Skip to main content

Psychosocial Stress Reduction (Prong-6)

  • 523 Accesses

Abstract

Stress is an insidious factor in the lives of many, if not all, people. A little stress is actually healthy and helps people stay strong and healthy and even well. However, the stress levels in today’s society are too high for almost all people. There is little that can be done to escape it: young people are made to grow up too fast; girls are not pretty enough; boys are not strong enough or sensitive enough; the old standards are gone, including sexual identity; and no one is good enough, smart enough, rich enough, young enough, etc. This is now the norm. This before the violence of life (bullying, rape, murder), and diseases and injury, is added; even food and exercise have become stressors in many situations. As discussed earlier in this book, of this excess stress is damaging at the cellular level as oxidative stress. However, oxidative stress is exacerbated and further induced by any and all of these systemic, or psychosocial, stresses.

Systemically, these stresses are perceived by the brain and transmitted to the body and down to the cellular level through two main pathways: the hypothalamus-pituitary-adrenal axis (hormonally) and the parasympathetic and sympathetic nervous systems (neurally). Physiologic and psychologic stress and emotions (both happy and sad emotions) modulate hormonal and neural activity. Negative stresses may cause inflammation at the cellular level, suppress immune activity at the system level, and cause major adverse cardiovascular events (MACE, including stroke and sudden death). Causal factors and stress reduction factors are presented and discussed, including stress reduction as a powerful antioxidant. A tested, tried, non-pharmaceutical method to help reduce stress and mitigate its effects is presented.

Keywords

  • Adrenal fatigue
  • Antioxidant
  • Dentistry
  • Dynamic parasympathetic excess
  • Emotion
  • Hypothalamus-pituitary-adrenal axis
  • Inflammation
  • Parasympathetic and sympathetic nervous systems
  • Stress
  • Sudden death
  • The brain-gut connection
  • The brain-heart connection
  • Vagus nerve

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-17016-5_8
  • Chapter length: 65 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-17016-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9
Fig. 8.10
Fig. 8.11
Fig. 8.12
Fig. 8.13
Fig. 8.14
Fig. 8.15
Fig. 8.16
Fig. 8.17
Fig. 8.18
Fig. 8.19
Fig. 8.20
Fig. 8.21
Fig. 8.22
Fig. 8.23
Fig. 8.24
Fig. 8.25

Notes

  1. 1.

    The Vagus Nerve is approximately 70% of the parasympathetic nervous system.

  2. 2.

    The standard belief is that an increase in one branch of the autonomic nervous system is accompanied by a decrease in the other branch. In this way balance and homeostasis is maintained. Unfortunately, this assumption only holds in truly healthy individuals. Unprovoked parasympathetic excess (PE) during sympathetic stimulation is abnormal. This dynamic PE is “hidden” behind a sympathetic excess that is secondary to the PE. As a result, the symptoms masquerade as if they were generated by a primary sympathetic excess (SE). However, when treated as a primary SE, the patients do not respond as expected. When they are treated for a primary PE, they do improve. An example of such a patient is a patient with both depression (from PE) and hypertension (from SE). These patients tend to not be stable, because by treating the patient with direct or indirect sympathetic blockade (i.e., antihypertensives), more of the extant sympathetic control over the PE is blocked, the body is still demanding its blood, and not all sympathetic channels are being blocked; therefore, the body finds a way to defeat the antihypertensive, and the blood pressure increases after all [17]. (See “Dynamic Parasympathetic Excess” below.)

  3. 3.

    At this stage “neuropathy” is a misnomer and has led to the misperception that P&S imbalance cannot be treated. As a result many people have suffered unnecessarily. “Neuropathy” implies “dead nerves.” The nerves are not dead, just damaged, and they can be healed and their function normalized for their age. This is why “dysfunction” is the preferred term.

  4. 4.

    A good analogy is your car. When stopped at a red light, you have your foot on the brakes. When the light turns green, the first thing you do is take your foot off the breaks. Even before you step on the accelerator, the car is moving, accelerating. Then you step on the accelerator and move faster. Acceleration is facilitated by releasing the brakes. The same happens in the body. However, if you do not take your foot off the brakes and step on the accelerator, you still go, but it takes you longer to get to speed, or you have to step on the accelerator harder, over-revving the engine. The condition of keeping your foot on the brakes is like PE with SE.

  5. 5.

    Epinephrine and adrenaline are the same chemical, discovered at the same time (1904) by two different researchers, one in the US and one in England. The US named the chemical “epinephrine” and the British named the chemical “adrenaline.”

  6. 6.

    Yes, “corollary.” The P&S nervous systems do not always work in opposition. In fact, they tend to be more synergistic, rather than oppositional.

  7. 7.

    Sympathovagal balance is the ratio of resting sympathetic activity to resting parasympathetic activity (SB = S/P). High SB indicates a resting sympathetic excess (SE, relative to resting parasympathetic activity). Low SB indicates a resting parasympathetic excess (PE, relative to resting sympathetic activity).

  8. 8.

    Chronic stress is a chronic sympathetic stimulus and results in high SB, indicating resting sympathetic dominance, potentiating a pro-arrhythmic state. Acute stress is an acute sympathetic stimulus that does not result in long-term high SB, indicating chronic SE. However, the acute sympathetic stimulus can be “the straw that broke the camel’s back” and may trigger an arrhythmia if SB is high to begin with, due to other reasons (i.e., diabetes, sleep apnea, hypertension, anxiety, etc.).

  9. 9.

    Even with the assumptions and approximations required by HRV (alone) analyses, in the cases of angry patients, the changes in the HF-HRV term is likely to be an indicator of relative changes in parasympathetic activity. The reason is that anger tends to cause an increased respiratory rate, which may be assumed to be high enough to cause the parasympathetic activity to be fully represented by the HF-HRV term, leaving no parasympathetic activity to be represented by the LF-HRV term. It is an indication of relative changes because the HF-HRV term still includes “noise.”

  10. 10.

    P&S monitoring is a spectral analysis, signal processing technique that enables independent, simultaneous measurements of both P&S nervous systems’ activities, without the assumptions and approximations required by HRV (alone) analyses [18].

  11. 11.

    The Valsalva challenge is a series of short Valsalva maneuvers that are each kept to less than or equal to 15 seconds to prevent the parasympathetic cascade that is the hallmark of long Valsalva maneuvers. As taught in medical school, long Valsalva maneuvers are strong parasympathetic stimuli, which they absolutely are, but if terminated prior to 15 seconds or so, they remain only (net) sympathetic stimuli.

    The stand challenge is a net sympathetic stimulus, where the parasympathetics normally decrease and then the sympathetics normally increase.

  12. 12.

    Like oxygen and water, inflammation is beneficial to the body in appropriate amounts. Acute inflammation helps with the immune and healing (repair) processes. Chronic inflammation, however, is never good. Chronic inflammation is acute inflammation that lasts too long or is not deactivated by the parasympathetics.

  13. 13.

    The same six breathes per minute in a stressed or hyperstate is known as hyperventilation and is neither relaxing nor an optimal stimulus for the parasympathetic or vagus nerves.

  14. 14.

    Meditation or prayer has been demonstrated to reduce stress by increasing parasympathetic activity (reducing or normalizing sympathovagal balance).

  15. 15.

    A method of deep muscle relaxation based on the premise that muscle tension is the body’s physiological response to anxiety-provoking thoughts and that muscle relaxation blocks anxiety. Therapy focuses on tightening and relaxing specific muscle groups in sequence. It’s also known as progressive muscle relaxation which teaches you how to relax your muscles through a two-step process. First, particular muscle groups in your body are systematically put under tension, such as your neck and shoulders. Next, the tension is released and should be more relaxed. Whether reducing muscle tension is a result of relaxation or a cause of relaxation is unknown. Little, if any, rigorous research has been performed in this area. However, the time spent relaxing, which is well known to increase parasympathetic activity, has been demonstrated to reduce stress by increasing parasympathetic activity (reducing or normalizing sympathovagal balance). See “Meditation or Prayer” above.

  16. 16.

    Biofeedback uses HR, for example, as a means of training the nervous system to relax. Neurofeedback uses EEG waves (from your brain) as a means of training the nervous system to relax. Neurofeedback requires trained healthcare professionals to train the patient and interpret and assess the outcomes. Biofeedback does not.

References

  1. Harrington R. Stress, health & well-being: thriving in the 21st century. Belmont: Wadsworth Cengage Learning; 2013.

    Google Scholar 

  2. Hjemdahl P, Rosengren A, Steptoe A, editors. Stress and cardiovascular disease. London: Springer-Verlag; 2012.

    Google Scholar 

  3. Bot I, Kuiper J. Stressed brain, stressed heart? Lancet. 2017;389(10071):770–1. https://doi.org/10.1016/S0140-6736(17)30044-2. Epub 2017 Jan 12.

    CrossRef  PubMed  Google Scholar 

  4. Chi JS, Kloner RA. Stress and myocardial infarction. Heart. 2003;89(5):475–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  5. Pignalberi C, Patti G, Chimenti C, Pasceri V, Maseri A. Role of different determinants of psychological distress in acute coronary syndromes. J Am Coll Cardiol. 1998;32(3):613–9.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L, INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    PubMed  CrossRef  Google Scholar 

  7. Ohlin B, Nilsson PM, Nilsson JA, Berglund G. Chronic psychosocial stress predicts long-term cardiovascular morbidity and mortality in middle-aged men. Eur Heart J. 2004;25(10):867–73.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Tofler GH, Stone PH, Maclure M, Edelman E, Davis VG, Robertson T, Antman EM, Muller JE. Analysis of possible triggers of acute myocardial infarction (the MILIS study). Am J Cardiol. 1990;66(1):22–7.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Brezinka V, Kittel F. Psychosocial factors of coronary heart disease in women: a review. Soc Sci Med. 1996;42(10):1351–65. Review.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Gonzales TK, Yonker JA, Chang V, Roan CL, Herd P, Atwood CS. Myocardial infarction in the Wisconsin Longitudinal Study: the interaction among environmental, health, social, behavioural and genetic factors. BMJ Open. 2017;7(1):e011529. https://doi.org/10.1136/bmjopen-2016-011529.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Bunker SJ, Colquhoun DM, Esler MD, Hickie IB, Hunt D, Jelinek VM, Oldenburg BF, Peach HG, Ruth D, Tennant CC, Tonkin AM. “Stress” and coronary heart disease: psychosocial risk factors. Med J Aust. 2003;178(6):272–6. Review.

    PubMed  Google Scholar 

  12. Kuper H, Adami HO, Theorell T, Weiderpass E. Psychosocial determinants of coronary heart disease in middle-aged women: a prospective study in Sweden. Am J Epidemiol. 2006;164(4):349–57. Epub 2006 Jun 20.

    PubMed  CrossRef  Google Scholar 

  13. Welin C, Lappas G, Wilhelmsen L. Independent importance of psychosocial factors for prognosis after myocardial infarction. J Intern Med. 2000;247(6):629–39.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, Blackett KN, Sitthi-amorn C, Sato H, Yusuf S, INTERHEART investigators. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):953–62.

    PubMed  CrossRef  Google Scholar 

  15. Smyth A, O’Donnell M, Lamelas P, Teo K, Rangarajan S, Yusuf S, INTERHEART Investigators. Physical activity and anger or emotional upset as triggers of acute myocardial infarction: The INTERHEART study. Circulation. 2016;134(15):1059–67.

    PubMed  CrossRef  Google Scholar 

  16. Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, Truong QA, Solomon CJ, Calcagno C, Mani V, Tang CY, Mulder WJ, Murrough JW, Hoffmann U, Nahrendorf M, Shin LM, Fayad ZA, Pitman RK. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet. 2017;389(10071):834–45. https://doi.org/10.1016/S0140-6736(16)31714-7. Epub 2017 Jan 12.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Tobias H, Vinitsky A, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic nervous system monitoring of patients with excess parasympathetic responses to sympathetic challenges – clinical observations. US Neurol. 2010;5(2):62–6.

    CrossRef  Google Scholar 

  18. Colombo J, Arora RR, DePace NL, Vinik AI. Clinical autonomic dysfunction: measurement, indications, therapies, and outcomes. New York: Springer Science + Business Media; 2014.

    Google Scholar 

  19. Cardinali DP. Autonomic nervous system: basic and clinical aspects. Cham: Springer International Publishing AG; 2018.

    CrossRef  Google Scholar 

  20. Selye H. The stress of life. 2nd ed. New York: McGraw-Hill; 1956.

    Google Scholar 

  21. Even N, Devaud JM, Barron A. General stress responses in the honey bee. Insects. 2012;3:1271–98. https://doi.org/10.3390/insects3041271.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr Rev. 1996;17:245–61.

    CAS  PubMed  CrossRef  Google Scholar 

  24. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886:172–89.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5:374–81.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Stratakis CA, Chrousos GP. Neuroendocrinology and pathophysiology of the stress system. Ann N Y Acad Sci. 1995;771:1–18.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Taggart P, Lambiase P. Anger, emotion, and arrhythmias: from brain to heart. Front Physiol. 2011;19(2):67–72.

    Google Scholar 

  28. Tait AS, Butts CL, Sternberg EM. The role of glucocorticoids and progestins in inflammatory, autoimmune, and infectious disease. J Leukoc Biol. 2008;84(4):924–31. https://doi.org/10.1189/jlb.0208104.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Butts CL, Sternberg EM. Neuroendocrine factors alter host defense by modulating immune function. Cell Immunol. 2008;252(1–2):7–15.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  30. Thayer JF, Loerbroks A, Sternberg EM. Inflammation and cardiorespiratory control: the role of the vagus nerve. Respir Physiol Neurobiol. 2011;178(3):387–94. https://doi.org/10.1016/j.resp.2011.05.016. Epub 2011 May 27. Review.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Felton DL. Neural influence on immune responses: underlying suppositions and basic principles of neural-immune signaling. Prog Brain Res. 2000;122:381–9.

    CrossRef  Google Scholar 

  32. Bär K-J, Boettger MK, Berger S, Baier V, Sauer H, Yeragani VK, Voss A. Decreased baroreflex sensitivity in acute schizophrenia. J Appl Physiol. 2007;102(3):1051–6.

    PubMed  CrossRef  Google Scholar 

  33. Hong Y. Sympathovagal imbalance in type 2 diabetes – role of brainstem thyrotropin-releasing hormone. In: Masuo K, editor. Type 2 diabetes. IntechOpen. https://doi.org/10.5772/56541.

    Google Scholar 

  34. Craig AD. Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn Sci. 2005;9:566–71.

    PubMed  CrossRef  Google Scholar 

  35. Lane RD, Jennings JR. Hemispheric asymmetry, autonomic asymmetry and the problem of sudden death. In: Davidson RJ, Hugdahl K, editors. Brain asymmetry. Cambridge, MA: The MIT Press; 1995. p. 271–304.

    Google Scholar 

  36. DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and diagnosing heart disease. “A clinical perspective”. Heart Int. 2014;9(2):37–44. https://doi.org/10.5301/heartint.5000218; published online 12/5/2014 12:29:58 PM.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  37. DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and treating heart disease. “A clinical perspective”. Heart Int. 2014;9(2):45–52. https://doi.org/10.5301/heartint.5000216; published online 11/19/2014 1:16:08 PM.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Akashi YJ, Goldstein DS, Barbaro G, Ueyama T. Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation. 2008;118:2754–62.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Nalivaiko E. Animal models of psychogenic cardiovascular disorders: what we can learn from them and what we cannot. Clin Exp Pharmacol Physiol. 2011;38:115–25.

    CAS  PubMed  CrossRef  Google Scholar 

  40. Pelliccia F, Greco C, Vitale C, Rosano G, Gaudio C, Kaski JC. Takotsubo syndrome (stress cardiomyopathy): an intriguing clinical condition in search of its identity. Am J Med. 2014;127:699–704.

    PubMed  CrossRef  Google Scholar 

  41. Terefe YG, Niraj A, Pradhan J, Kondur A, Afonso L. Myocardial infarction with angiographically normal coronary arteries in the contemporary era. Coron Artery Dis. 2007;18:621–6.

    PubMed  CrossRef  Google Scholar 

  42. Pelliccia F, Greco C, Vitale C, Rosano G, Gaudio C, Kaski JC. Takotsubo syndrome (stress cardiomyopathy): an intriguing clinical condition in search of its identity. Am J Med. 2014;127:699–704.

    PubMed  CrossRef  Google Scholar 

  43. Kurisu S, Sato H, Kawagoe T, Ishihara M, Shimatani Y, Nishioka K, Kono Y, Umemura T, Nakamura S. Tako-tsubo-like left ventricular dysfunction with ST-segment elevation: a novel cardiac syndrome mimicking acute myocardial infarction. Am Heart J. 2002;143:448–55.

    PubMed  CrossRef  Google Scholar 

  44. Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, Maron BJ. Acute and reversible cardiomyopathy provoked by stress in women from the United States. Circulation. 2005;111:472–9.

    PubMed  CrossRef  Google Scholar 

  45. Mori H, Ishikawa S, Kojima S, Hayashi J, Watanabe Y, Hoffman JI, Okino H. Increased responsiveness of left ventricular apical myocardium to adrenergic stimuli. Cardiovasc Res. 1993;27:192–8.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Gullette EC, Blumenthal JA, Babyak M, Jiang W, Waugh RA, Frid DJ, O’Connor CM, Morris JJ, Krantz DS. Effects of mental stress on myocardial ischemia during daily life. JAMA. 1997;277:1521–6.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Pimple P, Shah A, Rooks C, Bremner JD, Nye J, Ibeanu I, Murrah N, Shallenberger L, Kelley M, Raggi P, Vaccarino V. Association between anger and mental stress-induced myocardial ischemia. Am Heart J. 2015;169:115–21.

    PubMed  CrossRef  Google Scholar 

  48. Boyle SH, Williams RB, Mark DB, Brummett BH, Siegler IC, Barefoot JC. Hostility, age, and mortality in a sample of cardiac patients. Am J Cardiol. 2005;96:64–6.

    PubMed  CrossRef  Google Scholar 

  49. Reich P, DeSilva RA, Lown B, Murawski BJ. Acute psychological disturbances preceding life-threatening ventricular arrhythmias. JAMA. 1981;246:233–5.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Lampert R, Shusterman V, Burg MM, Lee FA, Earley C, Goldberg A, McPherson CA, Batsford WP, Soufer R. Effects of psychologic stress on repolarization and relationship to autonomic and hemodynamic factors. J Cardiovasc Electrophysiol. 2005;16:372–7.

    PubMed  CrossRef  Google Scholar 

  51. Lampert R. Anger and ventricular arrhythmias. Curr Opin Cardiol. 2010;25:46–52.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  52. Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.

    CrossRef  PubMed  Google Scholar 

  53. Tan AY, Verrier RL. The role of the autonomic nervous system in cardiac arrhythmias. Handb Clin Neurol. 2013;117:135–45.

    PubMed  CrossRef  Google Scholar 

  54. Alfano KM, Cimino CR. Alteration of expected hemispheric asymmetries: valence and arousal effects in neuropsychological models of emotion. Brain Cogn. 2008;66:213–20.

    PubMed  CrossRef  Google Scholar 

  55. Hagemann D, Waldstein SR, Thayer JF. Central and autonomic nervous system integration in emotion. Brain Cogn. 2003;52:79–87.

    PubMed  CrossRef  Google Scholar 

  56. Taggart P, Boyett MR, Logantha S, Lambiase PD. Anger, emotion, and arrhythmias: from brain to heart. Front Physiol. 2011;2:67.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  57. Steptoe A, Kivimäki M. Stress and cardiovascular disease: an update on current knowledge. Annu Rev Public Health. 2013;34:337–54.

    PubMed  CrossRef  Google Scholar 

  58. von Känel R, Mills PJ, Fainman C, Dimsdale JE. Effects of psychological stress and psychiatric disorders on blood coagulation and fibrinolysis: a biobehavioral pathway to coronary artery disease? Psychosom Med. 2001;63:531–44.

    CrossRef  Google Scholar 

  59. Wirtz PH, Ehlert U, Emini L, Rüdisüli K, Groessbauer S, Gaab J, Elsenbruch S, von Känel R. Anticipatory cognitive stress appraisal and the acute procoagulant stress response in men. Psychosom Med. 2006;68:851–8.

    PubMed  CrossRef  Google Scholar 

  60. Shimbo D, Child J, Davidson K, Geer E, Osende JI, Reddy S, Dronge A, Fuster V, Badimon JJ. Exaggerated serotonin-mediated platelet reactivity as a possible link in depression and acute coronary syndromes. Am J Cardiol. 2002;89:331–3.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Zafar MU, Paz-Yepes M, Shimbo D, Vilahur G, Burg MM, Chaplin W, Fuster V, Davidson KW, Badimon JJ. Anxiety is a better predictor of platelet reactivity in coronary artery disease patients than depression. Eur Heart J. 2010;31:1573–82.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  62. Lesch KP, Wolozin BL, Murphy DL, Reiderer P. Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem. 1993;60:2319–22.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Becker RC. Editor’s page: fundamentals in neurocardiology: the brain-platelet-coronary artery interface. J Thromb Thrombolysis. 2008;26:74–7.

    PubMed  CrossRef  Google Scholar 

  64. Wirtz PH, Redwine LS, Baertschi C, Spillmann M, Ehlert U, von Känel R. Coagulation activity before and after acute psychosocial stress increases with age. Psychosom Med. 2008;70:476–81.

    PubMed  CrossRef  Google Scholar 

  65. Jern C, Eriksson E, Tengborn L, Risberg B, Wadenvik H, Jern S. Changes of plasma coagulation and fibrinolysis in response to mental stress. Thromb Haemost. 1989;62:767–71.

    CAS  PubMed  Google Scholar 

  66. von Känel R, Bellingrath S, Kudielka BM. Association between burnout and circulating levels of pro- and anti-inflammatory cytokines in schoolteachers. J Psychosom Res. 2008;65:51–9.

    CrossRef  Google Scholar 

  67. von Känel R, Dimsdale JE, Ziegler MG, Mills PJ, Patterson TL, Lee SK, Grant I. Effect of acute psychological stress on the hypercoagulable state in subjects (spousal caregivers of patients with Alzheimer’s disease) with coronary or cerebrovascular disease and/or systemic hypertension. Am J Cardiol. 2001;87:1405–8.

    CrossRef  Google Scholar 

  68. Steptoe A, Wardle J, Marmot M. Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes. Proc Natl Acad Sci U S A. 2005;102:6508–12.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  69. Preckel D, von Känel R. Regulation of hemostasis by the sympathetic nervous system: any contribution to coronary artery disease? Heart. 2004;4:123–30.

    Google Scholar 

  70. von Känel R, Dimsdale JE. Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo. Eur J Haematol. 2000;65:357–69.

    CrossRef  Google Scholar 

  71. von Känel R, Mills PJ, Ziegler MG, Dimsdale JE. Effect of beta2-adrenergic receptor functioning and increased norepinephrine on the hypercoagulable state with mental stress. Am Heart J. 2002;144:68–72.

    CrossRef  CAS  Google Scholar 

  72. Stämpfli SF, Camici GG, Keller S, Rozenberg I, Arras M, Schuler B, Gassmann M, Garcia I, Lüscher TF, Tanner FC. Restraint stress enhances arterial thrombosis in vivo – role of the sympathetic nervous system. Stress. 2014;17:126–32.

    PubMed  CrossRef  CAS  Google Scholar 

  73. Allen MT, Patterson SM. Hemoconcentration and stress: a review of physiological mechanisms and relevance for cardiovascular disease risk. Biol Psychol. 1995;41:1–27.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Austin AW, Patterson SM, von Känel R. Hemoconcentration and hemostasis during acute stress: interacting and independent effects. Ann Behav Med. 2011;42:153–73.

    PubMed  CrossRef  Google Scholar 

  75. Nater UM, Skoluda N, Strahler J. Biomarkers of stress in behavioural medicine. Curr Opin Psychiatry. 2013;26:440–5.

    PubMed  CrossRef  Google Scholar 

  76. Sojka P, Stålnacke BM, Björnstig U, Karlsson K. One-year follow-up of patients with mild traumatic brain injury: occurrence of post-traumatic stress-related symptoms at follow-up and serum levels of cortisol, S-100B and neuron-specific enolase in acute phase. Brain Inj. 2006;20:613–20.

    PubMed  CrossRef  Google Scholar 

  77. Michaud K, Matheson K, Kelly O, Anisman H. Impact of stressors in a natural context on release of cortisol in healthy adult humans: a meta-analysis. Stress. 2008;11:177–97.

    CAS  PubMed  CrossRef  Google Scholar 

  78. Poll EM, Kreitschmann-Andermahr I, Langejuergen Y, Stanzel S, Gilsbach JM, Gressner A, Yagmur E. Saliva collection method affects predictability of serum cortisol. Clin Chim Acta. 2007;382:15–9.

    CAS  PubMed  CrossRef  Google Scholar 

  79. Bozovic D, Racic M, Ivkovic N. Salivary cortisol levels as a biological marker of stress reaction. Med Arh. 2013;67:374–7.

    CrossRef  Google Scholar 

  80. Elenkov IJ, Chrousos GP. Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab. 1999;10:359–68.

    CAS  PubMed  CrossRef  Google Scholar 

  81. Moretti M, Colla A, de Oliveira BG, dos Santos DB, Budni J, de Freitas AE, Farina M, Severo Rodrigues AL. Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res. 2012;46:331–40.

    PubMed  CrossRef  Google Scholar 

  82. Bertone-Johnson ER, Whitcomb BW, Missmer SA, Karlson EW, Rich-Edwards JW. Inflammation and early-life abuse in women. Am J Prev Med. 2012;43:611–20.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  83. Chavda N, Kantharia ND, Jaykaran. Effects of fluoxetine and escitalopram on C-reactive protein in patients of depression. J Pharmacol Pharmacother. 2011;2:11–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  84. Antoni MH, Lutgendorf SK, Blomberg B, Carver CS, Lechner S, Diaz A, Stagl J, Arevalo JM, Cole SW. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics. Biol Psychiatry. 2012;71:366–72.

    CAS  PubMed  CrossRef  Google Scholar 

  85. Lu XT, Zhao YX, Zhang Y, Jiang F. Psychological stress, vascular inflammation, and atherogenesis: potential roles of circulating cytokines. J Cardiovasc Pharmacol. 2013;62:6–12.

    CAS  PubMed  CrossRef  Google Scholar 

  86. Skurk T, van Harmelen V, Hauner H. Angiotensin II stimulates the release of interleukin-6 and interleukin-8 from cultured human adipocytes by activation of NF-kappaB. Arterioscler Thromb Vasc Biol. 2004;24:1199–203.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Tsuchiya K, Yoshimoto T, Hirono Y, Tateno T, Sugiyama T, Hirata Y. Angiotensin II induces monocyte chemoattractant protein-1 expression via a nuclear factor kappaB- dependent pathway in rat preadipocytes. Am J Physiol Endocrinol Metab. 2006;291:E771–8.

    CAS  PubMed  CrossRef  Google Scholar 

  88. Lu XT, Zhao YX, Zhang Y, Jiang F. Psychological stress, vascular inflammation, and atherogenesis: potential roles of circulating cytokines. J Cardiovasc Pharmacol. 2013;62:6–12.

    CAS  PubMed  CrossRef  Google Scholar 

  89. Hapuarachchi JR, Chalmers AH, Winefield AH, Blake-Mortimer JS. Changes in clinically relevant metabolites with psychological stress parameters. Behav Med. 2003;29:52–9.

    PubMed  CrossRef  Google Scholar 

  90. Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol. 2005;289:H2649–56.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Hiroki J, Shimokawa H, Higashi M, Morikawa K, Kandabashi T, Kawamura N, Kubota T, Ichiki T, Amano M, Kaibuchi K, Takeshita A. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. J Mol Cell Cardiol. 2004;37:537–46.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Bierhaus A, Wolf J, Andrassy M, Rohleder N, Humpert PM, Petrov D, Ferstl R, von Eynatten M, Wendt T, Rudofsky G, Joswig M, Morcos M, Schwaninger M, McEwen B, Kirschbaum C, Nawroth PP. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A. 2003;100:1920–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  93. Sivonová M, Zitnanová I, Hlincíková L, Skodácek I, Trebatická J, Duracková Z. Oxidative stress in university students during examinations. Stress. 2004;7:183–8.

    PubMed  CrossRef  CAS  Google Scholar 

  94. Mauck HP, Hockman CH. Central nervous system mechanisms mediating cardiac rate and rhythm. Am Heart J. 1967;74:106–9.

    CrossRef  Google Scholar 

  95. Engel GL. Sudden and rapid death during psychological stress. Ann Intern Med. 1971;74:771–82.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Trichopoulos D, Katsoutanni K, Zavitsanos X, Tronou A, Dalla-Vorgia P. Psychological stress and fatal heart attack: the Athens earthquake natural experiment. Lancet. 1983;1:441–3.

    CAS  PubMed  CrossRef  Google Scholar 

  97. Meisel SR, Kutz I, Dayan KI, Pauzner H, Chetbourg I, Arbel Y, David D. Effect of Iraqi missile war on incidence of acute myocardial infarction and sudden death in Israeli civilians. Lancet. 1991;338:660–1.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Leor J, Poole WK, Kloner RA. Sudden cardiac death triggered by an earthquake. N Engl J Med. 1996;334:413–9.

    CAS  PubMed  CrossRef  Google Scholar 

  99. Steinberg JS, Arshad A, Kowalski M, Kukar A, Suma V, Vloka M, Eklert F, Herweg B, Donelly J, Phillip J, Reed G, Rozanski A. Increased incidence of life threatening arrhythmias in implantable defibrillator patients after the World Trade Centre attack. J Am Coll Cardiol. 2004;44:1261–4.

    PubMed  CrossRef  Google Scholar 

  100. Lampert R, Jain D, Burg MM, Batsford WP, McPherson CA. Destabilising effects of mental stress on ventricular arrhythmias in patients with implantable cardio-verter defibrillators. Circulation. 2000;101:158–64.

    CAS  PubMed  CrossRef  Google Scholar 

  101. Toivonen L, Helenius K, Vitasalo M. Electrocardiographic repolarization during stress from awakening on alarm call. J Am Coll Cardiol. 1997;30:774–7.

    CAS  PubMed  CrossRef  Google Scholar 

  102. James PR, Taggart P, McNally ST, Newman SP, Sporton SC, Hardman SMC. Acute psychological stress and the propensity to ventricular arrhythmias. Eur Heart J. 2000;21:1023–8.

    CAS  PubMed  CrossRef  Google Scholar 

  103. Kop WJ, Krantz DS, Nearing BD, Gottdiener JS, Quigley JF, O’Callahan M, DelNegro AA, Friehling TD, Karasik P, Suchday S, Levine J, Verrier RL. Effects of acute mental stress and exercise on T-wave alternans in patients with implantable cardioverter defibrillators and controls. Circulation. 2004;109:1864–9.

    PubMed  CrossRef  Google Scholar 

  104. Taggart P, Sutton P, Redfern C, Batchvarov VN, Hnatkova K, Malik M, James U, Joseph A. The effect of mental stress on the non-dipolar components of the T wave: modulation by hypnosis. Psychosom Med. 2005;67:376–83.

    PubMed  CrossRef  Google Scholar 

  105. Lampert R, Shusterman V, Burg M, McPherson C, Batsford W, Goldberg A, Soufer R. Anger induced T wave alternans predicts future ventricular arrhythmias in patients with implantable cardioverter defibrillators. J Am Coll Cardiol. 2009;53:774–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  106. Zipes DP, Rubart M. Neural modulation of cardiac arrhythmias and sudden cardiac death. Heart Rhythm. 2006;3:108–13.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  107. Coote JH. Landmarks in understanding the central nervous control of the cardiovascular system. Exp Physiol. 2007;92:3–18.

    PubMed  CrossRef  Google Scholar 

  108. Sengupta P. Health impacts of yoga and pranayama: a state-of-the-art review. Int J Prev Med. 2012;3(7):444–58.

    PubMed  PubMed Central  Google Scholar 

  109. Schwartz PJ. The rationale and the role of left stellectomy for the prevention of malignant arrhythmias. Ann N Y Acad Sci. 1984;427:199–221.

    CAS  PubMed  CrossRef  Google Scholar 

  110. Schwartz PJ, Zipes DP. Autonomic modulation of cardiac arrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology. From cell to bedside. 4th ed. Philadelphia: W. B. Saunders; 2004. p. 300–14.

    Google Scholar 

  111. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593–601.

    CAS  CrossRef  PubMed  Google Scholar 

  112. Leenen FHH. Brain mechanisms contributing to sympathetic hyperactivity & heart failure. Circ Res. 2007;101:221–3.

    CAS  PubMed  CrossRef  Google Scholar 

  113. Ajijola OA, Lux RL, Khahera A, Kwon O, Aliotta E, Ennis DB, Fishbein MC, Ardell JL, Shivkumar K. Sympathetic modulation of electrical activation in normal and infarcted myocardium: implications for arrhythmogenesis. Am J Physiol Heart Circ Physiol. 2017;312(3):H608–21. https://doi.org/10.1152/ajpheart.00575.2016. Epub 2017 Jan 13

    CrossRef  PubMed  PubMed Central  Google Scholar 

  114. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    PubMed  CrossRef  Google Scholar 

  115. La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet. 1998;351:478–84.

    PubMed  CrossRef  Google Scholar 

  116. Gottlieb SS, McCarter RJ, Vogel RA. Effect of beta blockade on mortality among high-risk and low risk patients after myocardial infarction. N Engl J Med. 1998;339:489–97.

    CAS  PubMed  CrossRef  Google Scholar 

  117. Schwartz PJ, De Ferrari GM. Sympathetic-parasympathetic interaction in health and disease:abnormalities and relevance in heart failure. Heart Fail Rev. 2011;16:101–7.

    PubMed  CrossRef  Google Scholar 

  118. Koizumi K, Kollai M. Control of reciprocal and non reciprocal action of vagal and sympathetic efferents: study of centrally induced reactions. J Auton Nerv Syst. 1981;3:483–501.

    CAS  PubMed  CrossRef  Google Scholar 

  119. Zipes DP, Miyazaki T. The autonomic nervous system and the heart: basis for understanding interactions and effects on arrhythmia development. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia: W. B. Saunders; 1990. p. 312–30.

    Google Scholar 

  120. Paton JFR, Boscan P, Pickering AE, Nalivaiko E. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res Rev. 2005;49:555–65.

    CAS  PubMed  CrossRef  Google Scholar 

  121. Porges SW. The polyvagal theory: neurophysiological foundations of emotions, attachment, communication, and self-regulation. New York: WW Norton & Co., Inc; 2011.

    Google Scholar 

  122. Randall WC, Szentivanyi M, Pace JB, Wechsler JS, Kaye MP. Patterns of sympathetic nerve projections onto the canine heart. Circ Res. 1968;22(3):315–23.

    CAS  PubMed  CrossRef  Google Scholar 

  123. Katritsis DG, Pokushalov E, Romanov A, et al. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial. J Am Coll Cardiol. 2013;62:2318–25.

    PubMed  CrossRef  Google Scholar 

  124. Wu J, Wu J, Zipes DP. Mechanisms of initiation of ventricular tachyarrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology; from cell to bedside. 4th ed. Philadelphia: Saunders; 2004. p. 380–9.

    CrossRef  Google Scholar 

  125. Levy MN, Ng ML, Zieske H. Functional distribution of the peripheral sympathetic pathways. Circ Res. 1966;14:650–61.

    CrossRef  Google Scholar 

  126. Yanowitz F, Preston JB, Abildskov JA. Functional distribution of right and left stellate innervation to the ventricles: production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res. 1966;28:416–28.

    CrossRef  Google Scholar 

  127. Randall WC, Ardell JL. Nervous control of the heart: anatomy and pathophysiology. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia: W. B. Saunders; 1990. p. 291–9.

    Google Scholar 

  128. Kralios FA, Martin L, Burgess MJ, Millar K. Local ventricular repolarization changes due to sympathetic nerve-branch stimulation. Am J Phys. 1975;228:1621–6.

    CAS  CrossRef  Google Scholar 

  129. Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MS. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden death. Cardiovasc Res. 2001;50:409–16.

    CAS  PubMed  CrossRef  Google Scholar 

  130. Chen LS, Chen PS. Nerve sprouting and cardiac arrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia: W. B. Saunders; 2004. p. 299–305.

    CrossRef  Google Scholar 

  131. Schwartz PJ. The rationale and the role of left stellectomy for the prevention of malignant arrhythmias. Ann N Y Acad Sci. 1984;427:199–221.

    CAS  PubMed  CrossRef  Google Scholar 

  132. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593–601.

    CAS  CrossRef  PubMed  Google Scholar 

  133. McNeill EM, Roos KP, Moechars D, Clagett-Dame M. Nav2 is necessary for cranial nerve development and blood pressure regulation. Neural Dev. 2010;5:6. https://doi.org/10.1186/1749-8104-5-6.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  134. Malpas SC. The rhythmicity of sympathetic nerve activity. Prog Neurobiol. 1998;56:65–96.

    CAS  PubMed  CrossRef  Google Scholar 

  135. Hainsworth R. Reflexes from the heart. Am J Physiol. 1991;71:617–58.

    CAS  Google Scholar 

  136. Longhurst JC, Tjen-A-Looi S, Fu L-W. Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion: mechanisms and reflexes. Ann N Y Acad Sci. 2001;940:74–95.

    CAS  PubMed  CrossRef  Google Scholar 

  137. Critchley HD. Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants Int. J Psychophysiol. 2009;73:88–94.

    CrossRef  Google Scholar 

  138. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2:624–31.

    PubMed  CrossRef  Google Scholar 

  139. Pope ML, Smith TW. Cortisol excretion in high and low cynically hostile men. Psychosom Med. 1991;53:386–92.

    CAS  PubMed  CrossRef  Google Scholar 

  140. Suarez EC, Shiller AD, Kuhn CM, Schanberg SM, Williams RB Jr, Zimmerman EA. The relationship between hostility and beta adrenergic receptor physiology in healthy males. Psychosom Med. 1997;59:481–7.

    CAS  PubMed  CrossRef  Google Scholar 

  141. Mattioli AV, Bonatti S, Zennaro M, Melotti R, Mattioli G. Effect of coffee consumption, lifestyle and acute life stress in the development of acute lone atrial fibrillation. J Cardiovasc Med. (Hagerstown). 2008;9:794–8.

    CrossRef  Google Scholar 

  142. James W. What is an emotion? Mind. 1884;9:188–205.

    CrossRef  Google Scholar 

  143. Cannon WB. The James-Lange theory of emotions: a critical examination and an alternative theory. Am J Psychol. 1927;39:106–24.

    CrossRef  Google Scholar 

  144. Lampert R, Joska T, Burg MM, Batsford WP, McPherson CA, Jain D. Emotional and physical precipitants of ventricular arrhythmias. Circulation. 2002;106:1800–5.

    PubMed  CrossRef  Google Scholar 

  145. Narayan SM. T-wave alternans and the susceptibility to ventricular arrhythmias. J Am Coll Cardiol. 2006;47(2):269–81. Epub 2006 Jan 4. Review.

    PubMed  CrossRef  Google Scholar 

  146. Ekman P, Levenson RW, Friesen WV. Autonomic nervous system activity distinguishes among emotions. Science. 1983;221:1208–10.

    CAS  PubMed  CrossRef  Google Scholar 

  147. Levenson RW, Ekman P, Friesen WV. Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology. 1990;27:363–84.

    CAS  PubMed  CrossRef  Google Scholar 

  148. Christie IC, Friedman BH. Autonomic specificity of discrete emotion and dimensions of affective space: a multivariate approach. Int J Psychophysiol. 2004;51:143–53.

    PubMed  CrossRef  Google Scholar 

  149. Rainville P, Bechara A, Naqvi N, Damasio AR. Basic emotions are associated with distinct patterns of cardiorespiratory activity. Int J Psychophysiol. 2006;61:5–18.

    PubMed  CrossRef  Google Scholar 

  150. McCraty R, Atkinson M, Tiller WA, Rein G, Watkins AD. The effects of emotions on short-term power spectrum analysis of heart rate variability. Am J Cardiol. 1995;76:1089–93.

    CAS  PubMed  CrossRef  Google Scholar 

  151. Lampert R, Shusterman V, Burg MM, Jee FA, Earley C, Goldberg A, McPherson CA, Batsford WP, Soufer R. Effects of psychological stress on repolarization and relationship to autonomic and haemodynamic factors. J Cardiovasc Electrophysiol. 2005;16:372–7.

    PubMed  CrossRef  Google Scholar 

  152. Bernardi L, Wdowczyk-Szulc J, Valenti C, Castoldi S, Passino C, Spadacine G, Sleight P. Effects of controlled breathing, mental activity, and mental stress with or without verbalisation on heart rate variability. J Am Coll Cardiol. 2000;35:1462–9.

    CAS  PubMed  CrossRef  Google Scholar 

  153. Stopper M, Joska T, Burg MM, Batsford WP, McPherson CA, Jain D, Lampert R. Electrophysiologic characteristics of anger–triggered arrhythmias. Heart Rhythm. 2007;4:268–73.

    PubMed  CrossRef  Google Scholar 

  154. Friedman BH, Thayer JF. Autonomic balance revisited: panic anxiety and heart rate variability. J Psychosom Res. 1998;44:133–51.

    CAS  PubMed  CrossRef  Google Scholar 

  155. Taggart P, Carruthers M, Somerville W. Some effects of emotion on the normal and abnormal heart. Curr Probl Cardiol. 1983;12:1–29.

    Google Scholar 

  156. Golbidi S, Frisbee JC, Laher I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am J Physiol Heart Circ Physiol. 2015;308:H1476–98.

    CAS  PubMed  CrossRef  Google Scholar 

  157. Thayera JF, Sternberg EM. Neural aspects of immunomodulation: focus on the vagus nerve. Brain Behav Immun. 2010;24(8):1223–8.

    CrossRef  CAS  Google Scholar 

  158. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41. https://doi.org/10.1016/j.biopsych.2008.11.029. (p737).

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  159. Huston M, Tracey KJ. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med. 2011;269(1):45–53.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  160. Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, Turner RB. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A. 2012;109(16):5995–9. https://doi.org/10.1073/pnas.1118355109. Epub 2012 Apr 2.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  161. Critchley HD, Corfield DR, Chandler MP. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation. J Physiol (Lond). 2000;523:259–70.

    CAS  CrossRef  Google Scholar 

  162. Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barberi R. Brain correlates of autonomic modulation: combining heart rate variability with fmri. NeuroImage. 2008;42:169–77.

    PubMed  CrossRef  Google Scholar 

  163. Xavier CH, Nalivaiko E, Beig MI, Menezes GB, Cara DC, Campagnole-Santos MJ, Fontes MAP. Functional asymmetry in the descending cardiovascular pathways from dorsomedial hypothalamic nucleus. Neuroscience. 2009;164:1360–8.

    CAS  PubMed  CrossRef  Google Scholar 

  164. Mujica-Parodi LR, Korgaonkar M, Ravindranath B, Greenberg T, Tomasi D, Wagshul M, Ardekani B, Guilfoyle D, Khan S, Zhong Y, Chon K, Malaspina D. Limbic dysregulation is associated with lowered heart rate variability and increased trait anxiety in healthy adults. Hum Brain Mapp. 2009;30:47–58.

    PubMed  CrossRef  Google Scholar 

  165. Oppenheimer SM, Gelb AW, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42:1727–32.

    CAS  PubMed  CrossRef  Google Scholar 

  166. Wittling W. Brain asymmetry in the control of autonomic-physiologic activity. In: Davidson RJ, Hugdahl KJ, editors. Brain asymmetry. Cambridge, MA: The MIT Press; 1995. p. 305–57.

    Google Scholar 

  167. Rozanski A, Bairey CN, Krantz DS, Friedman J, Ressler KJ, Morell M, Hilton-Chalfen S, Hestrin L, Bietendorf J, Berman DS. Mental stress and the induction of silent myocardial ischemia in patients with coronary artery disease. N Engl J Med. 1988;318:1005–12.

    CAS  PubMed  CrossRef  Google Scholar 

  168. Burg MM, Soufer JD, Kerns RD, Zaret BL. Role of behavioural and psychological factors in mental stress induced silent left ventricular dysfunction in coronary artery disease. J Am Coll Cardiol. 1993;22:440–8.

    CAS  PubMed  CrossRef  Google Scholar 

  169. Gottdiener JS, Krantz DS, Howell RH, Hecht GM, Klein J, Falconer JJ, Rozanski A. Induction of silent myocardial ischemia with mental stress testing: relation to the triggers of ischemia during daily life activities and to ischemia functional severity. J Am Coll Cardiol. 1994;24:1645–51.

    CAS  PubMed  CrossRef  Google Scholar 

  170. Goldberg AD, Becker LC, Bonsall R, Cohen JD, Ketterer MW, Kaufman PG, Krantz DS, Light KC, McMahon RP, Noreuil T, Pepine CJ, Raczynski J, Stone PH, Strother D, Taylor H, Sheps DS. Ischemic, haemodynamic and neurohumoral responses to mental and exercise stress. Circulation. 1996;94:2402–9.

    CAS  PubMed  CrossRef  Google Scholar 

  171. Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology. 1994;6:436–44.

    CrossRef  Google Scholar 

  172. Purba JS, Raadsheer FC, Hofman MA, Ravid R, Polman CH, Kamphorst W, Swaab DF. Increased number of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of patients with multiple sclerosis. Neuroendocrinology. 1995;62:62–70.

    CAS  PubMed  CrossRef  Google Scholar 

  173. Frasure-Smith N, Lespérance F, Gravel G, Masson A, Juneau M, Talajic M, Bourassa MG. Depression and health-care costs during the first year following myocardial infarction. J Psychosom Res. 2000;48(4–5):471–8.

    CAS  PubMed  CrossRef  Google Scholar 

  174. Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol. 2006;6(4):318–28. Review.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  175. Hintsa T, Puttonen S, Toivonen L, Kontula K, Swan H, Keltikangas-Jarvinen L. A history of stressful life events, prolonged mental stress and arrhythmic events in inherited long QT syndrome. Heart. 2010;96:1281–6.

    CAS  PubMed  CrossRef  Google Scholar 

  176. Dyson KS, Shoemaker JK, Hughson RL. Effect of acute sympathetic nervous system activation on flow-mediated dilation of brachial artery. Am J Physiol Heart Circ Physiol. 2006;290:H1446–53.

    CAS  PubMed  CrossRef  Google Scholar 

  177. Poitras VJ, Pyke KE. The impact of acute mental stress on vascular endothelial function: evidence, mechanisms and importance. Int J Psychophysiol. 2013;88:124–35.

    PubMed  CrossRef  Google Scholar 

  178. Hijmering ML, Stroes ES, Olijhoek J, Hutten BA, Blankestijn PJ, Rabelink TJ. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J Am Coll Cardiol. 2002;39:683–8.

    PubMed  CrossRef  Google Scholar 

  179. Eriksson M, Johansson K, Sarabi M, Lind L. Mental stress impairs endothelial vasodilatory function by a beta-adrenergic mechanism. Endothelium. 2007;14:151–6.

    CAS  PubMed  CrossRef  Google Scholar 

  180. Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. J Psychosom Res. 2002;52:1–23.

    PubMed  CrossRef  Google Scholar 

  181. Kaplan JR, Manuck SB, Clarkson TB, Lusso FM, Taub DM. Social stress and atherosclerosis in normocholesterolemic monkeys. Science. 1983;220:733–5.

    CAS  PubMed  CrossRef  Google Scholar 

  182. Manuck SB, Adams MR, McCaffery JM, Kaplan JR. Behaviorally elicited heart rate reactivity and atherosclerosis in ovariectomized cynomolgus monkeys (Macaca fascicularis). Arterioscler Thromb Vasc Biol. 2000;17:1774–9.

    CrossRef  Google Scholar 

  183. Groeschel M, Braam B. Connecting chronic and recurrent stress to vascular dysfunction: no relaxed role for the renin-angiotensin system. Am J Physiol Renal Physiol. 2011;300:F1–F10.

    CAS  PubMed  CrossRef  Google Scholar 

  184. Spieker LE, Hürlimann D, Ruschitzka F, Corti R, Enseleit F, Shaw S, Hayoz D, Deanfield JE, Lüscher TF, Noll G. Mental stress induces prolonged endothelial dysfunction via endothelin-A receptors. Circulation. 2002;105:2817–20.

    CAS  PubMed  CrossRef  Google Scholar 

  185. Seya Y, Fukuda T, Isobe K, Kawakami Y, Takekoshi K. Effect of norepinephrine on RhoA, MAP kinase, proliferation and VEGF expression in human umbilical vein endothelial cells. Eur J Pharmacol. 2006;553:54–60.

    CAS  PubMed  CrossRef  Google Scholar 

  186. Ghiadoni L, Donald AE, Cropley M, Mullen MJ, Oakley G, Taylor M, O’Connor G, Betteridge J, Klein N, Steptoe A, Deanfield JE. Mental stress induces transient endothelial dysfunction in humans. Circulation. 2000;102:2473–8.

    CAS  PubMed  CrossRef  Google Scholar 

  187. Uji M, Yoshida K, Shitani-Ishida K, Morimoto K. Sex difference in norepinephrine surge in response to psychological stress through nitric oxide in rats. Life Sci. 2007;80:860–6.

    CAS  PubMed  CrossRef  Google Scholar 

  188. Toda N, Nakanishi-Toda M. How mental stress affects endothelial function. Pflügers Arch. 2011;462:779–94.

    CAS  PubMed  CrossRef  Google Scholar 

  189. Aberg G, Ferrer P. Effects of captopril on atherosclerosis in cynomolgus monkeys. J Cardiovasc Pharmacol. 1990;15:s65–72.

    CAS  PubMed  CrossRef  Google Scholar 

  190. Keidar S, Kaplan M, Hoffman A, Aviram M. Angiotensin II stimulates macrophage-mediated oxidation of low density lipoproteins. Atherosclerosis. 1995;115:201–15.

    CAS  PubMed  CrossRef  Google Scholar 

  191. Kaplan M, Aviram M, Knopf C, Keidar S. Angiotensin II reduces macrophage cholesterol efflux: a role for the AT-1 receptor but not for the ABC1 transporter. Biochem Biophys Res Commun. 2002;290:1529–34.

    CAS  PubMed  CrossRef  Google Scholar 

  192. Keidar S, Heinrich R, Kaplan M, Hayek T, Aviram M. Angiotensin II administration to atherosclerotic mice increases macrophage uptake of oxidized LDL: a possible role for interleukin-6. Arterioscler Thromb Vasc Biol. 2001;21:1464–9.

    CAS  PubMed  CrossRef  Google Scholar 

  193. Mateo T, Abu Nabah YN, Abu Taha M, Mata M, Cerda-Nicolas M, Proudfoot AE, Stahl RA, Issekutz AC, Cortijo J, Morcillo EJ, Jose PJ, Sanz MJ. Angiotensin II-induced mononuclear leukocyte interactions with arteriolar and venular endothelium are mediated by the release of different CC chemokines. J Immunol. 2006;176:5577–86.

    CAS  PubMed  CrossRef  Google Scholar 

  194. Mateo T, Naim Abu Nabah Y, Losada M, Estelles R, Company C, Bedrina B, Cerda-Nicolas JM, Poole S, Jose PJ, Cortijo J, Morcillo EJ, Sanz MJ. A critical role for TNFalpha in the selective attachment of mononuclear leukocytes to angiotensin-II-stimulated arterioles. Blood. 2007;110:1895–902.

    CAS  PubMed  CrossRef  Google Scholar 

  195. Piqueras L, Kubes P, Alvarez A, O’Connor E, Issekutz AC, Esplugues JV, Sanz MJ. Angiotensin II induces leukocyte-endothelial cell interactions in vivo via AT1 and AT2 receptor-mediated P-selectin upregulation. Circulation. 2000;102:2118–23.

    CAS  PubMed  CrossRef  Google Scholar 

  196. Zhao Q, Ishibashi M, Hiasa K, Tan C, Takeshita A, Egashira K. Essential role of vascular endothelial growth factor in angiotensin II induced vascular inflammation and remodeling. Hypertension. 2004;44:264–470.

    CAS  PubMed  CrossRef  Google Scholar 

  197. Chan YC, Leung PS. Angiotensin II type 1 receptor-dependent nuclear factor-kappaB activation-mediated proinflammatory actions in a rat model of obstructive acute pancreatitis. J Pharmacol Exp Ther. 2007;323:10–8.

    CAS  PubMed  CrossRef  Google Scholar 

  198. Hsu YH, Chen JJ, Chang NC, Chen CH, Liu JC, Chen TH, Jeng CJ, Chao HH, Cheng TH. Role of reactive oxygen species-sensitive extracellular signal-regulated kinase pathway in angiotensin II-induced endothelin-1 gene expression in vascular endothelial cells. J Vasc Res. 2004;41:64–74.

    CAS  PubMed  CrossRef  Google Scholar 

  199. Liu HQ, Wei XB, Sun R, Cai YW, Lou HY, Wang JW, Chen AF, Zhang XM. Angiotensin II stimulates intercellular adhesion molecule-1 via an AT1 receptor/nuclear factor-kappaB pathway in brain microvascular endothelial cells. Life Sci. 2006;78:1293–8.

    CAS  PubMed  CrossRef  Google Scholar 

  200. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol. 2000;20:645–51.

    CAS  PubMed  CrossRef  Google Scholar 

  201. Ruiz-Ortega M, Lorenzo O, Ruperez M, Suzuki Y, Egido J. Angiotensin II activates nuclear transcription factor-kappaB in aorta of normal rats and in vascular smooth muscle cells of AT1 knockout mice. Nephrol Dial Transplant. 2001;16:S27–33.

    CrossRef  Google Scholar 

  202. Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol. 2003;35:881–900.

    CAS  PubMed  CrossRef  Google Scholar 

  203. Kaplan JR, Adams MR, Clarkson TB, Manuck SB, Shively CA, Williams JK. Psychosocial factors, sex differences, and atherosclerosis: lessons from animal models. Psychosom Med. 1996;58:598–611.

    CAS  PubMed  CrossRef  Google Scholar 

  204. Wassmann S, Czech T, van Eickels M, Fleming I, Bohm M, Nickenig G. Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice. Circulation. 2004;110:3062–7.

    CAS  PubMed  CrossRef  Google Scholar 

  205. Fukuda D, Sata M, Ishizaka N, Nagai R. Critical role of bone marrow angiotensin II type 1 receptor in the pathogenesis of atherosclerosis in apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol. 2008;28:90–6.

    CAS  PubMed  CrossRef  Google Scholar 

  206. Pavel J, Benicky J, Murakami Y, Sanchez-Lemus E, Saavedra JM. Peripherally administered angiotensin II AT1 receptor antagonists are anti-stress compounds in vivo. Ann N Y Acad Sci. 2008;1148:360–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  207. Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin (1–7) heptapeptide. Proc Natl Acad Sci U S A. 1988;85:4095–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  208. Benter IF, Yousif MH, Anim JT, Cojocel C, Diz DI. Angiotensin-(1–7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with l-NAME. Am J Physiol Heart Circ Physiol. 2006;290:H684–91.

    CAS  PubMed  CrossRef  Google Scholar 

  209. Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK, Katovich MJ. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). Am J Physiol Heart Circ Physiol. 2007;292:H736–42.

    CAS  PubMed  CrossRef  Google Scholar 

  210. Saladin K. Chapter 15: the autonomic nervous and visceral reflexes. In: Anatomy. New York: The McGraw-Hill; 2004.

    Google Scholar 

  211. Gilsanz P, Mayeda ER, Glymour MM, Quesenberry CP, Mungas DM, DeCarli C, Dean A, Whitmer RA. Female sex, early-onset hypertension, and risk of dementia. Neurology. 2017;89(18):1886–93.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  212. Otite FO, Liaw N, Khandelwal P, Malik AM, Romano JG, Rundek T, Sacco RL, Chaturvedi S. Increasing prevalence of vascular risk factors in patients with stroke: a call to action. Neurology. 2017;89(19):1985–94.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  213. Otite FO, Liaw N, Khandelwal P, Malik AM, Romano JG, Rundek T, Sacco RL, Chaturvedi S. Increasing prevalence of vascular risk factors in patients with stroke: a call to action. Neurology. 2017;89(19):1985–94.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  214. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209(6):1057–68. https://doi.org/10.1084/jem.20120571.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  215. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex – linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743–54. https://doi.org/10.1038/nrendo.2012.189.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  216. Borovikova LV, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458. https://doi.org/10.1038/35013070.

    CAS  CrossRef  PubMed  Google Scholar 

  217. Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7(6):871–7. https://doi.org/10.1016/j.brs.2014.07.031. Epub 2014 Jul 16.

    CrossRef  PubMed  Google Scholar 

  218. Sundman E, Olofsson PS. Neural control of the immune system. Adv Physiol Educ. 2014;38:135–9. https://doi.org/10.1152/advan.00094.2013.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  219. Gold MR, Van Veldhuisen DJ, Hauptman PJ, Borggrefe M, Kubo SH, Lieberman RA, Milasinovic G, Berman BJ, Djordjevic S, Neelagaru S, Schwartz PJ, Starling RC, Mann DL. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol. 2016;68(2):149–58. https://doi.org/10.1016/j.jacc.2016.03.525. Epub 2016 Apr 4.

    CrossRef  PubMed  Google Scholar 

  220. Hauptman PJ, Schwartz PJ, Gold MR, Borggrefe M, Van Veldhuisen DJ, Starling RC, Mann DL. Rationale and study design of the increase of vagal tone in heart failure study: INOVATE-HF. Am Heart J. 2012;163(6):954–962.e1. https://doi.org/10.1016/j.ahj.2012.03.021.

    CrossRef  PubMed  Google Scholar 

  221. Van Wagoner DR. Chronic vagal nerve stimulation for the treatment of human heart failure: progress in translating a vision into reality. Eur Heart J. 2011;32(7):788–90. https://doi.org/10.1093/eurheartj/ehq424. Epub 2010 Nov 18.

    CrossRef  PubMed  Google Scholar 

  222. De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, Gavazzi A, Sanzo A, Dennert R, Kuschyk J, Raspopovic S, Klein H, Swedberg K, Schwartz PJ, CardioFit Multicenter Trial Investigators. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32(7):847–55. https://doi.org/10.1093/eurheartj/ehq391. Epub 2010 Oct 28.

    CAS  CrossRef  PubMed  Google Scholar 

  223. Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, DiCarlo LA, Ardell JL, Rector TS, Amurthur B, KenKnight BH, Anand IS. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014;20(11):808–16. https://doi.org/10.1016/j.cardfail.2014.08.009. Epub 2014 Sept 1.

    CrossRef  PubMed  Google Scholar 

  224. Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, Klein H, Stolen C, Meyer S, Stein KM, Ramuzat A, Schubert B, Daum D, Neuzil P, Botman C, Castel MA, D’Onofrio A, Solomon SD, Wold N, Ruble SB. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the Neural Cardiac Therapy for Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J. 2015;36(7):425–33. https://doi.org/10.1093/eurheartj/ehu345. Epub 2014 Aug 31.

    CrossRef  PubMed  Google Scholar 

  225. De Ferrari G, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32:847. https://doi.org/10.1093/eurheartj/ehq391.

    CAS  CrossRef  PubMed  Google Scholar 

  226. Stavrakis S, et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol. 2015;65:867. https://doi.org/10.1016/j/jack.2014.12.026.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  227. Galbarriatu L, et al. Vagus nerve stimulation therapy for treatment-resistant epilepsy: a 15-year experience at a single institution. Clin Neurol Neurosurg. 2015;137:89. https://doi.org/10.1016/j.clineuro.2015.06.023.

    CAS  CrossRef  PubMed  Google Scholar 

  228. Bonaz B, et al. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil. 2013. https://doi.org/10.1111/nmo.12076.

    CAS  CrossRef  Google Scholar 

  229. Grimonprez A, et al. The antidepressant-like effect of vagus nerve stimulation is mediated through the locus coeruleus. J Psychiatr Res. 2015;68:1. https://doi.org/10.1016/j.psychires.2015.05.002.

    CrossRef  PubMed  Google Scholar 

  230. Premchand R, et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail. 2014;20:808. https://doi.org/10.1016/j.cardfail.2014.08.009.

    CrossRef  PubMed  Google Scholar 

  231. Jacobs H, et al. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol Aging. 2015;36:1860. https://doi.org/10.1016/j.neurobiolaging.2015.02.023.

    CrossRef  PubMed  Google Scholar 

  232. Gaul C, et al. Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia. Published online September 21, 2015. https://doi.org/10.1177/0333102415607070.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  233. Wang S, et al. Transcutaneous vagus nerve stimulation induces tidal melatonin secretion and has an antidiabetic effect in Zucker fatty rats. PLOS One. Published online April 16, 2015. https://doi.org/10.1371/journal.pone.0124195.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  234. Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29:493. https://doi.org/10.1016/j.neubiorev.2005.01.004.

    CrossRef  PubMed  Google Scholar 

  235. Jacobs HI, Riphagen JM, Razat CM, Wiese S, Sack AT. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol Aging. 2015;36(5):1860–7. https://doi.org/10.1016/j.neurobiolaging.2015.02.023. Epub 2015 Feb 28.

    CrossRef  PubMed  Google Scholar 

  236. Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: part III. Headache. 2016;56(3):479–90. https://doi.org/10.1111/head.12649. Epub 2015 Sept 14. Review.

    CrossRef  PubMed  Google Scholar 

  237. Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol. 2015;22(9):1260–8. https://doi.org/10.1111/ene.12629.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  238. Grazzi L, Egeo G, Liebler E, Padovan AM, Barbanti P. Non-invasive vagus nerve stimulation (nVNS) as symptomatic treatment of migraine in young patients: a preliminary safety study. Neurol Sci. 2017;38(Suppl 1):197–9. https://doi.org/10.1007/s10072-017-2942-5.

    CrossRef  PubMed  Google Scholar 

  239. Larkum ME, Launey T, Dityatev A, Lüscher H-R. Integration of excitatory postsynaptic potentials in dendrites of motoneurons of rat spinal cord slice cultures. J Neurophysiol. 1998;80(2):924–35.

    CAS  PubMed  CrossRef  Google Scholar 

  240. Myers B, Greenwood-Van MB. Role of anxiety in the pathophysiology of irritable bowel syndrome: importance of the amygdala. Front Neurosci. 2009;3:47. https://doi.org/10.3389/neuro.21.002.2009. eCollection 2009.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  241. Jezova D, Makatsori A, Smriga M, Morinaga Y, Duncko R. Subchronic treatment with amino acid mixture of L-lysine and L-arginine modifies neuroendocrine activation during psychosocial stress in subjects with high trait anxiety. Nutr Neurosci. 2005;8(3):155–60.

    PubMed  CrossRef  CAS  Google Scholar 

  242. Sherwood A, Hinderliter AL, Watkins LL, Waugh RA, Blumenthal JA. Impaired endothelial function in coronary heart disease patients with depressive symptomatology. J Am Coll Cardiol. 2005;46(4):656–9.

    PubMed  CrossRef  Google Scholar 

  243. Hatcher S, Arroll B. Newer antidepressants for the treatment of depression in adults. BMJ. 2012;344:d8300. https://doi.org/10.1136/bmj.d8300.

    CrossRef  PubMed  Google Scholar 

  244. Jolly K, Langman MJS. Psychotropic medication: curing illness or creating problems? Heart. 2009;95:1893–4. https://doi.org/10.1136/hrt.2009.179127.

    CrossRef  PubMed  Google Scholar 

  245. Olfson M, Marcus SC. National patterns in antidepressant medication treatment. Arch Gen Psychiatry. 2009;66:848–56. https://doi.org/10.1001/archgenpsychiatry.2009.81.

    CrossRef  PubMed  Google Scholar 

  246. Lockhart P, Guthrie B. Trends in primary care antidepressant prescribing 1995–2007: a longitudinal population database analysis. Br J Gen Pract. 2011;61:e565–72. https://doi.org/10.3399/bjgp11X593848.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  247. Stephenson CP, Karanges E, McGregor IS. Trends in the utilisation of psychotropic medications in Australia from 2000 to 2011. Aust N Z J Psychiatry. 2013;47:74–87. https://doi.org/10.1177/0004867412466595.

    CrossRef  PubMed  Google Scholar 

  248. Cohn JN, Tognoni G, for the Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667–75.

    CAS  PubMed  CrossRef  Google Scholar 

  249. Lachmann J, Banerjee A, Davoudi M, Aragon D, Talerja A, Sonnenblick EH, Shirani J, LeJemtel TH. Withdrawal of angiotensin receptor blocker (ARB) from triple neurohormonal therapy partially restores sympathetic activity in patients with chronic congestive heart failure. Am Heart Assoc. Scientific Sessions, 2001. Circulation. 2001;104:e9051–e9052.

    Google Scholar 

  250. US Food and Drug Administration. FDA Drug Safety Communication. FDA Drug Safety Communication: abnormal heart rhythms associated with high doses of Celexa (citalopram hydrobromide). 2011. www.fda.gov/Drugs/DrugSafety/ucm269086.htm

  251. Castro VM, Clements CC, Murphy SN, et al. QT interval and antidepressant use: a cross sectional study of electronic health records. BMJ. 2013;346:f288. https://doi.org/10.1136/bmj.f288.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  252. Girardin FR, Gex-Fabry M, Berney P, Shah D, Gaspoz JM, Dayer P. Drug-induced long QT in adult psychiatric inpatients: the 5-year cross-sectional ECG screening outcome in psychiatry study. Am J Psychiatry. 2013;170:1468–76. https://doi.org/10.1176/appi.ajp.2013.12060860.

    CrossRef  PubMed  Google Scholar 

  253. El-Sherif N, Turitto G. Torsade de pointes. Curr Opin Cardiol. 2003;18:6–13. https://doi.org/10.1097/00001573-200301000-00002.

    CrossRef  PubMed  Google Scholar 

  254. Coupland C, Hill T, Morriss R, Moore M, Arthur A, Hippisley-Cox J. Antidepressant use and risk of cardiovascular outcomes in people aged 20 to 64: cohort study using primary care database. BMJ. 2016;352:i1350. https://doi.org/10.1136/bmj.i1350.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  255. Cadegiani FA, Kater CE. Adrenal fatigue does not exist: a systematic review. BMC Endocr Disord. 2016;16(1):48. https://doi.org/10.1186/s12902-016-0128-4.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  256. Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, Blackett KN, Sitthi-amorn C, Sato H, Yusuf S, INTERHEART investigators. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):953–62.

    PubMed  CrossRef  Google Scholar 

  257. Landsbergis PA, Schnall PL, Pickering TG, et al. Life-course exposure to job strain and ambulatory blood pressure in men. Am J Epidemiol. 2003;157:998–1006.

    PubMed  CrossRef  Google Scholar 

  258. Vrijkotte TG, van Doornen LJ, de Geus EJ. Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension. 2000;35:880–6.

    CAS  PubMed  CrossRef  Google Scholar 

  259. Herd JA. Cardiovascular response to stress. Physiol Rev. 1991;71:305–30.

    CAS  PubMed  CrossRef  Google Scholar 

  260. Malik M, The Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.

    CrossRef  Google Scholar 

  261. Malik M, The Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    CrossRef  Google Scholar 

  262. Gawaz M, Langer H, May AE. Platelets in inflammation atherogenesis. J Clin Invest. 2005;115:3378–84.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  263. von Känel R, Mills PJ, Fainman C, Dimsdale JE. Effects of psychological stress and psychiatric disorders on blood coagulation and fibrinolysis: a biobehavioral pathway to coronary artery disease? Psychosom Med. 2001;63(4):531–44.

    Google Scholar 

  264. Kessler R, et al. Posttraumatic stress disorders in a national comorbidity survey. Arch Gen Psychiatry. 1995;52:1048–60.

    CAS  PubMed  CrossRef  Google Scholar 

  265. Kubzanski LD, et al. Prospective study of the posttraumatic stress disorder symptom in coronary artery disease and normative aging study. Arch Gen Psychiatry. 2007;64:109–16.

    CrossRef  Google Scholar 

  266. Mewisse ML, et al. Cortisol and posttraumatic stress disorder in adults: systemic review of metaanalysis. Br J Psychiatry. 2007;191:387–92.

    CrossRef  Google Scholar 

  267. Sack M, et al. Low respiratory sinus arrhythmia and prolonged psychophysiological arousal in posttraumatic disorder: heart rate dynamics and individual differences in arousal regulation. Biol Psychiatry. 2004:55, 284–290.

    PubMed  CrossRef  Google Scholar 

  268. Tracy KD. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117:289–96.

    CrossRef  CAS  Google Scholar 

  269. Bhaskar L, Kharya C, Deepak KK, Kochupillai V. Assessment of cardiac autonomic tone following Long Sudarshan Kriya yoga in art of living practitioners. J Altern Complement Med. 2017;23(9):705–12. https://doi.org/10.1089/acm.2016.0391. Epub 2017 Jul 10.

    CrossRef  PubMed  Google Scholar 

  270. Gothe NP, Keswani RK, McAuley E. Yoga practice improves executive function by attenuating stress levels. Biol Psychol. 2016;121(Pt A):109–16. https://doi.org/10.1016/j.biopsycho.2016.10.010. Epub 2016 Oct 26.

    CrossRef  PubMed  Google Scholar 

  271. Jones SM, Guthrie KA, Reed SD, Landis CA, Sternfeld B, LaCroix AZ, Dunn A, Burr RL, Newton KM. A yoga & exercise randomized controlled trial for vasomotor symptoms: effects on heart rate variability. Complement Ther Med. 2016;26:66–71. https://doi.org/10.1016/j.ctim.2016.03.001. Epub 2016 Mar 4.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  272. Doufesh H, Ibrahim F, Ismail NA, Wan Ahmad WA. Effect of Muslim prayer (Salat) on α electroencephalography and its relationship with autonomic nervous system activity. J Altern Complement Med. 2014;20(7):558–62. https://doi.org/10.1089/acm.2013.0426. Epub 2014 May 14.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  273. Tyagi A, Cohen M. Yoga and hypertension: a systematic review. Altern Ther Health Med. 2014;20(2):32–59.

    PubMed  Google Scholar 

  274. Berntson GG, Norman GJ, Hawkley LC, Cacioppo JT. Spirituality and autonomic cardiac control. Ann Behav Med. 2008;35(2):198–208. https://doi.org/10.1007/s12160-008-9027-x. Epub 2008 Mar 21.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

DePace, N.L., Colombo, J. (2019). Psychosocial Stress Reduction (Prong-6). In: Clinical Autonomic and Mitochondrial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-17016-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17016-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17015-8

  • Online ISBN: 978-3-030-17016-5

  • eBook Packages: MedicineMedicine (R0)