Advertisement

Exercise (Prong-5)

  • Nicholas L. DePace
  • Joseph Colombo
Chapter
  • 336 Downloads

Abstract

“Exercise” covers a range of activities. However, the essential component is an “active lifestyle.” “Exercise” is not a bad word! It does not have to be drudgery. Exercise should reflect the lifestyles of people before automobiles, elevators, television remotes, and cell phones. It can be a single (preferably daily) acute bout of physical exertion or muscular activity that expends energy above one’s basal or resting level. Exercise can also be a daylong habit of activity, included but not limited to household chores, taking the stairs, shopping, gardening, walking, and playing with children. The physiologic and psychologic benefits of exercise are numerous.

The lack of exercise may place a patient on an accelerated track to autonomic neuropathy, accelerating the aging effect, keeping moving, and helping to keep joints, muscles, and nerves healthy. The Rostral Ventrolateral Medulla (RVLM) is a brain stem nucleus that receives a wide variety of inputs, including cardiovascular and exercise-related inputs from both central and peripheral sources, regulating sympathetic control over baroreceptor reflex and thereby blood pressure and under abnormal conditions, hypertension. Directly and indirectly, through the nervous system, exercise affects sleep, cognition, and memory; immune function; cardiovascular and endothelial function; GI function; endocrine and exocrine function; in fact, all systems of the body are positively impacted by appropriate levels of exercise. Exercise may be the most powerful antioxidant available. Further, it helps to elevate mood and relieve depression and, at the same time, relieve stress and potentially anxiety. Always consult your physician before starting an exercise regimen.

Keywords

Active lifestyle Antioxidant Anxiety Blood pressure Depression Endothelial function Exercise Immune function Nervous system Rostral ventrolateral medulla 

References

  1. 1.
    Plowman SA, Smith DL. Exercise physiology: for health, fitness, and performance. Philadelphia: Lippincott, Williams and Wilkins; 2014.Google Scholar
  2. 2.
    Cardinali DP. Autonomic nervous system: basic and clinical aspects. Cham: Springer International Publishing AG; 2018.CrossRefGoogle Scholar
  3. 3.
    Potteiger JA. ACSM’s introduction to exercise science. Philadelphia: Lippincott, Williams and Wilkins; 2014.Google Scholar
  4. 4.
    Williams KA, Patel H. Healthy plant-based diet: what does it really mean? J Am Coll Cardiol. 2017;70(4):423–5.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Colombo J, Arora RR, DePace NL, Vinik AI. Clinical autonomic dysfunction: measurement, indications, therapies, and outcomes. New York: Springer Science + Business Media; 2014.Google Scholar
  6. 6.
    Mischel NA, Subramanian M, Dombrowski MD, Llewellyn-Smith IJ, Mueller PJ. Inactivity-related neuroplasticity in brainstem control of sympathetic outflow: unraveling underlying molecular, cellular, and anatomical mechanisms. Am J Physiol Heart Circ Physiol. 2015;309:H235–43.  https://doi.org/10.1152/ajpheart.00929.2014. Epub 2015 May 8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mueller PJ. Physical (in)activity-dependent alterations at the rostral ventrolateral medulla: influence on sympathetic nervous system regulation. Am J Physiol Regul Integr Comp Physiol. 2010;298:R1468–74.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lott J. The mother of all antioxidants: how health gurus are misleading you and what you should know about glutathione. Archangel Ink; 2014.Google Scholar
  9. 9.
    Fisher JP, Young CN, Fadel PJ. Central sympathetic overactivity: maladies and mechanisms. Auton Neurosci. 2009;148:5–15.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Go AS, Mozaffarian D, Roger VL, et al. Executive summary: heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation. 2013;127:143–52.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lindberg FA. The GI Mediterranean diet: the glycemic index-based life-saving diet of the Greeks. Berkley: Ulysses Press; 2009.Google Scholar
  12. 12.
    Carnethon MR, Prineas RJ, Temprosa M, Zhang ZM, Uwaifo G, Molitch ME. The association among autonomic nervous system function, incident diabetes, and intervention arm in the Diabetes Prevention Program. Diabetes Care. 2006;29:914–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Maser RE, Lenhard MJ. An overview of the effect of weight loss on cardiovascular autonomic function. Curr Diabetes Rev. 2007;3:204–11.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Voulgari C, Pagoni S, Vinik A, Poirier P. Exercise improves cardiac autonomic function in obesity and diabetes. Metabolism. 2013;62:609–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Matsuo M, Kaneko T. The chemistry of reactive oxygen species and related free radicals. In: Radak Z, editor. Free radicals in exercise and aging. Leeds: Human Kinetics; 2000. p. 1–34.Google Scholar
  17. 17.
    Sudano I, Spreker LE, Hermam F, Flammer A, Corti R, Noli G, et al. Protection of endothelial function targets for nutritional and pharmacologic intervention. J Cardiovasc Pharmacol. 2006;47(suppl 2):S136–50.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243–76.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zembroń-Łacny A, Szyszka K, Hübner-Woźniak E. The pro-antioxidant-oxidant balance in the blood of middle – distance runners. Biol Sport. 1998;16:51–9.Google Scholar
  20. 20.
    Alessio HM, Hagerman AE, Fulkerson BK, Ambrose J, Rice RE, et al. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32(9):1576–81.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Goto C, Higashi Y, Kimura M, Noma K, Hara K, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108(5):530–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Knez WL, Jenkins DG, Coombes JS. Oxidative stress in half and full ironman triathletes. Med Sci Sports Exerc. 2007;39(2):283–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Pilch W, Szygula Z, Tyka AK, Palka T, Tyka A, Cison T, Pilch P, Teleglow A. Disturbances in pro-antioxidant-oxidant balance after passive body overheating and after exercise in elevated ambient temperatures in athletes and untrained men. PLoS One. 2014;9(1):e85320.  https://doi.org/10.1371/journal.pone.0085320. eCollection 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Matsuo M, Kaneko T. The chemistry of reactive oxygen species and related free radicals. In: Radak Z, editor. Free radicals in exercise and aging. Leeds: Human Kinetics; 2000. p. 1–34.Google Scholar
  25. 25.
    Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90. PMID: 17277604.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Paik IY, Jeong MH, Jin HE, Kim YI, Suh AR, et al. Fluid replacement following dehydration reduces oxidative stress during recovery. Biochem Biophys Res Commun. 2009;383(1):103–7.  https://doi.org/10.1016/j.bbrc.2009.03.135.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sengupta P. Health impacts of yoga and pranayama: a state-of-the-art review. Int J Prev Med. 2012;3(7):444–58.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Calvert JW, Lefer DJ. Role of β-adrenergic receptors and nitric oxide signaling in exercise-mediated cardioprotection. Physology. 2013;28(4):216–24.  https://doi.org/10.1152/physiol.00011.2013.CrossRefGoogle Scholar
  29. 29.
    Traub O, Berk BC. Laminar shear stress: mechanisms by which endothelial cells transducer an atheroprotective force. Arteroscler Thromb Vasc Biol. 1998;18:677–85.CrossRefGoogle Scholar
  30. 30.
    Garcia-Cardenia G, Fan R, Shah V, Sorrentino R, Cinno G, Papapetriopoulas A, Sessa WC. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 1998;392:821–4.CrossRefGoogle Scholar
  31. 31.
    Fleming I, Busse R. Signal transduction of eNOS activation. Cardiovasc Res. 1999;43:532–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Russell KS, Haynes MP, Caulin-Glaser T, Rosneck J, Sessa WC, Bender JR. Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells. Effects on calcium sensitivity and NO release. J Biol Chem. 2000;275:5026–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Hudicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev. 1992;72:369–417.CrossRefGoogle Scholar
  34. 34.
    Lee JS, Feldman AM. Gene therapy for therapeutic myocardial angiogenesis a promising synthesis of two emerging technologies. Nat Med. 1998;4:739–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Dijhorst-Oci LT, Stores ES, Koomans HA, Rabelink TJ. Acute simultaneous stimulation of nitric oxide and oxygen radicals by angiotensin II in humans in vivo. J Cardiovasc Pharmacol. 1999;33:420–4.CrossRefGoogle Scholar
  36. 36.
    Romero JC, Reckelhoff JE. Role of angiotensin and oxidative stress in essential hypertension. Hypertension. 1999;34:943–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Sowers JR. Hypertension angiotensin II and oxidative stress. N Engl J Med. 2002;346:1999–2001.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Martin JE, Dubbert PM, Cushman WC. Controlled trial of aerobic exercise in hypertension. Circulation. 1990;81:1560–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Wood PD, Statanick ML, Williams PT, Haskell WL. The effects on plasma lipoproteins of a prudent weight-reducing diet with or without exercise in overweight men and women. N Engl J Med. 1991;325:461–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Arakawa K. Antihypertensive mechanism of exercise. J Hypertens. 1993;11:223–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Paffenbarger RS, Hyde RT, Wing AL, et al. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med. 1993;328:538–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Higashi Y, Yoshizumi M. Exercise and endothelial function: role of endothelium derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacol Ther. 2004;102:87–96.PubMedCrossRefGoogle Scholar
  44. 44.
    Griffin KL, Laughlin MH, Parker JL. Exercise training improves endothelium-mediated vasorelaxation after chronic coronary occlusion. J Appl Physiol. 1999;87:1948–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Mancini GB, Henry GC, Macaya C, O’Neil BJ, Pucilo AL, Carere RG, et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing Endothelial Dysfunction) study. Circulation. 1996;94:258–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Ghadoni L, Virdis A, Magagna A, Taddei S, Salvetti A. Effects of the angiotensin II type 1 receptor blocker candesartan on endothelial function in patients with essential hypertension. Hypertension. 2000;35:501–6.CrossRefGoogle Scholar
  47. 47.
    The long term intervention with Pravastatin in ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of mitral cholesterol levels. N Engl J Med. 1998;339:1349–57.CrossRefGoogle Scholar
  48. 48.
    Fryer LG, Hajduch E, Rencurel F, Salt IS, Hundal HS, Hardie DG, et al. Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes. 2000;49:1978–85.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Abraham P, Saumet JL, Chevalier JM. External iliac artery endofibrosis in athletes. Sports Med. 1997;24:221–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Bergholm R, Makimattila S, Valkomen M, Liu ML, Lahdempera S, Taskinen MR, Sovijarvi A, Malmberg P, Yki-Jarvinen H. Intense physical training decreases circulating antioxidants and endothelium-dependent vasodilation in vivo. Atherosclerosis. 1999;145:341–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Nichols S, Gleadall-Siddall DO, Antony R, Clark AL, Cleland JGF, Carroll S, Ingle L. Estimated peak functional capacity: an accurate method for assessing change in peak oxygen consumption after cardiac rehabilitation? Clin Physiol Funct Imaging. 2017.  https://doi.org/10.1111/cpf.12468.PubMedCrossRefGoogle Scholar
  52. 52.
    Palermo P, Corrà U. Exercise prescriptions for training and rehabilitation in patients with heart and lung disease. Ann Am Thorac Soc. 2017;14(Supplement_1):S59–66.  https://doi.org/10.1513/AnnalsATS.201702-160FR.CrossRefPubMedGoogle Scholar
  53. 53.
    Abdul-Jawad Altisent O, Puri R, Regueiro A, Chamandi C, Rodriguez-Gabella T, Del Trigo M, Campelo-Parada F, Couture T, Marsal JR, Côté M, Paradis JM, DeLarochellière R, Doyle D, Mohammadi S, Dumont E, Rodés-Cabau J. Predictors and association with clinical outcomes of the changes in exercise capacity after transcatheter aortic valve replacement. Circulation. 2017;136(7):632–43.  https://doi.org/10.1161/CIRCULATIONAHA.116.026349. Epub 2017 Jun 6.CrossRefPubMedGoogle Scholar
  54. 54.
    Talwar A, Sahni S, Verma S, Khan SZ, Dhar S, Kohn N. Exercise tolerance improves after pulmonary rehabilitation in pulmonary hypertension patients. J Exerc Rehabil. 2017;13(2):214–7.  https://doi.org/10.12965/jer.1732872.436. eCollection 2017 Apr. PMID: 28503536.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cheng ST, Wu YK, Yang MC, Huang CY, Huang HC, Chu WH, Lan CC. Pulmonary rehabilitation improves heart rate variability at peak exercise, exercise capacity and health-related quality of life in chronic obstructive pulmonary disease. Heart Lung. 2014;43(3):249–55.  https://doi.org/10.1016/j.hrtlng.2014.03.002. Epub 2014 Mar 29. PMID: 24685394.CrossRefPubMedGoogle Scholar
  56. 56.
    Karssemeijer EGA, Aaronson JA, Bossers WJ, Smits T, Olde Rikkert MGM, Kessels RPC. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: a meta-analysis. Ageing Res Rev. 2017. pii: S1568-1637(17)30114-9.  https://doi.org/10.1016/j.arr.2017.09.003. [Epub ahead of print] Review.PubMedCrossRefGoogle Scholar
  57. 57.
    Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh-Eteghad S. Physical activity and beta-amyloid pathology in Alzheimer’s disease: a sound mind in a sound body. EXCLI J. 2017;16:959–72.  https://doi.org/10.17179/excli2017-475. eCollection 2017. Review. PMID: 28900376.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Cheng ST. Cognitive reserve and the prevention of dementia: the role of physical and cognitive activities. Curr Psychiatry Rep. 2016;18(9):85.  https://doi.org/10.1007/s11920-016-0721-2. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009;418(2):261–75.  https://doi.org/10.1042/BJ20082055. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Segev D, Hellerstein D, Dunsky A. Physical activity – does it really increase bone density in postmenopausal women? A review of articles published between 2001–2016. Curr Aging Sci. 2017.  https://doi.org/10.2174/1874609810666170918170744.PubMedCrossRefGoogle Scholar
  61. 61.
    Swedish Council on Health Technology Assessment. Osteoporosis – prevention, diagnosis and treatment: a systematic review [Internet]. Stockholm: Swedish Council on Health Technology Assessment (SBU); 2003.Google Scholar
  62. 62.
    Senderovich H, Tang H, Belmont S. The role of exercises in osteoporotic fracture prevention and current care gaps. Where are we now? Recent updates. Rambam Maimonides Med J. 2017;8(3).  https://doi.org/10.5041/RMMJ.10308. Review.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Loeser RF, Beavers DP, Bay-Jensen AC, Karsdal MA, Nicklas BJ, Guermazi A, Hunter DJ, Messier SP. Effects of dietary weight loss with and without exercise on interstitial matrix turnover and tissue inflammation biomarkers in adults with knee osteoarthritis: the Intensive Diet and Exercise for Arthritis trial (IDEA). Osteoarthr Cartil. 2017. pii: S1063-4584(17)31107-X.  https://doi.org/10.1016/j.joca.2017.07.015.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Feldman BM. Exercise as medicine for children with arthritis. J Rheumatol. 2017;44(8):1103–5.  https://doi.org/10.3899/jrheum.170461.CrossRefPubMedGoogle Scholar
  65. 65.
    Gordon BR, McDowell CP, Lyons M, Herring MP. The effects of resistance exercise training on anxiety: a meta-analysis and meta-regression analysis of randomized controlled trials. Sports Med. 2017.  https://doi.org/10.1007/s40279-017-0769-0. [Epub ahead of print] Review.PubMedCrossRefGoogle Scholar
  66. 66.
    Yeh HP, Stone JA, Churchill SM, Brymer E, Davids K. Physical and emotional benefits of different exercise environments designed for treadmill running. Int J Environ Res Public Health. 2017;14(7). pii: E752.  https://doi.org/10.3390/ijerph14070752.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Awick EA, Ehlers DK, Aguiñaga S, Daugherty AM, Kramer AF, McAuley E. Effects of a randomized exercise trial on physical activity, psychological distress and quality of life in older adults. Gen Hosp Psychiatry. 2017. pii: S0163-8343(17)30101-9.  https://doi.org/10.1016/j.genhosppsych.2017.06.005. [Epub ahead of print].PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hearing CM, Chang WC, Szuhany KL, Deckersbach T, Nierenberg AA, Sylvia LG. Physical Exercise for treatment of mood disorders: a critical review. Curr Behav Neurosci Rep. 2016;3(4):350–9.  https://doi.org/10.1007/s40473-016-0089-y. Epub 2016 Oct 14.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kovacevic A, Mavros Y, Heisz JJ, Fiatarone Singh MA. The effect of resistance exercise on sleep: a systematic review of randomized controlled trials. Sleep Med Rev. 2017. pii: S1087-0792(16)30152-6.  https://doi.org/10.1016/j.smrv.2017.07.002. [Epub ahead of print] Review.PubMedCrossRefGoogle Scholar
  70. 70.
    S Delevatti R, Schuch FB, Kanitz AC, Alberton CL, Marson EC, Lisboa SC, Pinho CDF, Bregagnol LP, Becker MT, Kruel LFM. Quality of life and sleep quality are similarly improved after aquatic or dry-land aerobic training in patients with type 2 diabetes: a randomized clinical trial. J Sci Med Sport. 2017. pii: S1440-2440(17)31029-0.  https://doi.org/10.1016/j.jsams.2017.08.024. [Epub ahead of print].PubMedCrossRefGoogle Scholar
  71. 71.
    Koo P, Gjelsvik A, Choudhary G, Wu WC, Wang W, McCool FD, Eaton CB. Prospective association of physical activity and heart failure hospitalizations among black adults with normal ejection fraction: The Jackson Heart Study. J Am Heart Assoc. 2017;6(9). pii: e006107.  https://doi.org/10.1161/JAHA.117.006107.
  72. 72.
    Torell MF, Strömsöe A, Zagerholm E, Herlitz J, Claesson A, Svensson L, Börjesson M. Higher survival rates in exercise-related out-of-hospital cardiac arrests, compared to non-exercise-related – a study from the Swedish Register of Cardiopulmonary Resuscitation. Eur J Prev Cardiol. 2017;1:2047487317729251.  https://doi.org/10.1177/2047487317729251.CrossRefGoogle Scholar
  73. 73.
    Maessen MF, Eijsvogels TM, Stevens G, van Dijk AP, Hopman MT. Benefits of lifelong exercise training on left ventricular function after myocardial infarction. Eur J Prev Cardiol. 2017;1:2047487317728765.  https://doi.org/10.1177/2047487317728765.CrossRefGoogle Scholar
  74. 74.
    Campkin LM, Boyd JM, Campbell DJT. Coronary artery disease patient perspectives on exercise participation. J Cardiopulm Rehabil Prev. 2017;37(5):305–14.  https://doi.org/10.1097/HCR.0000000000000195.CrossRefPubMedGoogle Scholar
  75. 75.
    Nichols S, Gleadall-Siddall DO, Antony R, Clark AL, Cleland JGF, Carroll S, Ingle L. Estimated peak functional capacity: an accurate method for assessing change in peak oxygen consumption after cardiac rehabilitation? Clin Physiol Funct Imaging. 2017.  https://doi.org/10.1111/cpf.12468.PubMedCrossRefGoogle Scholar
  76. 76.
    Piña IL, Apstein CS, Balady GJ, Belardinelli R, Chaitman BR, Duscha BD, Fletcher BJ, Fleg JL, Myers JN, Sullivan MJ, American Heart Association Committee on exercise, rehabilitation, and prevention. Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation. 2003;107(8):1210–25. Review.PubMedCrossRefGoogle Scholar
  77. 77.
    Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation. 2003;107(1):e2–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Tinlin L, Fini N, Bernhardt J, Lewis LK, Olds T, English C. Best practice guidelines for the measurement of physical activity levels in stroke survivors: a secondary analysis of an observational study. Int J Rehabil Res. 2017.  https://doi.org/10.1097/MRR.0000000000000253.PubMedCrossRefGoogle Scholar
  79. 79.
    Oberlin LE, Waiwood AM, Cumming TB, Marsland AL, Bernhardt J, Erickson KI.Effects of physical activity on poststroke cognitive function: a meta-analysis of randomized controlled trials. Stroke. 2017. pii: STROKEAHA.117.017319.  https://doi.org/10.1161/STROKEAHA.117.017319.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yfanti C, Tsiokanos A, Fatouros IG, Theodorou AA, Deli CK, Koutedakis Y, Jamurtas AZ. Chronic eccentric exercise and antioxidant supplementation: effects on lipid profile and insulin sensitivity. J Sports Sci Med. 2017;16(3):375–82. eCollection 2017 Sept.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Mendes R, Sousa N, Reis VM, Themudo-Barata JL. Implementing low-cost, community-based exercise programs for middle-aged and older patients with type 2 diabetes: what are the benefits for glycemic control and cardiovascular risk? Int J Environ Res Public Health. 2017;14(9). pii: E1057.  https://doi.org/10.3390/ijerph14091057. PMID: 28902144.PubMedCentralCrossRefGoogle Scholar
  82. 82.
    Miele EM, Headley SAE, Germain M, Joubert J, Herrick S, Milch C, Evans E, Cornelius A, Brewer B, Taylor B, Wood RJ. High-density lipoprotein particle pattern and overall lipid responses to a short-term moderate-intensity aerobic exercise training intervention in patients with chronic kidney disease. Clin Kidney J. 2017;10(4):524–31.  https://doi.org/10.1093/ckj/sfx006. Epub 2017 Mar 27. PMID: 28852492.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Villafaina S, Collado-Mateo D, Fuentes JP, Merellano-Navarro E, Gusi N. Physical exercise improves heart rate variability in patients with type 2 diabetes: a systematic review. Curr Diab Rep. 2017;17(11):110.  https://doi.org/10.1007/s11892-017-0941-9. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ostman C, Smart NA, Morcos D, Duller A, Ridley W, Jewiss D. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol. 2017;16(1):110.  https://doi.org/10.1186/s12933-017-0590-y. PMID: 28854979.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Myers J, Atwood JE, Froelicher V. Active lifestyle and diabetes. Circulation. 2003;107(19):2392–4.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Brown JC, Zemel BS, Troxel AB, Rickels MR, Damjanov N, Ky B, Rhim AD, Rustgi AK, Courneya KS, Schmitz KH. Dose-response effects of aerobic exercise on body composition among colon cancer survivors: a randomised controlled trial. Br J Cancer. 2017.  https://doi.org/10.1038/bjc.2017.339.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Brown JC, Troxel AB, Ky B, Damjanov N, Zemel BS, Rickels MR, Rhim AD, Rustgi AK, Courneya KS, Schmitz KH. Dose-response effects of aerobic exercise among colon cancer survivors: a randomized phase II trial. Clin Colorectal Cancer. 2017. pii: S1533-0028(16)30168-2.  https://doi.org/10.1016/j.clcc.2017.06.001.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Hartman SJ, Nelson SH, Myers E, Natarajan L, Sears DD, Palmer BW, Weiner LS, Parker BA, Patterson RE. Randomized controlled trial of increasing physical activity on objectively measured and self-reported cognitive functioning among breast cancer survivors: the memory & motion study. Cancer. 2017.  https://doi.org/10.1002/cncr.30987.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Livsey L, Lewis K. Breast cancer survivors’ perceptions of participating in a supervised exercise intervention: an exploratory review of the literature. Women Health. 2017.  https://doi.org/10.1080/03630242.2017.1372844.CrossRefGoogle Scholar
  90. 90.
    Vashistha V, Singh B, Kaur S, Prokop LJ, Kaushik D. The effects of exercise on fatigue, quality of life, and psychological function for men with prostate cancer: systematic review and meta-analyses. Eur Urol Focus. 2016;2(3):284–95.  https://doi.org/10.1016/j.euf.2016.02.011. Epub 2016 Mar 9. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Daly RM. Exercise and nutritional approaches to prevent frail bones, falls and fractures: an update. Climacteric. 2017;20(2):119–24.  https://doi.org/10.1080/13697137.2017.1286890. Epub 2017 Feb 8. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Greenway KG, Walkley JW, Rich PA. Impact exercise and bone density in premenopausal women with below average bone density for age. Eur J Appl Physiol. 2015;115(11):2457–69.  https://doi.org/10.1007/s00421-015-3225-6. Epub 2015 Aug 1.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Fuchs RK, Kersh ME, Carballido-Gamio J, Thompson WR, Keyak JH, Warden SJ. Physical activity for strengthening fracture prone regions of the proximal femur. Curr Osteoporos Rep. 2017;15(1):43–52.  https://doi.org/10.1007/s11914-017-0343-6. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Turner JE, Brum PC. Does regular exercise counter T cell immunosenescence reducing the risk of developing cancer and promoting successful treatment of malignancies? Oxidative Med Cell Longev. 2017;2017:4234765.  https://doi.org/10.1155/2017/4234765. Epub 2017 Jul 2. Review.CrossRefGoogle Scholar
  95. 95.
    Hojman P. Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans. 2017;45(4):905–11.  https://doi.org/10.1042/BST20160466. Epub 2017 Jul 3. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Gustafson MP, DiCostanzo AC, Wheatley CM, Kim CH, Bornschlegl S, Gastineau DA, Johnson BD, Dietz AB. A systems biology approach to investigating the influence of exercise and fitness on the composition of leukocytes in peripheral blood. J Immunother Cancer. 2017;5:30.  https://doi.org/10.1186/s40425-017-0231-8.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Ackland GL, Minto G, Clark M, Whittle J, Stephens RCM, Owen T, Prabhu P, Del Arroyo AG. Autonomic regulation of systemic inflammation in humans: a multi-center, blinded observational cohort study. Brain Behav Immun. 2017. pii: S0889-1591(17)30398-7.  https://doi.org/10.1016/j.bbi.2017.08.010.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Jafariyan S, Monazzami A, Nikosefat Z, Nobahar M, Yari K. Inflammatory and immune responses to a 3-day period of downhill running in active females. Cell Mol Biol (Noisy-le-Grand). 2017;63(7):76–83.  https://doi.org/10.14715/cmb/2017.63.7.13.CrossRefGoogle Scholar
  99. 99.
    Bartlett DB, Shepherd SO, Wilson OJ, Adlan AM, Wagenmakers AJM, Shaw CS, Lord JM. Neutrophil and monocyte bactericidal responses to 10 weeks of low-volume high-intensity interval or moderate-intensity continuous training in sedentary adults. Oxidative Med Cell Longev. 2017;2017:8148742.  https://doi.org/10.1155/2017/8148742. Epub 2017 Jun 1.CrossRefGoogle Scholar
  100. 100.
    Clark LV, Buckland M, Murphy G, Taylor N, Vleck V, Mein C, Wozniak E, Smuk M, White PD. Cytokine responses to exercise and activity in patients with chronic fatigue syndrome: case control study. Clin Exp Immunol. 2017.  https://doi.org/10.1111/cei.13023.CrossRefGoogle Scholar
  101. 101.
    Monteiro Junior RS, de Tarso Maciel-Pinheiro P, da Matta M, Portugal E, da Silva Figueiredo LF, Terra R, Carneiro LSF, Rodrigues VD, Nascimento OJM, Deslandes AC, Laks J. Effect of exercise on inflammatory profile of older persons: systematic review and meta-analyses. J Phys Act Health. 2017;3:1–24.  https://doi.org/10.1123/jpah.2016-0735.CrossRefGoogle Scholar
  102. 102.
    Zimmer P, Schenk A, Kieven M, Holthaus M, Lehmann J, Lövenich L, Bloch W. Exercise induced alterations in NK-cell cytotoxicity – methodological issues and future perspectives. Exerc Immunol Rev. 2017;23:66–81.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H, Berrington de Gonzalez A, Hartge P, Adami HO, Blair CK, Borch KB, Boyd E, Check DP, Fournier A, Freedman ND, Gunter M, Johannson M, Khaw KT, Linet MS, Orsini N, Park Y, Riboli E, Robien K, Schairer C, Sesso H, Spriggs M, Van Dusen R, Wolk A, Matthews CE, Patel AV. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016;176(6):816–25.  https://doi.org/10.1001/jamainternmed.2016.1548.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    O’Donovan G, Lee IM, Hamer M, Stamatakis E. Association of “weekend warrior” and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer mortality. JAMA Intern Med. 2017;177(3):335–42.  https://doi.org/10.1001/jamainternmed.2016.8014.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Song M, Giovannucci E. Preventable incidence and mortality of carcinoma associated with lifestyle factors among white adults in the United States. JAMA Oncol. 2016;2(9):1154–61.  https://doi.org/10.1001/jamaoncol.2016.0843.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Manson JE, Hu FB, Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Speizer FE, Hennekens CH. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med. 1999;341(9):650–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Hu FB, Sigal RJ, Rich-Edwards JW, Colditz GA, Solomon CG, Willett WC, Speizer FE, Manson JE. Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study. JAMA. 1999;282(15):1433–9.PubMedCrossRefGoogle Scholar
  108. 108.
    US Public Health Service, Office of the Surgeon General. Physical activity and health: a report of the surgeon general. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion; 1996.Google Scholar
  109. 109.
    Fletcher GF, Balady GJ, Amsterdam EA, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104:1694–740.PubMedCrossRefGoogle Scholar
  110. 110.
    Pate RR, Pratt MP, Blair SN, et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273:402–7.PubMedCrossRefGoogle Scholar
  111. 111.
    American College of Sports Medicine. Guidelines for exercise testing and prescription. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2000.Google Scholar
  112. 112.
    Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation. 2003;107(1):e2–5.PubMedCrossRefGoogle Scholar
  113. 113.
    Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, Genuth MS, Grimm RH, Corson MA, Prineas R, The ACCORD Study Group. Effects of cardiac autonomic dysfunction on mortality risk in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care. 2010;33:1578–84.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Vinik AI, Maser RE, Ziegler D. Neuropathy. The crystal ball for cardiovascular disease. Diabetes Care. 2010;33(7):1688–90.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Dinas PC, Valente A, Granzotto M, Rossato M, Vettor R, Zacharopoulou A, Carrillo AE, Davies NA, Gkiata P, Jamurtas AZ, Koutedakis Y, Metsios GS, Flouris AD. Browning formation markers of subcutaneous adipose tissue in relation to resting energy expenditure, physical activity and diet in humans. Horm Mol Biol Clin Invest. 2017. pii: /j/hmbci.ahead-of-print/hmbci-2017-0008/hmbci-2017-0008.xml.  https://doi.org/10.1515/hmbci-2017-0008.
  116. 116.
    Høydal MA, Stølen TO, Kettlewell S, Maier LS, Brown JH, Sowa T, Catalucci D, Condorelli G, Kemi OJ, Smith GL, Wisløff U. Exercise training reverses myocardial dysfunction induced by CaMKIIδC overexpression by restoring Ca2+ homeostasis. J Appl Physiol (1985). 2016;121(1):212–20.  https://doi.org/10.1152/japplphysiol.00188.2016. Epub 2016 May 26.CrossRefGoogle Scholar
  117. 117.
    Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, Chasman DI, Baber U, Mehran R, Rader DJ, Fuster V, Boerwinkle E, Melander O, Orho-Melander M, Ridker PM, Kathiresan S. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–58. Epub 2016 Nov 13.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Nicolson GL. Mitochondrial dysfunction and chronic disease: treatment with natural supplements. Integr Med (Encinitas). 2014;13(4):35–43.Google Scholar
  119. 119.
    Price NL, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90.  https://doi.org/10.1016/j.cmet.2012.04.003.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Nakano M, Inui A. Metformin and incretin-based therapies up-regulate central and peripheral Adenosine monophosphate-activated protein affecting appetite and metabolism. Indian J Endocrinol Metab. 2012;16(Suppl S3):529–31.CrossRefGoogle Scholar
  121. 121.
    Carling D, Viollet B. Beyond energy homeostasis: the expanding role of AMP-activated protein kinase in regulating metabolism. Cell Metab. 2015;21(6):799–804.  https://doi.org/10.1016/j.cmet.2015.05.005. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100(3):328–41. Review.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRefGoogle Scholar
  124. 124.
    Ruiter R, Visser LE, van Herk-Sukel MP, Coebergh JW, Haak HR, Geelhoed-Duijvestijn PH, Straus SM, Herings RM, Stricker BH. Lower risk of cancer in patients on metformin in comparison with those on sulfonylurea derivatives: results from a large population-based follow-up study. Diabetes Care. 2012;35(1):119–24.  https://doi.org/10.2337/dc11-0857. Epub 2011 Nov 18.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Tennen RI, Michishita-Kioi E, Chua KF. Finding a target for resveratrol. Cell. 2012;148(3):387–9.  https://doi.org/10.1016/j.cell.2012.01.032.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Zhang QJ, McMillin SL, Tanner JM, Palionyte M, Abel ED, Symons JD. Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signalling kinases. J Physiol. 2009;587(Pt 15):3911–20.  https://doi.org/10.1113/jphysiol.2009.172916. Epub 2009 Jun 8.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Seals DR, Edward F. Adolph Distinguished Lecture: the remarkable anti-aging effects of aerobic exercise on systemic arteries. J Appl Physiol. 2014;117(5):425–39.  https://doi.org/10.1152/japplphysiol.00362.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Santos-Parker JR, LaRocca TJ, Seals DR. Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv Physiol Educ. 2014;38(4):296–307.  https://doi.org/10.1152/advan.00088.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Berk M, Malhi GS, Gray LJ, Dean OM. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci. 2013;34(3):167–77.  https://doi.org/10.1016/j.tips.2013.01.001. Epub 2013 Jan 29. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Dean O, Giorlando F, Berk M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci. 2011;36(2):78–86.  https://doi.org/10.1503/jpn.100057. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Fernandes BS, Dean OM, Dodd S, Malhi GS, Berk M. N-acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis. J Clin Psychiatry. 2016;77(4):e457–66.  https://doi.org/10.4088/JCP.15r09984.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicholas L. DePace
    • 1
  • Joseph Colombo
    • 2
  1. 1.Franklin Cardiovascular Associates, PA and Autonomic Dysfunction and POTS CenterSewellUSA
  2. 2.TMCAMS, Inc.Franklin Cardiovascular Associates, PA and Autonomic Dysfunction and POTS CenterRichboroUSA

Personalised recommendations