovascular, and peripheral vascular effects of marijuana inhalation: what cardiologists need to know. Am J Cardiol. 2014;113(1):187–90.  https://doi.org/10.1016/j.amjcard.2013.09.042. Epub 2013 Oct 5. Review.CrossRefPubMedGoogle Scholar
  8. 8.
    Gorelick DA, Heishman SJ, Preston KL, Nelson RA, Moolchan ET, Huestis MA. The cannabinoid CB1 receptor antagonist rimonabant attenuates the hypotensive effect of smoked marijuana in male smokers. Am Heart J. 2006;151(3):754.e1–5.CrossRefGoogle Scholar
  9. 9.
    Mittleman MA, Lewis RA, Maclure M, Sherwood JB, Muller JE. Triggering myocardial infarction by marijuana. Circulation. 2001;103(23):2805–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Mukamal KJ, Maclure M, Muller JE, Mittleman MA. An exploratory prospective study of marijuana use and mortality following acute myocardial infarction. Am Heart J. 2008;155(3):465–70.  https://doi.org/10.1016/j.ahj.2007.10.049.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mehra R, Moore BA, Crothers K, Tetrault J, Fiellin DA. The association between marijuana smoking and lung cancer: a systematic review. Arch Intern Med. 2006;166(13):1359–67. Review.PubMedCrossRefGoogle Scholar
  12. 12.
    Korantzopoulos P, Liu T, Papaioannides D, Li G, Goudevenos JA. Atrial fibrillation and marijuana smoking. Int J Clin Pract. 2008;62(2):308–13. Epub 2007 Nov 21. Review.PubMedCrossRefGoogle Scholar
  13. 13.
    Korantzopoulos P. Marijuana smoking is associated with atrial fibrillation. Am J Cardiol. 2014;113(6):1085–6.  https://doi.org/10.1016/j.amjcard.2014.01.001. Epub 2014 Jan 8.CrossRefPubMedGoogle Scholar
  14. 14.
    Hackam DG. Cannabis and stroke: systematic appraisal of case reports. Stroke. 2015;46(3):852–6.  https://doi.org/10.1161/STROKEAHA.115.008680. Review.CrossRefPubMedGoogle Scholar
  15. 15.
    Desbois AC, Cacoub P. Cannabis-associated arterial disease. Ann Vasc Surg. 2013;27(7):996–1005.  https://doi.org/10.1016/j.avsg.2013.01.002. Epub 2013 Jul 10. Review.CrossRefPubMedGoogle Scholar
  16. 16.
    Shi H, Enriquez A, Rapadas M, Martin EMMA, Wang R, Moreau J, Lim CK, Szot JO, Ip E, Hughes JN, Sugimoto K, Humphreys DT, McInerney-Leo AM, Leo PJ, Maghzal GJ, Halliday J, Smith J, Colley A, Mark PR, Collins F, Sillence DO, Winlaw DS, Ho JWK, Guillemin GJ, Brown MA, Kikuchi K, Thomas PQ, Stocker R, Giannoulatou E, Chapman G, Duncan EL, Sparrow DB, Dunwoodie SL. NAD deficiency, congenital malformations, and niacin supplementation. N Engl J Med. 2017;377(6):544–52.  https://doi.org/10.1056/NEJMoa1616361.CrossRefGoogle Scholar
  17. 17.
    Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22:31–53.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Huang J-Y, Hirschey MD, Shimazu T, Ho L, Verdin E. Mitochondrial sirtuins. Biochim Biophys Acta. 2010;1804:1645–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Cheng H-L, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003;100:10794–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Vander Heiden MG. Metabolism and congenital malformations – NAD’s effects on development. N Engl J Med. 2017;377(6):509–11.  https://doi.org/10.1056/NEJMp1707487.CrossRefPubMedGoogle Scholar
  21. 21.
    Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc. 2012;87(12):1196–201.  https://doi.org/10.1016/j.mayocp.2012.10.013.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc. 2012;87(12):1196–201.  https://doi.org/10.1016/j.mayocp.2012.10.013.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Treister R, O’Neil K, Downs HM, Oaklander AL. Validation of the composite autonomic symptom scale 31 (COMPASS-31) in patients with and without small fiber polyneuropathy. Eur J Neurol. 2015;22(7):1124–30.  https://doi.org/10.1111/ene.12717. Epub 2015 Apr 23.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bowling A, Bond M, Jenkinson C, Lamping DL. Short Form 36 (SF-36) health survey questionnaire: which normative data should be used? Comparisons between the norms provided by the Omnibus Survey in Britain, the Health Survey for England and the Oxford Healthy Life Survey. J Public Health Med. 1999;21(3):255–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Hunt SM, McKenna SP, McEwen J, Backett EM, Williams J, Papp E. A quantitative approach to perceived health status: a validation study. J Epidemiol Community Health. 1980;34(4):281–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
  27. 27.
    Naal FD, Hatzung G, Müller A, Impellizzeri F, Leunig M. Validation of a self-reported Beighton score to assess hypermobility in patients with femoroacetabular impingement. Int Orthop. 2014;38(11):2245–50.  https://doi.org/10.1007/s00264-014-2424-9. Epub 2014 Jul 5.CrossRefPubMedGoogle Scholar
  28. 28.
    Smits-Engelsman B, Klerks M, Kirby A. Beighton score: a valid measure for generalized hypermobility in children. J Pediatr. 2011;158(1):119–23, 123.e1–4.  https://doi.org/10.1016/j.jpeds.2010.07.021. Epub 2010 Sep 17.CrossRefGoogle Scholar
  29. 29.
    Tobias H, Vinitsky A, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic nervous system monitoring of patients with excess parasympathetic responses to sympathetic challenges – clinical observations. US Neurol. 2010;5(2):62–6.CrossRefGoogle Scholar
  30. 30.
    Low PA. Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc. 1993;68(8):748–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Nabavi SM, Daglia M, Braidy N, Nabavi SF. Natural products, micronutrients, and nutraceuticals for the treatment of depression: a short review. Nutr Neurosci. 2017;20(3):180–94.  https://doi.org/10.1080/1028415X.2015.1103461. Epub 2015 Nov 27.CrossRefPubMedGoogle Scholar
  32. 32.
    Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, Spielholz C, Frye R. Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev. 2015;55:294–321.  https://doi.org/10.1016/j.neubiorev.2015.04.015. Epub 2015 May 6.CrossRefPubMedGoogle Scholar
  33. 33.
    Mathew SJ. Treatment-resistant depression: recent developments and future directions. Depress Anxiety. 2008;25(12):989–92.  https://doi.org/10.1002/da.20540.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kumar A, Chanana P. Role of nitric oxide in stress-induced anxiety: from pathophysiology to therapeutic target. Vitam Horm. 2017;103:147–67.  https://doi.org/10.1016/bs.vh.2016.09.004. Epub 2016 Dec 2.CrossRefPubMedGoogle Scholar
  35. 35.
    Müller CP, Reichel M, Mühle C, Rhein C, Gulbins E, Kornhuber J. Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta. 2015;1851(8):1052–65.  https://doi.org/10.1016/j.bbalip.2014.12.014. Epub 2014 Dec 24.CrossRefPubMedGoogle Scholar
  36. 36.
    Hennebelle M, Champeil-Potokar G, Lavialle M, Vancassel S, Denis I. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus. Nutr Rev. 2014;72(2):99–112.  https://doi.org/10.1111/nure.12088. Epub 2014 Jan 13.CrossRefPubMedGoogle Scholar
  37. 37.
    Appleton KM, Sallis HM, Perry R, Ness AR, Churchill R. ω-3 fatty acids for major depressive disorder in adults: an abridged Cochrane. BMJ Open. 2016;6(3):e010172.  https://doi.org/10.1136/bmjopen-2015-010172.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Vesco AT, Lehmann J, Gracious BL, Arnold LE, Young AS, Fristad MA. Omega-3 supplementation for psychotic mania and comorbid anxiety in children. J Child Adolesc Psychopharmacol. 2015;25(7):526–34.  https://doi.org/10.1089/cap.2013.0141. Epub 2015 Aug 19.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ball J, Carrington MJ, McMurray JJ, Stewart S. Atrial fibrillation: profile and burden of an evolving epidemic in the 21st century. Int J Cardiol. 2013;167:1807–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Fenger-Grøn M, Overvad K, Tjønneland A, Frost L. Lean body mass is the predominant anthropometric risk factor for atrial fibrillation. J Am Coll Cardiol. 2017;69(20):2488–97.  https://doi.org/10.1016/j.jacc.2017.03.558.CrossRefPubMedGoogle Scholar
  42. 42.
    Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386:154–62.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Nattel S. Atrial fibrillation and body composition: is it fat or lean that ultimately determines the risk? J Am Coll Cardiol. 2017;69(20):2498–501.  https://doi.org/10.1016/j.jacc.2017.03.566.CrossRefPubMedGoogle Scholar
  44. 44.
    Colombo J, Arora RR, DePace NL, Vinik AI. Clinical autonomic dysfunction: measurement, indications, therapies, and outcomes. New York: Springer Science + Business Media; 2014.Google Scholar
  45. 45.
    Garrey WE. The nature of fibrillatory contraction of the heart: its relation to tissue mass and form. Am J Phys. 1914;33:397–414.CrossRefGoogle Scholar
  46. 46.
    Moore EN, Spear JF. Electrophysiological studies on atrial fibrillation. Heart Vessels Suppl. 1987;2:32–9.PubMedGoogle Scholar
  47. 47.
    Zou R, Kneller J, Leon LJ, Nattel S. Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium. Am J Physiol Heart Circ Physiol. 2005;289:H1002–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.PubMedCrossRefGoogle Scholar
  49. 49.
  50. 50.
  51. 51.
    Weissman M, Wickramaratne P, Nomura Y, et al. Offspring of depressed parents: 20 years later. Am J Psychiatry. 2006;163:1001–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Cardinali DP. Autonomic nervous system: basic and clinical aspects. Cham: Springer International Publishing AG; 2018.CrossRefGoogle Scholar
  53. 53.
    Grases G, Colom MA, Fernandez RA, Costa-Bauzá A, Grases F. Evidence of higher oxidative status in depression and anxiety. Oxidative Med Cell Longev. 2014;2014:430216.  https://doi.org/10.1155/2014/430216. Epub 2014 Apr 29.CrossRefGoogle Scholar
  54. 54.
    McIntyre RS, Soczynska JK, Lewis GF, MacQueen GM, Konarski JZ, Kennedy SH. Managing psychiatric disorders with antidiabetic agents: translational research and treatment opportunities. Expert Opin Pharmacother. 2006;7(10):1305–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Fernandes BS, Dean OM, Dodd S, Malhi GS, Berk M. N-acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis. J Clin Psychiatry. 2016;77(4):e457–66.  https://doi.org/10.4088/JCP.15r09984.CrossRefGoogle Scholar
  56. 56.
    Kinrys G, Coleman E, Rothstein E. Natural remedies for anxiety disorders: potential use and clinical applications. Depress Anxiety. 2009;26(3):259–65.  https://doi.org/10.1002/da.20460.CrossRefPubMedGoogle Scholar
  57. 57.
    Lakhan SE, Vieira KF. Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J. 2010;9:42.  https://doi.org/10.1186/1475-2891-9-42.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Smaga I, Niedzielska E, Gawlik M, Moniczewski A, Krzek J, Przegaliński E, Pera J, Filip M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep. 2015;67(3):569–80.  https://doi.org/10.1016/j.pharep.2014.12.015. Epub 2015 Jan 5.CrossRefPubMedGoogle Scholar
  59. 59.
    Gulati K, Rai N, Ray A. Nitric oxide and anxiety. Vitam Horm. 2017;103:169–92.  https://doi.org/10.1016/bs.vh.2016.09.001. Epub 2016 Oct 31.CrossRefPubMedGoogle Scholar
  60. 60.
    Qato DM, Ozenberger K, Olfson M. Prevalence of prescription medications with depression as a potential adverse effect among adults in the United States. JAMA. 2018;319(22):2289.  https://doi.org/10.1001/jama.2018.6741.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Haas H, Panula P. The role of histamine and the tuberomammillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4:121–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Piña IL, Di Palo KE, Ventura HO. Psychopharmacology and cardiovascular disease. J Am Coll Cardiol. 2018;71(20):2346–59.PubMedCrossRefGoogle Scholar
  63. 63.
    American Heart Association Nutrition Committee, Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, Franklin B, Kris-Etherton P, Harris WS, Howard B, Karanja N, Lefevre M, Rudel L, Sacks F, Van Horn L, Winston M, Wylie-Rosett J. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114(1):82–96. Epub 2006 Jun 19. Erratum in: Circulation. 2006 Dec 5;114(23):e629. Circulation. 2006 Jul 4;114(1):e27.CrossRefGoogle Scholar
  64. 64.
    Nemeroff CB, Evans DL. Correlation between the dexamethasone suppression test in depressed patients and clinical response. Am J Psychiatry. 1984;141:247–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Nemeroff CB, Widerlov E, Bissette G, et al. Elevated concentrations of CSF corticotropin releasing factor-like immunoreactivity in depressed patients. Science. 1984;226:1342–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Musselman DL, Tomer A, Manatunga AK, et al. Exaggerated platelet reactivity in major depression. Am J Psychiatry. 1996;153:1313–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Carney RM, Saunders RD, Freedland KE, Stein P, Rich MW, Jaffe AS. Association of depression with reduced heart rate variability in coronary artery disease. Am J Cardiol. 1995;76(8):562–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999;99(16):2192–217.PubMedCrossRefGoogle Scholar
  69. 69.
    Khan SG, Melikian N, Shabeeh H, Cabaco AR, Martin K, Khan F, O’Gallagher K, Chowienczyk PJ, Shah AM. The human coronary vasodilatory response to acute mental stress is mediated by neuronal nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2017;313(3):H578–83.  https://doi.org/10.1152/ajpheart.00745.2016. Epub 2017 Jun 23.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Preisig M, Waeber G, Mooser V, Vollenweider P. PsyCoLaus: mental disorders and cardiovascular diseases: spurious association? Rev Med Suisse. 2011;7:2127–9.PubMedGoogle Scholar
  71. 71.
    Chaddha A, Robinson EA, Kline-Rogers E, Alexandris-Souphis T, Rubenfire M. Mental health and cardiovascular disease. Am J Med. 2016;129:1145–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Rugulies R. Depression as a predictor for coronary heart disease: a review and meta-analysis1. Am J Prev Med. 2002;23:51–61.PubMedCrossRefGoogle Scholar
  73. 73.
    Denollet J, Maas K, Knottnerus A, Keyzer JJ, Pop VJ. Anxiety predicted premature all-cause and cardiovascular death in a 10-year follow-up of middle-aged women. J Clin Epidemiol. 2009;62:452–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Blumenthal JA, Babyak MA, O’Connor C, Keteyian S, Landzberg J, Howlett J, et al. Effects of exercise training on depressive symptoms inpatients with chronic heart failure: the HF-ACTION randomized trial. JAMA. 2012;308:465–74.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Janszky I, Ahnve S, Lundberg I, Hemmingsson T. Early-onset depression, anxiety, and risk of subsequent coronary heart disease: 37- year follow-up of 49,321 young Swedish men. J Am Coll Cardiol. 2010;56:31–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Phillips AC, Batty GD, Gale CR, et al. Generalized anxiety disorder, major depressive disorder, and their comorbidity as predictors of all-cause and cardiovascular mortality: the Vietnam experience study. Psychosom Med. 2009;71:395–403.PubMedCrossRefGoogle Scholar
  77. 77.
    Rutledge T, Linke SE, Krantz DS, et al. Comorbid depression and anxiety symptoms as predictors of cardiovascular events: results from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. Psychosom Med. 2009;71:958–64.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Chida Y, Steptoe A. The association of anger and hostility with future coronary heart disease: a meta-analytic review of prospective evidence. J Am Coll Cardiol. 2009;53:936–46.PubMedCrossRefGoogle Scholar
  79. 79.
    Lampert R, Joska T, Burg MM, Batsford WP, McPherson CA, Jain D. Emotional and physical precipitants of ventricular arrhythmia. Circulation. 2002;106:1800–5.CrossRefGoogle Scholar
  80. 80.
    Krantz DS, Kop WJ, Santiago HT, Gottdiener JS. Mental stress as a trigger of myocardial ischemia and infarction. Cardiol Clin. 1996;14(2):271–87.PubMedCrossRefGoogle Scholar
  81. 81.
    Krantz DS, McCeney MK. Effects of psychological and social factors on organic disease: a critical assessment of research on coronary heart disease. Annu Rev Psychol. 2002;53:341–69.PubMedCrossRefGoogle Scholar
  82. 82.
    Karasek R, Baker D, Marxer F, Ahlbom A, Theorell T. Job decision latitude, job demands, and cardiovascular disease: a prospective study of Swedish men. Am J Public Health. 1981;71:694–705.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Greenlund KJ, Kiefe CI, Giles WH, Liu K. Associations of job strain and occupation with subclinical atherosclerosis: the CARDIA study. Ann Epidemiol. 2010;20:323–31.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Eller NH, Netterstrøm B, Gyntelberg F, et al. Work-related psychosocial factors and the development of ischemic heart disease: a systematic review. Cardiol Rev. 2009;17:83–97.PubMedCrossRefGoogle Scholar
  85. 85.
    Leor J, Poole WK, Kloner RA. Sudden cardiac death triggered by an earthquake. N Engl J Med. 1996;334:413–9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ader R, Felten DL, Cohen N, editors. Psychoneuroimmunology, vol. 2. Waltham Abbey: Academic Press; 2000. ISBN 978-0-12-0443147.Google Scholar
  87. 87.
    Rosengren A, Hawken S, Ôunpuu S, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:953–62.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Orth-Gomer K, Wamala SP, Horsten M, Schenck-Gustafsson K, Schneiderman N, Mittleman MA. Marital stress worsens prognosis in women with coronary heart disease: the Stockholm Female Coronary Risk Study. JAMA. 2000;284:3008–14.PubMedCrossRefGoogle Scholar
  89. 89.
    Gabbay FH, Krantz DS, Kop WJ, et al. Triggers of myocardial ischemia during daily life in patients with coronary artery disease: physical and mental activities, anger and smoking. J Am Coll Cardiol. 1996;27:585–92.PubMedCrossRefGoogle Scholar
  90. 90.
    Gullette EC, Blumenthal JA, Babyak M, et al. Effects of mental stress on myocardial ischemia during daily life. JAMA. 1997;277:1521–6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jiang W, Babyak M, Krantz DS, et al. Mental stress–induced myocardial ischemia and cardiac events. JAMA. 1996;275:1651–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Williams RB, Haney TL, Lee KL, Kong Y-H, Blumenthal JA, Whalen RE. Type A behavior, hostility, and coronary atherosclerosis. Psychosom Med. 1980;42:539–49.PubMedCrossRefGoogle Scholar
  93. 93.
    Tindle HA, Chang YF, Kuller LH, et al. Optimism, cynical hostility, and incident coronary heart disease and mortality in the Women’s Health Initiative. Circulation. 2009;120:656–62.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mc Donnell CG, Shorten G, Van Pelt FN. Effect of atorvastatin and fluvastatin on the metabolism of midazolam by cytochrome P450 in vitro. Anaesthesia. 2005;60:747–53.PubMedCrossRefGoogle Scholar
  95. 95.
    Jiang W, O’Connor C, Silva SG, et al. Safety and efficacy of sertraline for depression in patients with CHF (SADHART-CHF): a randomized, doubleblind, placebo-controlled trial of sertraline for major depression with congestive heart failure. Am Heart J. 2008;156:437–44.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pizzi C, Mancini S, Angeloni L, Fontana F, Manzoli L, Costa G. Effects of selective serotonin reuptake inhibitor therapy on endothelial function and inflammatory markers in patients with coronary heart disease. Clin Pharmacol Ther. 2009;86:527–32.PubMedCrossRefGoogle Scholar
  97. 97.
    Beach SR, Kostis WJ, Celano CM, et al. Metaanalysis of selective serotonin reuptake inhibitor associated QTc prolongation. J Clin Psychiatry. 2014;75:e441–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Pizzi C, Rutjes AWS, Costa GM, Fontana F, Mezzetti A, Manzoli L. Meta-analysis of selective serotonin reuptake inhibitors in patients with depression and coronary heart disease. Am J Cardiol. 2011;107:972–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Ho JM, Gomes T, Straus SE, Austin PC, Mamdani M, Juurlink DN. Adverse cardiac events in older patients receiving venlafaxine: a population-based study. J Clin Psychiatry. 2014;75:e552–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Shah S, Iqbal Z, White A, White S. Heart and mind: (2) psychotropic and cardiovascular therapeutics. Postgrad Med J. 2005;81:33–40.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Mackin P. Cardiac side effects of psychiatric drugs. Hum Psychopharmacol Clin Exp. 2008;23(S1):3–14.CrossRefGoogle Scholar
  102. 102.
    Kovacs D, Arora R. Cardiovascular effects of psychotropic drugs. Am J Ther. 2008;15:474–83.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Giardina E-GV, Johnson LL, Vita J, Bigger JT Jr, Brem RF. Effect of imipramine and nortriptyline on left ventricular function and blood pressure in patients treated for arrhythmias. Am Heart J. 1985;109:992–8.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Roose SP, Dalack GW. Cardiovascular effects of bupropion in depressed patients with heart disease. Am J Psychiatry. 1991;148:512.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Roose SP, Glassman AH, Giardina EG, Johnson LL, Walsh BT, Bigger JT Jr. Cardiovascular effects of imipramine and bupropion in depressed patients with congestive heart failure. J Clin Psychopharmacol. 1987;7:247–51.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Vitullo RN, Wharton JM, Allen NB, Pritchett EL. Trazodone-related exercise-induced nonsustained ventricular tachycardia. Chest. 1990;98:247–8.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Boschmans S, Perkin M, Terblanche S, Opie L. The effects of imipramine, mianserin and trazodone on the chronotropic, inotropic and coronary vascular responses in the isolated perfused rat heart. Gen Pharmacol. 1989;20:233–7.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Mazur A, Strasberg B, Kusniec J, Sclarovsky S. QT prolongation and polymorphous ventricular tachycardia associated with trazodone amiodarone combination. Int J Cardiol. 1995;52:27–9.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Libert J, Amoros C, Muzet A, Ehrhart J, Di Nisi J. Effects of triazolam on heart rate level and on phasic cardiac response to noise during sleep. Psychopharmacology. 1988;96:188–93.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Lapane KL, Zierler S, Lasater TM, Barbour MM, Carleton R, Hume AL. Is the use of psychotropic drugs associated with increased risk of ischemic heart disease? Epidemiology. 1995;6:376–81.PubMedCrossRefGoogle Scholar
  111. 111.
    Kim YH, Kim HB, Kim DH, Kim JY, Shin HY. Use of hypnotics and the risk of or mortality from heart disease: a meta-analysis of observational studies. Korean J Intern Med. 2017;33(4):727–36. [E-pub ahead of print].PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Schneier FR. Social anxiety disorder. N Engl J Med. 2006;355:1029–36.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Hoogwegt MT, Kupper N, Theuns DA, Jordaens L, Pedersen SS. Beta-blocker therapy is not associated with symptoms of depression and anxiety in patients receiving an implantable cardioverter-defibrillator. Europace. 2011;14:74–80.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Hammond DC. What is neurofeedback: an update. J Neurother. 2011;15:305–36.CrossRefGoogle Scholar
  115. 115.
    Scott WC, Kaiser D, Othmer S, Sideroff SI. Effects of an EEG biofeedback protocol on a mixed substance abusing population. Am J Drug Alcohol Abuse. 2005;3:1455–69.Google Scholar
  116. 116.
    Kaiser DA, Othmer S. Effect of neurofeedback on variables of attention in a large multi-center trial. J Neurother. 2000;4(1):5–28.CrossRefGoogle Scholar
  117. 117.
    Demos JN. Getting started with neurofeedback. New York/London: Norton & company; 2005.Google Scholar
  118. 118.
    Gunkelman JD, Johnstone J. Neurofeedback and the brain. J Adult Dev. 2005;12:93–100.CrossRefGoogle Scholar
  119. 119.
    Kropotov JD, Grin-Yatsenko VA, Ponomarev VA, Chutko LS, Yakovenko EA, Nikishena IS. Changes in EEG spectrograms, event-related potentials and event-related desynchronization induced by relative beta training in ADHD children. J Neurother. 2007;11(2):3–11.CrossRefGoogle Scholar
  120. 120.
    Strehl U, Leins U, Goth G, Klinger C, Hinterberger T, Birbaumer N. Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder. J Pediatr. 2006;118:1530–40.CrossRefGoogle Scholar
  121. 121.
    Rossiter T. The effectiveness of neurofeedback and stimulant drugs in treating AD/HD: part I. Review of methodological issues. Appl Psychophysiol Biofeedback. 2004;29(2):95–112.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Fuchs T, Birbaumer N, Lutzenberger W, Gruzelier JH, Kaiser J. Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: a comparison with methylphenidate. Appl Psychophysiol Biofeedback. 2003;28(1):1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Kotchoubey B, Strehl U, Uhlmann C, Holzapfel S, Konig M, Froscher W, et al. Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsies. 2001;42(3):406–16.CrossRefGoogle Scholar
  124. 124.
    Putman JA. EEG biofeedback on a female patient stroke patient with depression: a case study. J Neurother. 2001;5(3):27–38.CrossRefGoogle Scholar
  125. 125.
    Hammond DC. Neurofeedback with anxiety and affective disorders. Child Adolesc Psychiatr. 2005;14(1):105–23.CrossRefGoogle Scholar
  126. 126.
    Vanathy S, Sharma PSVN, Kumar KB. The efficacy of alpha and theta neurofeedback training in treatment of generalized anxiety disorder. Indian J Clin Psychol. 1998;25(2):136–43.Google Scholar
  127. 127.
    Muller HH, Donaldson CCS, Nelson DV, Layman M. Treatment of fibromyalgia incorporating EEG-driven stimulation: a clinical study. J Clin Psychol. 2001;57(7):925–33.Google Scholar
  128. 128.
    Hammond DC. QEEG-guided neurofeedback in the treatment of obsessive compulsive disorder. J Neurother. 2003;7(2):25–52.CrossRefGoogle Scholar
  129. 129.
    Wilson VE, Peper E, Moss D. Professional issue “the mind room” in Italian soccer training: the use of biofeedback and neurofeedback for optimum performance. Biofeedback. 2006;34:79–810.Google Scholar
  130. 130.
    Hanslmayr S, Sauseng P, Doppelmayr M, Schabus M, Klimesch W. Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl Psychophysiol Biofeedback. 2005;30(1):1–10.PubMedCrossRefGoogle Scholar
  131. 131.
    Egner T, Strawson E, Gruzelier JH. EEG signature and phenomenology of alpha-theta neurofeedback training versus mock feedback. Appl Psychophysiol Biofeedback. 2002;27:4–18.CrossRefGoogle Scholar
  132. 132.
    Vernon D, Egner T, Nick C, et al. The effect of training distinct neurofeedback protocols on aspects of cognitive performance. J Psychophysiol. 2003;47(1):75–85.CrossRefGoogle Scholar
  133. 133.
    Sokhadze TM, Cannon RL, Trudeau DL. EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy, and recommendations for further research. Appl Psychophysiol Biofeedback. 2008;33(1):1–28.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Frederick JA, Timmermann DL, Russell HL, Lubar JF. EEG coherence effects of audio-visual stimulation (AVS) at dominant alpha frequency. J Neurother. 2005;8(4):25–42.CrossRefGoogle Scholar
  135. 135.
    Burkett VS, Cummins JM, Dickson RM, Skolnick MH. Treatment effects related to EEG-biofeedback for crack cocaine dependency in a faith-based homeless mission. J Neurother. 2004;8(2):138–40.CrossRefGoogle Scholar
  136. 136.
    Masterpasqua F, Healey KN. Neurofeedback in psychological practice. Prof Psychol Res Pract. 2003;34(6):652–6.CrossRefGoogle Scholar
  137. 137.
    Kaiser DA, Othmer S, Scott B. Effect of neurofeedback on chemical dependency treatment. Biofeedback Self Regul. 1999;20(3):304–5.Google Scholar
  138. 138.
    Peniston EG, Saxby E. Alpha-theta brainwave neurofeedback training: an effective treatment for male and female alcoholics with depression symptoms. Biofeedback Cent. 1995;51(5):685–93.Google Scholar
  139. 139.
    Hammond DC. The need for individualization in neurofeedback: heterogeneity in qEEG patterns associated with diagnoses and symptoms. Appl Psychophysiol Biofeedback. 2010;35(1):31–6.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Ross SM. Neurofeedback: an integrative treatment of substance use disorders. Holist Nurs Pract. 2013;27(4):246–50.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Dehghani-Arani F, Rostami R, Nadali H. Neurofeedback training for opiate addiction: improvement of mental health and craving. Appl Psychophysiol Biofeedback. 2013;38:133–41.  https://doi.org/10.1007/s10484-013-9218-5.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Peniston EG, Kulkosky PJ. Alpha-theta brainwave training and beta endorphin levels in alcoholics. Alcohol Clin Exp Res. 1989;13:271–9.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Peniston EG, Kulkosky PJ. Alcoholic personality and alpha-theta brainwave training. Med Psychother. 1990;2:37–55.Google Scholar
  144. 144.
    Peniston EG, Marriman DA, Deming WA, Kulkosky PG. EEG alpha theta brain wave synchronization in Vietnam theater veterans with combat related post traumatic stress disorder and alcohol abuse. Adv Med Psychol. 1993;6:37–49.Google Scholar
  145. 145.
    Gruzelier J, Egner T. Critical validation studies of neurofeedback. Child Adolesc Psychiatr Clin N Am. 2005;14:83–104.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Singer W, Spies JM, McArthur J, Low J, Griffin JW, Nickander KK, Gordon V, Low PA. Prospective evaluation of somatic and autonomic small fibers in selected autonomic neuropathies. Neurology. 2004;62:612–8.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Dabby R, Vaknine H, Gilad R, Djaldetti R, Sadeh M. Evaluation of cutaneous autonomic innervation in idiopathic sensory small-fiber neuropathy. J Peripher Nerv Syst. 2007;12:98–101.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, Smith AG, Hsieh ST, Mellgren SI, Umapathi T, Ziegler D, Faber CG, Merkies IS. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15:202–7.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Jacobs AM, Cheng D. Management of diabetic small-fiber neuropathy with combination L-methylfolate, methylcobalamin, and pyridoxal 5′-phosphate. Rev Neurol Dis. 2011;8(1–2):39–47.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Hovaguimian A, Gibbons CH. Diagnosis and treatment of pain in small fiber neuropathy. Curr Pain Headache Rep. 2011;15(3):193–200.  https://doi.org/10.1007/s11916-011-0181-7.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Brannagan TH 3rd, Hays AP, Chin SS, Sander HW, Chin RL, Magda P, Green PH, Latov N. Small-fiber neuropathy/neuronopathy associated with celiac disease: skin biopsy findings. Arch Neurol. 2005;62(10):1574–8.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Ho TW, Backonja M, Ma J, Leibensperger H, Froman S, Polydefkis M. Efficient assessment of neuropathic pain drugs in patients with small fiber sensory neuropathies. Pain. 2009;141:19–24.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Ametov AS, Barinov A, Dyck PJ, Hermann R, Kozlova N, Litchy WJ, Low PA, Nehrdich D, Novosadova M, O’Brien PC, Reljanovic M, Samigullin R, Schuette K, Strokov I, Tritschler HJ, Wessel K, Yakhno N, Ziegler D, SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care. 2003;26(3):770–6. Erratum in: Diabetes Care. 2003 Jul;26(7):2227.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med. 2004;21(2):114–21.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Ziegler D, Ametov A, Barinov A, Dyck PJ, Gurieva I, Low PA, Munzel U, Yakhno N, Raz I, Novosadova M, Maus J, Samigullin R. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care. 2006;29(11):2365–70.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Vinik AI. A medicinal food provides food for thought in managing diabetic neuropathy. Am J Med. 2013;126(2):95–6.  https://doi.org/10.1016/j.amjmed.2012.08.008.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Head KA. Peripheral neuropathy: pathogenic mechanisms and alternative therapies. Altern Med Rev. 2006;11:294–329.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Zhang YF, Ning G. Mecobalamin. Expert Opin Ivestigat Drugs. 2008;17:953–64.CrossRefGoogle Scholar
  159. 159.
    Schrezenmaier C, Singer W, Muenter Swift N, Sletten D, Tanabe J, Low PA. Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch Neurol. 2007;64:381–6.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.PubMedCrossRefGoogle Scholar
  161. 161.
    Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.CrossRefGoogle Scholar
  162. 162.
    Low PA, The Therapeutics and Technology Assessment Subcommittee Assessment. Clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.Google Scholar
  163. 163.
    Joint Editorial Statement by the American Diabetes Association; the National Heart, Lung, and Blood Institute; the Juvenile Diabetes Foundation International; the National Institute of Diabetes and Digestive and Kidney Diseases; and the American Heart Association. Diabetes mellitus: a major risk factor for cardiovascular disease. Circulation. 1999;100:1132–3.CrossRefGoogle Scholar
  164. 164.
    Grundy SM, Benjamin IJ, Burke GL, Chait A. AHA scientific statement: diabetes and cardiovascular disease, a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–46.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physicians. 2005;71:2123–30.Google Scholar
  166. 166.
    Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocr Dis. 2007;2:2–9.Google Scholar
  167. 167.
    Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):568–71.CrossRefGoogle Scholar
  169. 169.
    Arora RR, Ghosh Dastidar S, Colombo J Autonomic balance is associated with decreased morbidity. American Autonomic Society, 17th International Symposium, Kauai; 29 Oct–1 Nov 2008.Google Scholar
  170. 170.
    Waheed A, Ali MA, Jurivich DA, et al. Gender differences in longevity and autonomic function. Presented at the Geriatric Medicine Society Meeting, Chicago; 3–7 May 2006.Google Scholar
  171. 171.
    Arora RR, Aysin E, Aysin B, Colombo J. Therapeutic implications of Sympathetic stimulus in orthostatic patients: measured by spectral domain analysis. AHA Scientific Sessions, Orlando; 4–7 Nov 2007.Google Scholar
  172. 172.
    Vinik AI, Murray GL. Autonomic neuropathy is treatable. US Endocrinol. 2008;2:82–4.CrossRefGoogle Scholar
  173. 173.
    Nemechek P, Ghosh Dastidar S, Colombo J. Early autonomic dysfunction is associated with secondary hypertension in HIV/AIDS patients. American Autonomic Society, St. Thomas, Virgin Islands; 31 Oct–3 Nov 2009.Google Scholar
  174. 174.
    Nemechek P, Ghosh Dastidar S, Colombo J. HIV/AIDS leads to early cardiovascular autonomic neuropathy. American Autonomic Society, St. Thomas, Virgin Islands, 31 Oct–3 Nov 2009.Google Scholar
  175. 175.
    Arora RR, Bulgarelli RJ, Hearyman M, Ghosh Dastidar S, Colombo J. Carvedilol reverses standing parasympathetic excess in non-diabetics. American Autonomic Society, St. Thomas, Virgin Islands; 31 Oct–3 Nov 2009.Google Scholar
  176. 176.
    Nanavati SH, Bulgarelli RJ, Vazquez-Tanus J, Ghosh-Dastidar S, Colombo J, Arora RR. Altered autonomic activity with atrial fibrillation as demonstrated by non-invasive autonomic monitoring. US Cardiol. 2010;7(1):47–50.Google Scholar
  177. 177.
    Vinik AI, Aysin B, Colombo J. Differentiation of autonomic dysfunction by enhanced frequency domain analysis reveals additional stages in the progression of autonomic decline in diabetics. Diabetes Technology Conference, San Francisco; 10–12 Nov 2005.Google Scholar
  178. 178.
    Boyd GL, Taylor JA, Ovalle F, Stout DG, Aultman M, Garner VM, Morris RE, Witherspoon CD, Albert M, Vetter TR. Prevalence of advanced autonomic dysfunction in patients presenting for retinal surgery. Submitted, Anesthesiology; 2013.Google Scholar
  179. 179.
    Wani AL, Bhat SA, Ara A. Omega-3 fatty acids and the treatment of depression: a review of scientific evidence. Integr Med Res. 2015;4(3):132–41.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.PubMedCrossRefGoogle Scholar
  181. 181.
    Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.PubMedCrossRefGoogle Scholar
  182. 182.
    Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physicians. 2005;71:2123–30.Google Scholar
  183. 183.
    Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60:2504–12.PubMedCrossRefGoogle Scholar
  184. 184.
    Bowles EJA, Wellman R, Feigelson HS, et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst. 2012;104:1293–305.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Lenihan DJ, Cardinale DM. Late cardiac effects of cancer treatment [published correction appears in J Clin Oncol 2012;30:4590]. J Clin Oncol. 2012;30:3657–64.PubMedCrossRefGoogle Scholar
  186. 186.
    Mukhopadhyay P, Rajesh M, Bátkai S, et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol. 2009;296:1466–83.CrossRefGoogle Scholar
  187. 187.
    Weinstein DM, Mihm MJ, Bauer JA. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther. 2000;294:396–401.PubMedGoogle Scholar
  188. 188.
    Fogli S, Nieri P, Breschi MC. The role of nitric oxide in anthracycline toxicity and prospects for pharmacologic prevention of cardiac damage. FASEB J. 2004;18:664–75.PubMedCrossRefGoogle Scholar
  189. 189.
    Ky B, Putt M, Sawaya H, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab [published correction appears in J Am Coll Cardiol 2016;67:1385]. J Am Coll Cardiol. 2014;63:809–16.PubMedCrossRefGoogle Scholar
  190. 190.
    Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin induced cardiotoxicity. Nat Med. 2012;18:1639–42.PubMedCrossRefGoogle Scholar
  191. 191.
    Wan A, Rodrigues B. Endothelial cell cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res. 2016;111:172–83.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Hahn VS, Lenihan DJ, Ky B. Cancer therapy induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014;3:e000665.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol. 2009;157:527–36.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Milano G, Raucci A, Scopece A, et al. Doxorubicin and trastuzumab regimen induces biventricular failure in mice. J Am Soc Echocardiogr. 2014;27:568–79.PubMedCrossRefGoogle Scholar
  195. 195.
    Aghajanian H, Cho YK, Manderfield LJ, et al. Coronary vasculature patterning requires a novel endothelial ErbB2 holoreceptor. Nat Commun. 2016;7:12038.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Wolf MB, Baynes JW. The anti-cancer drug, doxorubicin, causes oxidant stress-induced endothelial dysfunction. Biochim Biophys Acta. 1760;2006:267–71.Google Scholar
  197. 197.
    Finkelman BS, Putt M, Wang T, Wang L, Narayan H, Domchek S, DeMichele A, Fox K, Matro J, Shah P, Clark A, Bradbury A, Narayan V, Carver JR, Tang WHW, Ky B. Arginine-nitric oxide metabolites and cardiac dysfunction in patients with breast cancer. J Am Coll Cardiol. 2017;70(2):152–62.  https://doi.org/10.1016/j.jacc.2017.05.019. Erratum in: J Am Coll Cardiol. 2017 Nov 28;70(21):2738.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Toya T, Hakuno D, Shiraishi Y, Kujiraoka T, Adachi T. Arginase inhibition augments nitric oxide production and facilitates left ventricular systolic function in doxorubicin-induced cardiomyopathy in mice. Physiol Rep. 2014;2:e12130.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Hammond J, Balligand J. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol. 2012;52:330–40.PubMedCrossRefGoogle Scholar
  200. 200.
    Meinitzer A, Seelhorst U, Wellnitz B, et al. Asymmetrical dimethylarginine independently predicts total and cardiovascular mortality in individuals with angiographic coronary artery disease (the Ludwigshafen Risk and Cardiovascular Health Study). Clin Chem. 2007;53:273–83.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Boger RH, Sullivan LM, Schwedhelm E, et al. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation. 2009;119:1592–600.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Dückelmann C, Mittermayer F, Haider DG, Altenberger J, Eichinger J, Wolzt M. Asymmetric dimethylarginine enhances cardiovascular risk prediction in patients with chronic heart failure. Arterioscler Thromb Vasc Biol. 2007;27:2037–42.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Liu X, Hou L, Xu D, et al. Effect of asymmetric dimethylarginine (ADMA) on heart failure development. Nitric Oxide. 2016;54:73–81.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Myalgic encephalomyelitis, chronic fatigue syndrome. Centers for Disease Control and Prevention; 3 July 2007.Google Scholar
  205. 205.
    Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, Staines D, Powles AC, Speight N, Vallings R, Bateman L, Baumgarten-Austrheim B, Bell DS, Carlo-Stella N, Chia J, Darragh A, Jo D, Lewis D, Light AR, Marshall-Gradisbik S, Mena I, Mikovits JA, Miwa K, Murovska M, Pall ML, Stevens S. Myalgic encephalomyelitis: international consensus criteria. J Intern Med. 2011;270(4):327–38.  https://doi.org/10.1111/j.1365-2796.2011.02428.x. Epub 2011 Aug 22. Review. Erratum in: J Intern Med. 2017 Oct;282(4):353. PMID: 21777306.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Carruthers BM. Definitions and aetiology of myalgic encephalomyelitis: how the Canadian consensus clinical definition of myalgic encephalomyelitis works. J Clin Pathol. 2007;60(2):117–9. Epub 2006 Aug 25.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Barnden LR, Kwiatek R, Crouch B, Burnet R, Del Fante P. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome. Neuroimage Clin. 2016;11:530–7.  https://doi.org/10.1016/j.nicl.2016.03.017. eCollection 2016. PMID: 27114901.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Bested AC, Marshall LM. Review of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: an evidence-based approach to diagnosis and management by clinicians. Rev Environ Health. 2015;30(4):223–49.  https://doi.org/10.1515/reveh-2015-0026. Review. PMID: 26613325.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Tanaka M, Tajima S, Mizuno K, Ishii A, Konishi Y, Miike T, Watanabe Y. Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder. J Physiol Sci. 2015;65(6):483–98.  https://doi.org/10.1007/s12576-015-0399-y. Epub 2015 Sept 29. Review. PMID: 26420687.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Van Cauwenbergh D, Nijs J, Kos D, Van Weijnen L, Struyf F, Meeus M. Malfunctioning of the autonomic nervous system in patients with chronic fatigue syndrome: a systematic literature review. Eur J Clin Investig. 2014;44(5):516–26.  https://doi.org/10.1111/eci.12256.CrossRefGoogle Scholar
  211. 211.
    Lewis I, Pairman J, Spickett G, Newton JL. Clinical characteristics of a novel subgroup of chronic fatigue syndrome patients with postural orthostatic tachycardia syndrome. J Intern Med. 2013;273(5):501–10.  https://doi.org/10.1111/joim.12022. Epub 2013 Jan 7. PMID: 23206180.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Myhill S, Booth NE, McLaren-Howard J. Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) – a clinical audit. Int J Clin Exp Med. 2013;6(1):1–15. Epub 2012 Nov 20. PMID: 23236553.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Booth NE, Myhill S, McLaren-Howard J. Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Clin Exp Med. 2012;5(3):208–20. Epub 2012 Jun 15. PMID: 22837795.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Myhill S, Booth NE, McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med. 2009;2(1):1–16. Epub 2009 Jan 15. PMID: 19436827.PubMedPubMedCentralGoogle Scholar
  215. 215.
    World Health Association International Statistics Classification Disease and Related Health Problems, 10th revision, ICD-10, 2010, cited 2014, available from http/APPS.WHO.International Classifications, ICD-10, Brown, 2010, G90–G99. https://icd.who.int/browse10/2014/en#/
  216. 216.
    Morris G, Maes M. Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med. 2013;11:205.  https://doi.org/10.1186/1741-7015-11-205. Review. PMID: 24229326.CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Agarwal AK, Garg R, Ritch A, Sarkar P. Postural orthostatic tachycardia syndrome. Postgrad Med J. 2007;83(981):478–80. Review. PMID: 17621618.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Tomas C, Newton J, Watson S. A review of hypothalamic-pituitary-adrenal axis function in chronic fatigue syndrome. ISRN Neurosci. 2013;2013:784520.  https://doi.org/10.1155/2013/784520. eCollection 2013. PMID: 24959566.CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Jason L, Sorenson M, Sebally K, Alkazemi D, Lerch A, Porter N, Kubow S. Increased HDAC in association with decreased plasma cortisol in older adults with chronic fatigue syndrome. Brain Behav Immun. 2011;25(8):1544–7.  https://doi.org/10.1016/j.bbi.2011.04.007. Epub 2011 Apr 28. PMID: 21549189.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Crofford LJ, Young EA, Engleberg NC, Korszun A, Brucksch CB, McClure LA, Brown MB, Demitrack MA. Basal circadian and pulsatile ACTH and cortisol secretion in patients with fibromyalgia and/or chronic fatigue syndrome. Brain Behav Immun. 2004;18(4):314–25.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Cairns R, Hotopf M. A systematic review describing the prognosis of chronic fatigue syndrome. Occup Med (Lond). 2005;55(1):20–31.CrossRefGoogle Scholar
  222. 222.
    Newton JL, Okonkwo O, Sutcliffe K, Seth A, Shin J, Jones DE. Symptoms of autonomic dysfunction in chronic fatigue syndrome. QJM. 2007;100(8):519–26. Epub 2007 Jul 7.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Costigan A, Elliott C, McDonald C, Newton JL. Orthostatic symptoms predict functional capacity in chronic fatigue syndrome: implications for management. QJM. 2010;103(8):589–95.  https://doi.org/10.1093/qjmed/hcq094. Epub 2010 Jun 9.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Woltjer HH, Bogaard HJ, de Vries PM. The technique of impedance cardiography. Eur Heart J. 1997;18(9):1396–403.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Jones DE, Gray J, Frith J, Newton JL. Fatigue severity remains stable over time and independently associated with orthostatic symptoms in chronic fatigue syndrome: a longitudinal study. J Intern Med. 2011;269(2):182–8.  https://doi.org/10.1111/j.1365-2796.2010.02306.x. Epub 2010 Nov 14. PMID: 21073560.CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Hollingsworth KG, Jones DE, Taylor R, Blamire AM, Newton JL. Impaired cardiovascular response to standing in chronic fatigue syndrome. Eur J Clin Investig. 2010;40(7):608–15.  https://doi.org/10.1111/j.1365-2362.2010.02310.x. Epub 2010 May 23. PMID: 20497461.CrossRefGoogle Scholar
  227. 227.
    Okamoto LE, Raj SR, Peltier A, Gamboa A, Shibao C, Diedrich A, Black BK, Robertson D, Biaggioni I. Neurohumoral and haemodynamic profile in postural tachycardia and chronic fatigue syndromes. Clin Sci (Lond). 2012;122(4):183–92.  https://doi.org/10.1042/CS20110200. PMID: 21906029.CrossRefGoogle Scholar
  228. 228.
    Naschitz J, Dreyfuss D, Yeshurun D, Rosner I. Midodrine treatment for chronic fatigue syndrome. Postgrad Med J. 2004;80(942):230–2. PMID: 15082846.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Naschitz JE, Rosner I, Rozenbaum M, Naschitz S, Musafia-Priselac R, Shaviv N, Fields M, Isseroff H, Zuckerman E, Yeshurun D, Sabo E. The head-up tilt test with haemodynamic instability score in diagnosing chronic fatigue syndrome. QJM. 2003;96(2):133–42.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    DuBois RE. Gamma globulin therapy for chronic mononucleosis syndrome. AIDS Res. 1986;2(Suppl 1):S191–5. PMID: 2435296.PubMedGoogle Scholar
  231. 231.
    Fluge Ø, Risa K, Lunde S, Alme K, Rekeland IG, Sapkota D, Kristoffersen EK, Sørland K, Bruland O, Dahl O, Mella O. B-lymphocyte depletion in myalgic encephalopathy/chronic fatigue syndrome. An open-label phase ii study with rituximab maintenance treatment. PLoS One. 2015;10(7):e0129898.  https://doi.org/10.1371/journal.pone.0129898. eCollection 2015. PMID: 26132314.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Fluge Ø, Bruland O, Risa K, Storstein A, Kristoffersen EK, Sapkota D, Næss H, Dahl O, Nyland H, Mella O. Benefit from B-lymphocyte depletion using the anti-CD20 antibody rituximab in chronic fatigue syndrome. A double-blind and placebo-controlled study. PLoS One. 2011;6(10):e26358.  https://doi.org/10.1371/journal.pone.0026358. Epub 2011 Oct 19. PMID: 22039471.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Papadopoulos A, Ebrecht M, Roberts AD, Poon L, Rohleder N, Cleare AJ. Glucocorticoid receptor mediated negative feedback in chronic fatigue syndrome using the low dose (0.5 mg) dexamethasone suppression test. J Affect Disord. 2009;112(1–3):289–94.  https://doi.org/10.1016/j.jad.2008.05.001. Epub 2008 Jun 24. PMID: 18573538.CrossRefPubMedGoogle Scholar
  234. 234.
    Filler K, Lyon D, Bennett J, McCain N, Elswick R, Lukkahatai N, Saligan LN. Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clin. 2014;1:12–23.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Gerdle B, Forsgren MF, Bengtsson A, Leinhard OD, Sören B, Karlsson A, Brandejsky V, Lund E, Lundberg P. Decreased muscle concentrations of ATP and PCR in the quadriceps muscle of fibromyalgia patients – a 31P-MRS study. Eur J Pain. 2013;17(8):1205–15.  https://doi.org/10.1002/j.1532-2149.2013.00284.x. Epub 2013 Jan 30.CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Castro-Marrero J, Cordero MD, Sáez-Francas N, Jimenez-Gutierrez C, Aguilar-Montilla FJ, Aliste L, Alegre-Martin J. Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia? Antioxid Redox Signal. 2013;19(15):1855–60.  https://doi.org/10.1089/ars.2013.5346. Epub 2013 May 29.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Singh B, Singh R. Mitochondrial dysfunction and chronic fatigue syndromes: issues in clinical care. IOSR-JDMS. 2014;13(5):30–3. e-ISSN: 2279-0853, p-ISSN: 2279-0861.CrossRefGoogle Scholar
  238. 238.
    Sarzi-Puttini P, Atzeni F, Mease PJ. Chronic widespread pain: from peripheral to central evolution. Best Pract Res Clin Rheumatol. 2011;25(2):133–9.  https://doi.org/10.1016/j.berh.2011.04.001.CrossRefPubMedGoogle Scholar
  239. 239.
    Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6:606–19.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e 28–292.Google Scholar
  241. 241.
    Shah SJ, Kitzman DW, Borlaug BA, et al. Phenotype – specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2006;134:73–90.CrossRefGoogle Scholar
  242. 242.
    Zhang Y, Guallar E, Ashar FN, Longchamps RJ, Castellani CA, Lane J, Grove ML, Coresh J, Sotoodehnia N, Ilkhanoff L, Boerwinkle E, Pankratz N, Arking DE. Association between mitochondrial DNA copy number and sudden cardiac death: findings from the Atherosclerosis Risk in Communities study (ARIC). Eur Heart J. 2017.  https://doi.org/10.1093/eurheartj/ehx354. [Epub ahead of print].PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Packer M, Kitzman DW. Obesity-related heart failure with a preserved ejection fraction: the mechanistic rationale for combining inhibitors of aldosterone, neprilysin, and sodium-glucose cotransporter. JACC Heart Fail. 2018;6(8):633–9.PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Adabag AS, Luepker RV, Roger VL, Gersh BJ. Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol. 2010;7(4):216–25.  https://doi.org/10.1038/nrcardio.2010.3.CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Haykowsky MJ, et al. Regional adipose distribution and its relation to excess intolerance in older obese patients who has heart failure with preserved ejection fraction. JACC Heart Fail. 2018;6(9):642–9.Google Scholar
  246. 246.
    Bharadwaj MS, et al. Relationship between mitochondrial content and bioenergetics with obesity, body composition and fat distribution to healthy older adults. BMC Obes. 2015;2:40.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Forman DE, Goodpasture BH. Weighty matters in HFpEF and aging. JACC Heart Fail. 2018;6(8):650–2.PubMedCrossRefGoogle Scholar
  248. 248.
    Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial dysfunction. J Am Coll Cardiol. 2013;62:263–71.PubMedCrossRefGoogle Scholar
  249. 249.
    Schmidt-Wilcke T, Clauw DJ. Fibromyalgia: from pathophysiology to therapy. Nat Rev Rheumatol. 2011;7(9):518–27.  https://doi.org/10.1038/nrrheum.2011.98.CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Fatima G, Das SK, Mahdi AA. Oxidative stress and antioxidative parameters and metal ion content in patients with fibromyalgia syndrome: implications in the pathogenesis of the disease. Clin Exp Rheumatol. 2013;31(6 Suppl 79):S128–33. Epub 2013 Dec 16.PubMedGoogle Scholar
  251. 251.
    Ohnishi H, Saito Y. Eicosapentaenoic acid (EPA) reduces cardiovascular events: relationship with the EPA/arachidonic acid ratio. J Atheroscler Thromb. 2013;20(12):861–77. Epub 2013 Sept 18. Review.CrossRefGoogle Scholar
  252. 252.
    El-Sawya N, El-Tantawia G, Achmawib GAH, Sultana H, Younisa S. Autonomic changes in fibromyalgia: clinical and electrophysiological study. Alexandria J Med. 2012;48(3):215–22.CrossRefGoogle Scholar
  253. 253.
    Solano C, Martinez A, Becerril L, Vargas A, Figueroa J, Navarro C, Ramos-Remus C, Martinez-Lavin M. Autonomic dysfunction in fibromyalgia assessed by the Composite Autonomic Symptoms Scale (COMPASS). J Clin Rheumatol. 2009;15(4):172–6.  https://doi.org/10.1097/RHU.0b013e3181a1083d.CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Kadetoff D, Kosek E. The effects of static muscular contraction on blood pressure, heart rate, pain ratings and pressure pain thresholds in healthy individuals and patients with fibromyalgia. Eur J Pain. 2007;11(1):39–47. Epub 2006 Feb 9.PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Ramírez M, Martínez-Martínez LA, Hernández-Quintela E, Velazco-Casapía J, Vargas A, Martínez-Lavín M. Small fiber neuropathy in women with fibromyalgia. An in vivo assessment using corneal confocal bio-microscopy. Semin Arthritis Rheum. 2015;45(2):214–9.  https://doi.org/10.1016/j.semarthrit.2015.03.003. Epub 2015 Mar 19.CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Clauw DJ. Fibromyalgia: a clinical review. JAMA. 2014;311(15):1547–55.  https://doi.org/10.1001/jama.2014.3266.CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Goldenberg DL, Burckhardt C, Crofford L. Management of fibromyalgia syndrome. JAMA. 2004;292(19):2388–95.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Dell’Osso L, Bazzichi L, Baroni S, Falaschi V, Conversano C, Carmassi C, Marazziti D. The inflammatory hypothesis of mood spectrum broadened to fibromyalgia and chronic fatigue syndrome. Clin Exp Rheumatol. 2015;33(1 Suppl 88):S109–16. Epub 2015 Mar 18.PubMedPubMedCentralGoogle Scholar
  259. 259.
    Giles TD, Materson BJ, Cohn JN, Kostis JB. Definition and classification of hypertension: an update. J Clin Hypertens (Greenwich). 2009;11(11):611–4.  https://doi.org/10.1111/j.1751-7176.2009.00179.x. Erratum in: J Clin Hypertens (Greenwich). 2010 Jan;12(1):13.CrossRefGoogle Scholar
  260. 260.
    Lüscher TF, Mahfoud F. Renal nerve ablation after SYMPLICITY HTN-3: confused at the higher level? Eur Heart J. 2014;35(26):1706–11.  https://doi.org/10.1093/eurheartj/ehu195. Epub 2014 May 14.CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    DePace NL, Bateman JA, Yayac M, Oh J, Siddique M. Acosta C, Pinales JM, Vinik AI, Bloom HL. Improved patient outcomes by normalizing sympathovagal balance: differentiating syncope – precise subtype differentiation leads to improved outcomes. Cardiol Res Pract. 2018, Article ID 9532141, 8 pages.  https://doi.org/10.1155/2018/953214.
  262. 262.
    Murray GL, Colombo J. (R)alpha lipoic acid is a safe, effective pharmacologic therapy of chronic orthostatic hypotension associated with low sympathetic tone. Int J Angiol. 2019 (eFirst);1.  https://doi.org/10.1055/s-0038-1676957.
  263. 263.
    Mohammadi V, Dehghani S, Askari G. Does alpha-lipoic acid supplement regulate blood pressure? A systematic review of randomized, double-blind placebo-controlled clinical trials. Int J Prev Med. 2017;8:33–8.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Bangalore S, Messerlli F, Wun C, Zuckerman A, DeMicco D, Kostis J, et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) trial. Eur Heart J. 2010;31(23):2897–908.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Queiroz T, Guimaraes D, Medndes-Junior L, Braga V. α-lipoic acid reduces hypertension and increases baroreflex sensitivity in renovascular hypertensive rats. Molecules. 2012;17(11):13357–67.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Gouty S, Regalia J, Cai F, Helke C. Alpha-lipoic acid treatment prevents the diabetes-induced attenuation of the afferent limb of the baroreceptor reflex in rats. Auton Neurosci. 2003;108(1–2):32–44.PubMedCrossRefPubMedCentralGoogle Scholar
  267. 267.
    Wray D, Nishiyama S, Harris R, Zhao J, McDaniel J, Fjeldstad A, et al. Acute reversal of endothelial dysfunction in the elderly after antioxidant consumption. Hypertension. 2012;59(4):818–24.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Rahman S, Merchant N, Haque T, Wahi J, Bhaheetharan S, Ferdinand K, Khan B. The impact of lipoic acid on endothelial function and proteinuria in quinapril-treated diabetic patients with stage 1 hypertension: results from the QUALITY study. J Cardiovasc Pharmacol Ther. 2012;17(2):139–45.PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Xiang G, Pu J, Yue L, Hou J, Sun H. α-lipoic acid can improve endothelial dysfunction in subjects with impaired fasting glucose. Metabolism. 2011;60(4):480–5.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Tardif J, Rheaume E. Lipoic acid supplementation and endothelial function. Br J Pharmacol. 2008;153:1587–8.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Charles A. Advances in the basic and clinical science of migraine. Ann Neurol. 2009;65(5):491–8.  https://doi.org/10.1002/ana.21691.CrossRefPubMedPubMedCentralGoogle Scholar
  272. 272.
    Leão AA. Spreading depression. Funct Neurol. 1986;1(4):363–6.PubMedPubMedCentralGoogle Scholar
  273. 273.
    Headache classification committee of the international headache society IHS, The international classification headache disorders. 3rd ed, beta version, Cephalgia. 2013;33: 629–808.Google Scholar
  274. 274.
    Yorns WR Jr, Hardison HH. Mitochondrial dysfunction in migraine. Semin Pediatr Neurol. 2013;20(3):188–93.  https://doi.org/10.1016/j.spen.2013.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Stuart S, Griffiths LR. A possible role for mitochondrial dysfunction in migraine. Mol Gen Genomics. 2012;287(11–12):837–44.  https://doi.org/10.1007/s00438-012-0723-7. Epub 2012 Oct 7.CrossRefGoogle Scholar
  276. 276.
    Millichap JG. Migraine and autonomic nervous system dysfunction. Pediatr Neurol Briefs. 2002;16(2):15–6.Google Scholar
  277. 277.
    Vetvik KG, MacGregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017;16(1):76–87.  https://doi.org/10.1016/S1474-4422(16)30293-9. Epub 2016 Nov 9.CrossRefPubMedPubMedCentralGoogle Scholar
  278. 278.
    Shechter A, Stewart WF, Silberstein SD, Lipton RB. Migraine and autonomic nervous system function: a population-based, case-control study. Neurology. 2002;58(3):422–7.PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Millichap JG, Yee MM. The diet factor in pediatric and adolescent migraine. Pediatr Neurol. 2003;28(1):9–15.PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Charles A. Migraine. N Engl J Med. 2017;377(17):1698–9.  https://doi.org/10.1056/NEJMc1711803.CrossRefPubMedPubMedCentralGoogle Scholar
  281. 281.
    Natoli JL, Manack A, Dean B, Butler Q, Turkel CC, Stovner L, Lipton RB. Global prevalence of chronic migraine: a systematic review. Cephalalgia. 2010;30(5):599–609.  https://doi.org/10.1111/j.1468-2982.2009.01941.x.CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Minen MT, Begasse De Dhaem O, Kroon Van Diest A, Powers S, Schwedt TJ, Lipton R, Silbersweig D. Migraine and its psychiatric comorbidities. J Neurol Neurosurg Psychiatry. 2016;87(7):741–9.  https://doi.org/10.1136/jnnp-2015-312233. Epub 2016 Jan 5.CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Bigal ME, Lipton RB. Excessive acute migraine medication use and migraine progression. Neurology. 2008;71(22):1821–8.  https://doi.org/10.1212/01.wnl.0000335946.53860.1d.CrossRefPubMedGoogle Scholar
  284. 284.
    Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83(1):84–92. Epub 2007 Jan 18.PubMedCrossRefGoogle Scholar
  285. 285.
    Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007;27(5):394–402. Epub 2007 Mar 30.PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Elmenshawy E, Sakr S. Autonomic dysfunction in migraine; what do we need to know? Egypt J Neurol Psychiatr Neurosur. 2009;46:489–96.Google Scholar
  287. 287.
    Gaul C, Diener HC, Danesch U, Migravent® Study Group. Improvement of migraine symptoms with a proprietary supplement containing riboflavin, magnesium and Q10: a randomized, placebo-controlled, double-blind, multicenter trial. J Headache Pain. 2015;16:516.  https://doi.org/10.1186/s10194-015-0516-6. Epub 2015 Apr 3.CrossRefPubMedPubMedCentralGoogle Scholar
  288. 288.
    Reeve AK, Simcox EM, Duchen MR, Turnbull DM, editors. Mitochondrial dysfunction in neurodegenerative disorders. 2nd ed. Cham: Springer International Publishing; 2016.Google Scholar
  289. 289.
    Vos M, Lauwers E, Verstreken P. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease Front Synaptic Neurosci. 2010.  https://doi.org/10.3389/fnsyn.2010.00139
  290. 290.
    Lambert AJ, Brand MD. Reactive oxygen species production by mitochondria. Methods Mol Biol. 2009;554:165–81.  https://doi.org/10.1007/978-1-59745-521-3_11.CrossRefPubMedPubMedCentralGoogle Scholar
  291. 291.
    Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab. 2012;26(6):771–90.  https://doi.org/10.1016/j.beem.2012.05.002. Epub 2012 Jun 16.CrossRefPubMedPubMedCentralGoogle Scholar
  293. 293.
    Glancy B, Balaban RS. Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry. 2012;51(14):2959–73.  https://doi.org/10.1021/bi2018909. Epub 2012 Mar 29.CrossRefPubMedPubMedCentralGoogle Scholar
  294. 294.
    Chrysostomou A, Turnbull DM. Mitochondria, the synapse, and neurodegeneration. In: Reeve A, Simcox E, Duchen M, Turnbull D, editors. Mitochondrial dysfunction in neurodegenerative disorders.  https://doi.org/10.1007/978-3-319-28637-2_9.CrossRefGoogle Scholar
  295. 295.
    Marland JRK, Hasel P, Bonnycastle K, Cousin MA. Mitochondrial calcium uptake modulates synaptic vesicle endocytosis in central nerve terminals. J Biol Chem. 2016;291(5):2080–6.  https://doi.org/10.1074/jbc.M115.686956.CrossRefPubMedPubMedCentralGoogle Scholar
  296. 296.
    Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13(9):566–78.  https://doi.org/10.1038/nrm3412. Epub 2012 Aug 1.CrossRefPubMedGoogle Scholar
  297. 297.
    Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014;24(12):761–70.  https://doi.org/10.1016/j.tcb.2014.08.005. Epub 2014 Sept 2.CrossRefPubMedGoogle Scholar
  298. 298.
    Ahuja M, Muallem S. The gatekeepers of mitochondrial calcium influx: MICU1 and MICU2. EMBO Rep. 2014;15(3):205–6.  https://doi.org/10.1002/embr.201438446. Epub 2014 Feb 14.CrossRefPubMedPubMedCentralGoogle Scholar
  299. 299.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–22. Epub 2006 Nov 16.PubMedCrossRefGoogle Scholar
  300. 300.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42. Epub 2006 Nov 1.PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Shalev A, Liberzon I, Marmar C. Post traumatic stress disorder. (Longo DL, ed) NEJM. 2017;376:2459–69.  https://doi.org/10.1056/NEJMra1612499.PubMedCrossRefGoogle Scholar
  302. 302.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC; 2000.Google Scholar
  303. 303.
    Brudey C, Park J, Wiaderkiewicz J, Kobayashi I, Mellman TA, Marvar PJ. Autonomic and inflammatory consequences of posttraumatic stress disorder and the link to cardiovascular disease. Am J Physiol Regul Integr Comp Physiol. 2015;309:R315–21.PubMedPubMedCentralCrossRefGoogle Scholar
  304. 304.
    Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun. 2007;21:736–45.PubMedPubMedCentralCrossRefGoogle Scholar
  305. 305.
    Kanel von R, Hepp U, Kraemer B, Traber R, Keel M, Mica L, Schnyder U. Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J Psychiatr Res. 2007;41:744–52.CrossRefGoogle Scholar
  306. 306.
    Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–9.PubMedCrossRefGoogle Scholar
  307. 307.
    Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30:297–306.PubMedPubMedCentralCrossRefGoogle Scholar
  308. 308.
    Song C, Phillips AG, Leonard B. Interleukin 1β enhances conditioned fear memory in rats: possible involvement of glucocorticoids. Eur J Neurosci. 2003;18:1739–43.PubMedCrossRefGoogle Scholar
  309. 309.
    Wohleb ES, Patterson JM, Sharma V, Quan N, Godbout JP, Sheridan JF. Knockdown of interleukin-1 receptor type-1 on endothelial cells attenuated stress-induced neuroinflammation and prevented anxiety-like behavior. J Neurosci. 2014;34:2583–91.PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Oosthuizen F, Wegener G, Harvey BH. Nitric oxide as inflammatory mediator in post-traumatic stress disorder (PTSD): evidence from an animal model. Neuropsychiatr Dis Treat. 2005;1:109–23.PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    de Lange T. Protection of mammalian telomeres. Oncogene. 2002;21:532–40.PubMedCrossRefPubMedCentralGoogle Scholar
  312. 312.
    Roake CM, Artandi SE. Control of cellular aging, tissue function, and cancer by p53 downstream of telomeres. Cold Spring Harb Perspect Med. 2017;7(5):a026088.  https://doi.org/10.1101/cshperspect.a026088.CrossRefPubMedPubMedCentralGoogle Scholar
  313. 313.
    Vera E, Blasco MA. Beyond average: potential for measurement of short telomeres. Aging (Albany NY). 2012;4(6):379–92.PubMedCentralCrossRefGoogle Scholar
  314. 314.
    Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.PubMedCrossRefPubMedCentralGoogle Scholar
  315. 315.
    Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106:661–73.CrossRefGoogle Scholar
  316. 316.
    Collins K, Mitchell JR. Telomerase in the human organism. Oncogene. 2002;21:564–79.PubMedCrossRefPubMedCentralGoogle Scholar
  317. 317.
    Canela A, Vera E, Klatt P, Blasco MA. High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A. 2007;104:5300–5.PubMedPubMedCentralCrossRefGoogle Scholar
  318. 318.
    Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 2008;22:654–67.PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Yui J, Chiu CP, Lansdorp PM. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood. 1998;91:3255–62.PubMedPubMedCentralGoogle Scholar
  320. 320.
    Deng Y, Chan SS, Chang S. Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer. 2008;8:450–8.PubMedPubMedCentralCrossRefGoogle Scholar
  321. 321.
    Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.PubMedCrossRefPubMedCentralGoogle Scholar
  322. 322.
    Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol. 2007;3:640–9.PubMedCrossRefPubMedCentralGoogle Scholar
  323. 323.
    de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F. The search for antiaging interventions: from elixirs to fasting regimens. Cell. 2014;157(7):1515–26.PubMedPubMedCentralCrossRefGoogle Scholar
  324. 324.
    Aviv A. Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res. 2012;730:68–74.PubMedCrossRefPubMedCentralGoogle Scholar
  325. 325.
    Levy D, Neuhausen SL, Hunt SC, Kimura M, Hwang SJ, Chen W, Bis JC, Fitzpatrick AL, Smith E, Johnson AD, Gardner JP, Srinivasan SR, Schork N, Rotter JI, Herbig U, Psaty BM, Sastrasinh M, Murray SS, Vasan RS, Province MA, Glazer NL, Lu X, Cao X, Kronmal R, Mangino M, Soranzo N, Spector TD, Berenson GS, Aviv A. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci U S A. 2010;107:9293–8.PubMedPubMedCentralCrossRefGoogle Scholar
  326. 326.
    Mangino M, Hwang SJ, Spector TD, Hunt SC, Kimura M, Fitzpatrick AL, Christiansen L, Petersen I, Elbers CC, Harris T, Chen W, Srinivasan SR, Kark JD, Benetos A, El Shamieh S, Visvikis-Siest S, Christensen K, Berenson GS, Valdes AM, Viñuela A, Garcia M, Arnett DK, Broeckel U, Province MA, Pankow JS, Kammerer C, Liu Y, Nalls M, Tishkoff S, Thomas F, Ziv E, Psaty BM, Bis JC, Rotter JI, Taylor KD, Smith E, Schork NJ, Levy D, Aviv A. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet. 2012;21:5385–94.PubMedPubMedCentralCrossRefGoogle Scholar
  327. 327.
    Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–7.PubMedPubMedCentralCrossRefGoogle Scholar
  328. 328.
    Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012;13:693–704.PubMedPubMedCentralCrossRefGoogle Scholar
  329. 329.
    Guarante L. The Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. 2011;364:2235–44.CrossRefGoogle Scholar
  330. 330.
    Cardus A, Uryga AK, Walters G, Erusalimsky JD. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res. 2013;97:571–9.PubMedCrossRefPubMedCentralGoogle Scholar
  331. 331.
    Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012;111:245–59.PubMedCrossRefPubMedCentralGoogle Scholar
  332. 332.
    Tzanetakou IP, Nzietchueng R, Perrea DN, Benetos A. Telomeres and their role in aging and longevity. Curr Vasc Pharmacol. 2014;12:726–34.PubMedCrossRefPubMedCentralGoogle Scholar
  333. 333.
    Kovacic JC, Moreno P, Nabel EG, Hachinski V, Fuster V. Cellular senescence, vascular disease, and aging: part 2 of a 2-part review. Circulation. 2011;123:1990–2010.Google Scholar
  334. 334.
    Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013;10:274–83.PubMedCrossRefPubMedCentralGoogle Scholar
  335. 335.
    Nilsson PM, Tufvesson H, Leosdottir M, Melander O. Telomeres and cardiovascular disease risk: an update 2013. Transl Res. 2013;162:371–80.PubMedCrossRefPubMedCentralGoogle Scholar
  336. 336.
    de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2001–10.CrossRefGoogle Scholar
  337. 337.
    Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12:1133–8.PubMedCrossRefPubMedCentralGoogle Scholar
  338. 338.
    Campisi J. Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev. 2011;21:107–12.PubMedCrossRefPubMedCentralGoogle Scholar
  339. 339.
    von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP. Human cell senescence as a DNA damage response. Mech Ageing Dev. 2005;126:111–7.CrossRefGoogle Scholar
  340. 340.
    von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27:339–44.CrossRefGoogle Scholar
  341. 341.
    Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G, Pender SL, Fullard N, Nelson G, Mann J, van de Sluis B, Mann DA, von Zglinicki T. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172.PubMedPubMedCentralCrossRefGoogle Scholar
  342. 342.
    Correia-Melo C, Hewitt G, Passos JF. Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? Longev Healthspan. 2014;3(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  343. 343.
    Erusalimsky JD, Kurz DJ. Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp Gerontol. 2005;40:634–42.PubMedCrossRefPubMedCentralGoogle Scholar
  344. 344.
    Savage SA, Stewart BJ, Eckert A, Kiley M, Liao JS, Channock SJ. Genetic variation, nucleotide diversity, and linkage disequilibrium in seven telomere stability genes suggest that these genes may be under constraint. Hum Mutat. 2005;26:343–50.PubMedCrossRefPubMedCentralGoogle Scholar
  345. 345.
    Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6:611–22.PubMedCrossRefPubMedCentralGoogle Scholar
  346. 346.
    Kosmadaki MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron. 2004;35:155–9.PubMedCrossRefPubMedCentralGoogle Scholar
  347. 347.
    de Jesus BB, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MA. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell. 2011;10:604–21.PubMedCentralCrossRefGoogle Scholar
  348. 348.
    Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, Orimo A, Inoue M. Estrogen activates telomerase. Cancer Res. 1999;59:5917–21.PubMedPubMedCentralGoogle Scholar
  349. 349.
    Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366:662–720.PubMedCrossRefPubMedCentralGoogle Scholar
  350. 350.
    Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkälä KH, Fyhrquist F. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011;66:815–20.PubMedCrossRefPubMedCentralGoogle Scholar
  351. 351.
    Gellert C, Schöttker B, Brenner H. Smoking and all-cause mortality in older people: systematic review and meta-analysis. Arch Intern Med. 2012;172:837–44.PubMedCrossRefGoogle Scholar
  352. 352.
    Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkälä KH, Fyhrquist F. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol. 2012;27:815–22.PubMedCrossRefGoogle Scholar
  353. 353.
    Müezzinler A, Zaineddin AK, Brenner H. Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis. Obes Rev. 2014;15:192–201.PubMedCrossRefPubMedCentralGoogle Scholar
  354. 354.
    Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89:122–35.PubMedPubMedCentralCrossRefGoogle Scholar
  355. 355.
    Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, Kimura M, Lu X, Spector TD, Aviv A. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168:154–8.PubMedCrossRefPubMedCentralGoogle Scholar
  356. 356.
    Njajou OT, Hsueh WC, Blackburn EH, Newman AB, Wu SH, Li R, Simonsick EM, Harris TM, Cummings SR, Cawthon RM. Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J Gerontol A Biol Sci Med Sci. 2009;64(8):860–4.PubMedCrossRefPubMedCentralGoogle Scholar
  357. 357.
    Kennedy BK, et al. Geroscience; linking aging to chronic disease. Cell. 2014;159:709–13.PubMedPubMedCentralCrossRefGoogle Scholar
  358. 358.
    Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101:17312–5.PubMedPubMedCentralCrossRefGoogle Scholar
  359. 359.
    Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J, Epel ES. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology. 2013;38:1835–42.PubMedPubMedCentralCrossRefGoogle Scholar
  360. 360.
    Krauss J, Farzaneh-Far R, Puterman E, Na B, Lin J, Epel E, Blackburn E, Whooley MA. Physical fitness and telomere length in patients with coronary heart disease: findings from the heart and soul study. PLoS One. 2011;6:e26983.PubMedPubMedCentralCrossRefGoogle Scholar
  361. 361.
    Ornish D, Lin J, Daubenmier J, Weidner G, Epel E, Kemp C, Magbanua MJ, Marlin R, Yglecias L, Carroll PR, Blackburn EH. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9:1048–57.PubMedCrossRefPubMedCentralGoogle Scholar
  362. 362.
    Fontana L, Hu FB. Optimal body weight for health and longevity: bridging basic, clinical, and population research. Aging Cell. 2014;14:391–400.CrossRefGoogle Scholar
  363. 363.
    Ornish D, Lin J, Chan JM, Epel E, Kemp C, Weidner G, Marlin R, Frenda SJ, Magbanua MJ, Daubenmier J, Estay I, Hills NK, Chainani-Wu N, Carroll PR, Blackburn EH. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14:1112–20.PubMedCrossRefPubMedCentralGoogle Scholar
  364. 364.
    Rizzuto D, Fratiglioni L. Life style factors related to mortality and survival: a mini-review. Gerontology. 2014;60:327–35.PubMedCrossRefPubMedCentralGoogle Scholar
  365. 365.
    Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, Scharhag J, Büchner N, Meyer T, Kindermann W, Haendeler J, Böhm M, Laufs U. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120:2438–47.PubMedCrossRefGoogle Scholar
  366. 366.
    Richards BJ, Valdes AM, Gardner JP, Paximadas D, Kimura M, Nessa A, Lu X, Surdulescu GL, Swaminathan R, Spector TD, Aviv A. Higher vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr. 2007;86:1420–5.PubMedPubMedCentralCrossRefGoogle Scholar
  367. 367.
    Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89:1857–63.PubMedPubMedCentralCrossRefGoogle Scholar
  368. 368.
    Sen A, Marsche G, Freudenberger P, Schallert M, Toeglhofer AM, Nagl C, Schmidt R, Launer LJ, Schmidt H. Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: results of the Austrian Stroke Prevention Study. J Am Geriatr Soc. 2014;62(2):222–9.PubMedCrossRefGoogle Scholar
  369. 369.
    Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303:250–7.PubMedPubMedCentralCrossRefGoogle Scholar
  370. 370.
    Paul L. Diet, nutrition and telomere length. J Nutr Biochem. 2011;20:895–901.CrossRefGoogle Scholar
  371. 371.
    Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, Polisso G. Mediterranean diet, telomere maintenance and health status among elderly. PLoS One. 2013;8:1–6.CrossRefGoogle Scholar
  372. 372.
    Crous-Bou M, Fung TF, Prescott J, Julin B, Du M, Sun Q, Rexrode KM, Hu FB, De Vivo I. Mediterranean diet and telomere length in Nurses’ health study: population based cohort study. BMJ. 2014;349:6674.CrossRefGoogle Scholar
  373. 373.
    Saliques S, Teyssier J-R, Vergely C, Lorgis L, Lorin J. Circulating leukocyte telomere length and oxidative stress: a new target for statin therapy. Atherosclerosis. 2011;219:753–60.PubMedCrossRefPubMedCentralGoogle Scholar
  374. 374.
    Rode L, Nordestgaard BG, Bojesen SE. Peripheral blood leukocyte telomere length and mortality among 64 637 individuals from the general population. J Natl Cancer Inst. 2015;107(6):107.CrossRefGoogle Scholar
  375. 375.
    Guarante L. The Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. 2011;364:2235–44.CrossRefGoogle Scholar
  376. 376.
    Armanios M, Alder JK, Parry EM, Karim B, Strong MA, Greider CW. Short telomeres are sufficient to cause the degenerative defects associated with aging. Am J Hum Genet. 2009;85(6):823–32.PubMedPubMedCentralCrossRefGoogle Scholar
  377. 377.
    Shimamoto A, Koutaro Y, Tahara H. Werner-syndrome-specific induced pluripotent stem cells: recovery of telomere function by reprogramming. Front Genet. 2015.Google Scholar
  378. 378.
    Bär C, Blasco MA. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000 Research. 2016;5:F1000 Faculty Rev-89.  https://doi.org/10.12688/f1000research.7020.1.CrossRefGoogle Scholar
  379. 379.
    López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217.  https://doi.org/10.1016/j.cell.2013.05.039.CrossRefPubMedPubMedCentralGoogle Scholar
  380. 380.
    Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130(2):223–33.  https://doi.org/10.1016/j.cell.2007.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  381. 381.
    Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96.  https://doi.org/10.1038/nrm3823.CrossRefPubMedPubMedCentralGoogle Scholar
  382. 382.
    Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science. 2005;309(5738):1253–6.  https://doi.org/10.1126/science.1115025.CrossRefPubMedPubMedCentralGoogle Scholar
  383. 383.
    Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol. 2007;8(9):703–13.  https://doi.org/10.1038/nrm2241.CrossRefPubMedPubMedCentralGoogle Scholar
  384. 384.
    Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361(24):2353–65.  https://doi.org/10.1056/NEJMra0903373.CrossRefPubMedPubMedCentralGoogle Scholar
  385. 385.
    Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012;13(10):693–704.  https://doi.org/10.1038/nrg3246.CrossRefPubMedPubMedCentralGoogle Scholar
  386. 386.
    Holohan B, Wright WE, Shay JW. Cell biology of disease: telomeropathies: an emerging spectrum disorder. J Cell Biol. 2014;205(3):289–99.  https://doi.org/10.1083/jcb.201401012.CrossRefPubMedPubMedCentralGoogle Scholar
  387. 387.
    Townsley DM, Dumitriu B, Young NS. Bone marrow failure and the telomeropathies. Blood. 2014;124(18):2775–83.  https://doi.org/10.1182/blood-2014-05-526285.CrossRefPubMedPubMedCentralGoogle Scholar
  388. 388.
    Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11(5):1921–9.PubMedPubMedCentralCrossRefGoogle Scholar
  389. 389.
    Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999;97(4):527–38.  https://doi.org/10.1016/S0092-8674(00)80762-X.CrossRefPubMedPubMedCentralGoogle Scholar
  390. 390.
    Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470(7334):359–65.  https://doi.org/10.1038/nature09787.CrossRefPubMedPubMedCentralGoogle Scholar
  391. 391.
    Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55(5):876–82.PubMedPubMedCentralGoogle Scholar
  392. 392.
    Canela A, Klatt P, Blasco MA. Telomere length analysis. Methods Mol Biol. 2007;371:45–72.  https://doi.org/10.1007/978-1-59745-361-5_5.CrossRefPubMedPubMedCentralGoogle Scholar
  393. 393.
    von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.  https://doi.org/10.1016/S0968-0004(02)02110-2.CrossRefGoogle Scholar
  394. 394.
    Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.  https://doi.org/10.1016/S0140-6736(05)66630-5.CrossRefPubMedPubMedCentralGoogle Scholar
  395. 395.
    Strandberg TE, Saijonmaa O, Tilvis RS, et al. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011;66(7):815–20.  https://doi.org/10.1093/gerona/glr064.CrossRefPubMedPubMedCentralGoogle Scholar
  396. 396.
    Verde Z, Reinoso-Barbero L, Chicharro L, et al. Effects of cigarette smoking and nicotine metabolite ratio on leukocyte telomere length. Environ Res. 2015;140:488–94.  https://doi.org/10.1016/j.envres.2015.05.008.CrossRefPubMedPubMedCentralGoogle Scholar
  397. 397.
    Révész D, Milaneschi Y, Verhoeven JE, et al. Longitudinal associations between metabolic syndrome components and telomere shortening. J Clin Endocrinol Metab. 2015;100(8):3050–9.  https://doi.org/10.1210/JC.2015-1995.CrossRefPubMedPubMedCentralGoogle Scholar
  398. 398.
    Strandberg TE, Strandberg AY, Saijonmaa O, et al. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol. 2012;27(10):815–22.  https://doi.org/10.1007/s10654-012-9728-0.CrossRefPubMedGoogle Scholar
  399. 399.
    Müezzinler A, Mons U, Dieffenbach AK, et al. Smoking habits and leukocyte telomere length dynamics among older adults: results from the ESTHER cohort. Exp Gerontol. 2015;70:18–25.  https://doi.org/10.1016/j.exger.2015.07.002.CrossRefPubMedPubMedCentralGoogle Scholar
  400. 400.
    Wolkowitz OM, Mellon SH, Epel ES, et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress – preliminary findings. PLoS One. 2011;6(3):e17837.  https://doi.org/10.1371/journal.pone.0017837.CrossRefPubMedPubMedCentralGoogle Scholar
  401. 401.
    Karabatsiakis A, Kolassa IT, Kolassa S, et al. Telomere shortening in leukocyte subpopulations in depression. BMC Psychiatry. 2014;14:192.  https://doi.org/10.1186/1471-244X-14-192.CrossRefPubMedPubMedCentralGoogle Scholar
  402. 402.
    O’Donovan A, Epel E, Lin J, et al. Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder. Biol Psychiatry. 2011;70(5):465–71.  https://doi.org/10.1016/j.biopsych.2011.01.035.CrossRefPubMedPubMedCentralGoogle Scholar
  403. 403.
    Lin J, Epel E, Blackburn E. Telomeres and lifestyle factors: roles in cellular aging. Mutat Res. 2012;730(1–2):85–9.  https://doi.org/10.1016/j.mrfmmm.2011.08.003.CrossRefPubMedGoogle Scholar
  404. 404.
    Kinser PA, Lyon DE. Major depressive disorder and measures of cellular aging: an integrative review. Nurs Res Pract. 2013;2013:469070.  https://doi.org/10.1155/2013/469070.CrossRefPubMedPubMedCentralGoogle Scholar
  405. 405.
    Lindqvist D, Epel ES, Mellon SH, et al. Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev. 2015;55:333–64.  https://doi.org/10.1016/j.neubiorev.2015.05.007.CrossRefPubMedPubMedCentralGoogle Scholar
  406. 406.
    Simon NM, Smoller JW, McNamara KL, et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry. 2006;60(5):432–5.  https://doi.org/10.1016/j.biopsych.2006.02.004.CrossRefPubMedGoogle Scholar
  407. 407.
    Elvsåshagen T, Vera E, Bøen E, et al. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. J Affect Disord. 2011;135(1–3):43–50.  https://doi.org/10.1016/j.jad.2011.08.006.CrossRefPubMedGoogle Scholar
  408. 408.
    Canela A, Vera E, Klatt P, et al. High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A. 2007;104(13):5300–5.  https://doi.org/10.1073/pnas.0609367104.CrossRefPubMedPubMedCentralGoogle Scholar
  409. 409.
    De Jesus BB, Blasco MA. Telomerase at the intersection of cancer and aging. Trends Genet. 2013;29(9):513–20.  https://doi.org/10.1016/j.tig.2013.06.007.CrossRefPubMedCentralPubMedGoogle Scholar
  410. 410.
    Kovacic JC, Moreno P, Hachinski V, et al. Cellular senescence, vascular disease, and aging: part 1 of a 2-part review. Circulation. 2011;123:1650–60.PubMedCrossRefGoogle Scholar
  411. 411.
    Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35:112–31.PubMedPubMedCentralCrossRefGoogle Scholar
  412. 412.
    D’Mello MJ, Ross SA, Briel M, et al. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet. 2015;8:82–90.PubMedCrossRefPubMedCentralGoogle Scholar
  413. 413.
    Haycock PC, Heydon EE, Kaptoge S, et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349:g4227.PubMedPubMedCentralCrossRefGoogle Scholar
  414. 414.
    Fernández-Alvira JM, Fuster V, Dorado B, Soberón N, Flores I, Gallardo M, Pocock S, Blasco MA, Andrés V. Short telomere load, telomere length, and subclinical atherosclerosis. J Am Coll Cardiol. 2016;67(21):2467–76.  https://doi.org/10.1016/j.jacc.2016.03.530.CrossRefPubMedGoogle Scholar
  415. 415.
    Rietzschel ER, Bekaert S, De Meyer T. Telomeres and atherosclerosis: the attrition of an attractive hypothesis. J Am Coll Cardiol. 2016;67(21):2477–9.  https://doi.org/10.1016/j.jacc.2016.03.541.CrossRefPubMedGoogle Scholar
  416. 416.
    Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55(5):876–82.PubMedPubMedCentralGoogle Scholar
  417. 417.
    Bischoff C, Graakjaer J, Petersen HC, et al. The heritability of telomere length among the elderly and oldest-old. Twin Res Hum Genet. 2005;8(5):433–9.  https://doi.org/10.1375/183242705774310141.CrossRefPubMedGoogle Scholar
  418. 418.
    Andrew T, Aviv A, Falchi M, et al. Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs. Am J Hum Genet. 2006;78(3):480–6.  https://doi.org/10.1086/500052.CrossRefPubMedPubMedCentralGoogle Scholar
  419. 419.
    Broer L, Codd V, Nyholt DR, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21(10):1163–8.  https://doi.org/10.1038/ejhg.2012.303.CrossRefPubMedPubMedCentralGoogle Scholar
  420. 420.
    von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.  https://doi.org/10.1016/S0968-0004(02)02110-2.CrossRefGoogle Scholar
  421. 421.
    Farzaneh-Far R, Lin J, Epel ES, et al. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303(3):250–7.  https://doi.org/10.1001/jama.2009.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  422. 422.
    Werner C, Fürster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120(24):2438–47.  https://doi.org/10.1161/CIRCULATIONAHA.109.861005.CrossRefPubMedGoogle Scholar
  423. 423.
    Song Z, von Figura G, Liu Y, et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010;9(4):607–15.  https://doi.org/10.1111/j.1474-9726.2010.00583.x.CrossRefPubMedPubMedCentralGoogle Scholar
  424. 424.
    Soares-Miranda L, Imamura F, Siscovick D, et al. Physical activity, physical fitness, and leukocyte telomere length: the Cardiovascular Health Study. Med Sci Sports Exerc. 2015;47(12):2525–34.  https://doi.org/10.1249/MSS.0000000000000720.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicholas L. DePace
    • 1
  • Joseph Colombo
    • 2
  1. 1.Franklin Cardiovascular Associates, PA and Autonomic Dysfunction and POTS CenterSewellUSA
  2. 2.TMCAMS, Inc.Franklin Cardiovascular Associates, PA and Autonomic Dysfunction and POTS CenterRichboroUSA

Personalised recommendations