Advertisement

Mediterranean Diet (Prong-4)

  • Nicholas L. DePace
  • Joseph Colombo
Chapter
  • 333 Downloads

Abstract

The Mediterranean diet is one of the lifestyle modifications recommended in the Mind-Body Wellness Program. It is not simply a diet. It is a lifestyle. It is a stress reducer, both at the cellular level (oxidative stress reduction) and the system level (psychosocial stress reduction). It includes a philosophy to cook and choose foods to eat where the foods themselves and how they are prepared is, itself, medicine. Preparing the food fresh and preserving its nutrient content enable food to be antioxidants, anti-inflammatories, and anti-atherosclerotics, as well as provide vitamins, minerals, nutrients, and the energy needed for health and wellness. The Mediterranean diet is founded on olive, grape, and whole wheat. Aside from these three ingredients, the Mediterranean diet adds polyphenols and resveratrol to the mix to further the benefits of the program.

The Mediterranean diet provides the fuel and raw materials needed to support exercise and the other prongs of the Mind-Body Wellness Program to minimize disease frequency and severity and preserve quality of life. The diet, enjoyed with family and friends, relaxed and including a little wine, is the goal. Reversing the trend, prevalent in the west, of “fresh from the factory” and returning to “factory fresh.” With the Mediterranean diet, the supplements of this program truly are supplements to a healthy diet and not replacements for a healthy diet. Enjoy!

Keywords

Alcohol consumption Anti-atherosclerotic Anti-inflammatory Antioxidant Endothelial function Grapes Mediterranean diet Olive oil Polyphenols Resveratrol Wellness Whole wheat Wine 

References

  1. 1.
    Gunnars K. 5 Studies on the Mediterranean diet – does it really work? https://authoritynutrition.com/5-studies-on-the-mediterranean-diet
  2. 2.
    Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean diet; a literature review. Nutrients. 2015;7(11):9139–53.  https://doi.org/10.3390/nu7115459. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Castro-Quezada I, Román-Viñas B, Serra-Majem L. The Mediterranean diet and nutritional adequacy: a review. Nutrients. 2014;6(1):231–48.  https://doi.org/10.3390/nu6010231. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014;17(12):2769–82.  https://doi.org/10.1017/S1368980013003169. Epub 2013 Nov 29. Review.CrossRefPubMedGoogle Scholar
  5. 5.
    Mancini JG, Filion KB, Atallah R, Eisenberg MJ. Systematic review of the Mediterranean diet for long-term weight loss. Am J Med. 2016;129(4):407–415.e4.  https://doi.org/10.1016/j.amjmed.2015.11.028. Epub 2015 Dec 22. Review.CrossRefPubMedGoogle Scholar
  6. 6.
    Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128(3):229–38.  https://doi.org/10.1016/j.amjmed.2014.10.014. Epub 2014 Oct 15. Review.CrossRefPubMedGoogle Scholar
  7. 7.
    Liyanage T, Ninomiya T, Wang A, Neal B, Jun M, Wong MG, Jardine M, Hillis GS, Perkovic V. Effects of the Mediterranean diet on cardiovascular outcomes-a systematic review and meta-analysis. PLoS One. 2016;11(8):e0159252.  https://doi.org/10.1371/journal.pone.0159252. eCollection 2016. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Grosso G, Marventano S, Yang J, Micek A, Pajak A, Scalfi L, Galvano F, Kales SN. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal? Crit Rev Food Sci Nutr. 2017;57(15):3218–32.  https://doi.org/10.1080/10408398.2015.1107021.CrossRefPubMedGoogle Scholar
  9. 9.
    Nordmann AJ, Suter-Zimmermann K, Bucher HC, Shai I, Tuttle KR, Estruch R, Briel M. Meta-analysis comparing Mediterranean to low-fat diets for modification of cardiovascular risk factors. Am J Med. 2011;124(9):841–51.e2.  https://doi.org/10.1016/j.amjmed.2011.04.024.CrossRefPubMedGoogle Scholar
  10. 10.
    Satija A, Bhupathiraju SN, Spiegelman D, Chiuve SE, Manson JE, Willett W, Rexrode KM, Rimm EB, Hu FB. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in U.S. adults. J Am Coll Cardiol. 2017;70(4):411–22.  https://doi.org/10.1016/j.jacc.2017.05.047.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ros E, Martínez-González MA, Estruch R, Salas-Salvadó J, Fitó M, Martínez JA, Corella D. Mediterranean diet and cardiovascular health: teachings of the PREDIMED study. Adv Nutr. 2014;5(3):330S–6S.  https://doi.org/10.3945/an.113.005389. Print 2014 May. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.CrossRefGoogle Scholar
  13. 13.
    Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, Chasman DI, Baber U, Mehran R, Rader DJ, Fuster V, Boerwinkle E, Melander O, Orho-Melander M, Ridker PM, Kathiresan S. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–58. Epub 2016 Nov 13.CrossRefGoogle Scholar
  14. 14.
    Fuentes F, López-Miranda J, Sánchez E, Sánchez F, Paez J, Paz-Rojas E, Marín C, Gómez P, Jimenez-Perepérez J, Ordovás JM, Pérez-Jiménez F. Mediterranean and low-fat diets improve endothelial function in hypercholesterolemic men. Ann Intern Med. 2001;134(12):1115–9.CrossRefGoogle Scholar
  15. 15.
    Ludwig DS. Lowering the bar on the low-fat diet. JAMA. 2016;316(20):2087–8.  https://doi.org/10.1001/jama.2016.15473.CrossRefPubMedGoogle Scholar
  16. 16.
    Nissensohn M, Román-Viñas B, Sánchez-Villegas A, Piscopo S, Serra-Majem L. The effect of the Mediterranean diet on hypertension: a systematic review and meta-analysis. J Nutr Educ Behav. 2016;48(1):42–53.e1.  https://doi.org/10.1016/j.jneb.2015.08.023. Epub 2015 Oct 21. Review.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang Q, Afshin A, Yakoob MY, Singh GM, Rehm CD, Khatibzadeh S, Micha R, Shi P, Mozaffarian D, Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Impact of nonoptimal intakes of saturated, polyunsaturated, and trans fat on global burdens of coronary heart disease. J Am Heart Assoc. 2016;5(1). pii: e002891.  https://doi.org/10.1161/JAHA.115.002891.
  18. 18.
    Kris-Etherton P, Eckel RH, Howard BV, St Jeor S, Bazzarre TL; Nutrition Committee Population Science Committee and Clinical Science Committee of the American Heart Association. AHA Science Advisory: Lyon Diet Heart Study. Benefits of a Mediterranean-style, National Cholesterol Education Program/American Heart Association Step I Dietary Pattern on Cardiovascular Disease. Circulation. 2001;103(13):1823–5. http://circ.ahajournals.org/content/103/13/1823.long CrossRefGoogle Scholar
  19. 19.
    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA, PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.  https://doi.org/10.1056/NEJMoa1200303. Epub 2013 Feb 25. Erratum in: N Engl J Med. 2014 Feb 27;370(9):886.CrossRefGoogle Scholar
  20. 20.
    Gay HC, Rao SG, Vaccarino V, Ali MK. Effects of different dietary interventions on blood pressure: systematic review and meta-analysis of randomized controlled trials. Hypertension. 2016;67(4):733–9.  https://doi.org/10.1161/HYPERTENSIONAHA.115.06853. Epub 2016 Feb 22. Review.CrossRefPubMedGoogle Scholar
  21. 21.
    Bloomfield HE, Koeller E, Greer N, MacDonald R, Kane R, Wilt TJ. Effects on health outcomes of a Mediterranean diet with no restriction on fat intake: a systematic review and meta-analysis. Ann Intern Med. 2016;165(7):491–500.  https://doi.org/10.7326/M16-0361. Epub 2016 Jul 19. Review.CrossRefPubMedGoogle Scholar
  22. 22.
    Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008;337:a1344.  https://doi.org/10.1136/bmj.a1344. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Esposito K, Maiorino MI, Bellastella G, Chiodini P, Panagiotakos D, Giugliano D. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open. 2015;5(8):e008222.  https://doi.org/10.1136/bmjopen-2015-008222. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ros E, Hu FB. Consumption of plant seeds and cardiovascular health: epidemiologic and clinical trial evidence. Circulation. 2013;128:553–65.CrossRefGoogle Scholar
  25. 25.
    Salas-Salvadó J, Guasch-Ferré M, Lee CH, Estruch R, Clish CB, Ros E. Protective effects of the Mediterranean diet on type 2 diabetes and metabolic syndrome. J Nutr. 2016. pii: jn218487. [Epub ahead of print] Review.Google Scholar
  26. 26.
    Schwingshackl L, Missbach B, König J, Hoffmann G. Adherence to a Mediterranean diet and risk of diabetes: a systematic review and meta-analysis. Public Health Nutr. 2015;18(7):1292–9.  https://doi.org/10.1017/S1368980014001542. Epub 2014 Aug 22. Review.CrossRefPubMedGoogle Scholar
  27. 27.
    Koloverou E, Esposito K, Giugliano D, Panagiotakos D. The effect of Mediterranean diet on the development of type 2 diabetes mellitus: a meta-analysis of 10 prospective studies and 136,846 participants. Metabolism. 2014;63(7):903–11.  https://doi.org/10.1016/j.metabol.2014.04.010. Epub 2014 Apr 24. Review.CrossRefPubMedGoogle Scholar
  28. 28.
    Esposito K, Maiorino MI, Ceriello A, Giugliano D. Prevention and control of type 2 diabetes by Mediterranean diet: a systematic review. Diabetes Res Clin Pract. 2010;89(2):97–102.  https://doi.org/10.1016/j.diabres.2010.04.019. Epub 2010 May 23. Review.CrossRefPubMedGoogle Scholar
  29. 29.
    Garcia M, Bihuniak JD, Shook J, Kenny A, Kerstetter J, Huedo-Medina TB. The effect of the traditional Mediterranean-style diet on metabolic risk factors: a meta-analysis. Nutrients. 2016;8(3):168.  https://doi.org/10.3390/nu8030168. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Godos J, Zappalà G, Bernardini S, Giambini I, Bes-Rastrollo M, Martinez-Gonzalez M. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: a meta-analysis of observational studies. Int J Food Sci Nutr. 2017;68(2):138–48.  https://doi.org/10.1080/09637486.2016.1221900. Epub 2016 Aug 25. Review.CrossRefPubMedGoogle Scholar
  31. 31.
    Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Mediterranean diet and metabolic syndrome: an updated systematic review. Rev Endocr Metab Disord. 2013;14(3):255–63.  https://doi.org/10.1007/s11154-013-9253-9. Review.CrossRefPubMedGoogle Scholar
  32. 32.
    Schwingshackl L, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis of observational studies. Cancer Med. 2015;4(12):1933–47.  https://doi.org/10.1002/cam4.539. Epub 2015 Oct 16. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    D’Alessandro A, De Pergola G, Silvestris F. Mediterranean diet and cancer risk: an open issue. Int J Food Sci Nutr. 2016;67(6):593–605.  https://doi.org/10.1080/09637486.2016.1191444. Epub 2016 Jun 2. Review.CrossRefPubMedGoogle Scholar
  34. 34.
    Song M, Giovannucci E. Preventable incidence and mortality of carcinoma associated with lifestyle factors among white adults in the United States. JAMA Oncol. 2016;2(9):1154–61.  https://doi.org/10.1001/jamaoncol.2016.0843.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    La Vecchia C. Mediterranean diet and cancer. Public Health Nutr. 2004;7(7):965–8. Review.CrossRefGoogle Scholar
  36. 36.
    Fabiani R, Minelli L, Bertarelli G, Bacci S. A western dietary pattern increases prostate cancer risk: a systematic review and meta-analysis. Nutrients. 2016;8(10). pii: E626. Review.CrossRefGoogle Scholar
  37. 37.
    van den Brandt PA, Schulpen M. Mediterranean diet adherence and risk of postmenopausal breast cancer: results of a cohort study and meta-analysis. Int J Cancer. 2017;140(10):2220–31.  https://doi.org/10.1002/ijc.30654. Epub 2017 Mar 5.CrossRefPubMedGoogle Scholar
  38. 38.
    Neale EP, Batterham MJ, Tapsell LC. Consumption of a healthy dietary pattern results in significant reductions in C-reactive protein levels in adults: a meta-analysis. Nutr Res. 2016;36(5):391–401.  https://doi.org/10.1016/j.nutres.2016.02.009. Epub 2016 Feb 22. Review.CrossRefPubMedGoogle Scholar
  39. 39.
    Cao L, Tan L, Wang HF, Jiang T, Zhu XC, Lu H, Tan MS, Yu JT. Dietary patterns and risk of dementia: a systematic review and meta-analysis of cohort studies. Mol Neurobiol. 2016;53(9):6144–54.  https://doi.org/10.1007/s12035-015-9516-4. Epub 2015 Nov 9.CrossRefPubMedGoogle Scholar
  40. 40.
    Stephan BCM, Harrison SL, Keage HAD, Babateen A, Robinson L, Siervo M. Cardiovascular disease, the nitric oxide pathway and risk of cognitive impairment and dementia. Curr Cardiol Rep. 2017;19(9):87.  https://doi.org/10.1007/s11886-017-0898-y. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cuello AC. Early and late CNS inflammation in Alzheimer’s disease: two extremes of a continuum? Trends Pharmacol Sci. 2017. pii: S0165-6147(17)30144-X.  https://doi.org/10.1016/j.tips.2017.07.005. [Epub ahead of print] Review.CrossRefGoogle Scholar
  42. 42.
    Lourida I, Soni M, Thompson-Coon J, Purandare N, Lang IA, Ukoumunne OC, Llewellyn DJ. Mediterranean diet, cognitive function, and dementia: a systematic review. Epidemiology. 2013;24(4):479–89.  https://doi.org/10.1097/EDE.0b013e3182944410. Review.CrossRefPubMedGoogle Scholar
  43. 43.
    Wu L, Sun D. Adherence to Mediterranean diet and risk of developing cognitive disorders: an updated systematic review and meta-analysis of prospective cohort studies. Sci Rep. 2017;7:41317.  https://doi.org/10.1038/srep41317.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Loughrey DG, Lavecchia S, Brennan S, Lawlor BA, Kelly ME. The impact of the Mediterranean diet on the cognitive functioning of healthy older adults: a systematic review and meta-analysis. Adv Nutr. 2017;8(4):571–86.  https://doi.org/10.3945/an.117.015495. Print 2017 Jul. Review. PMID: 28710144.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kunutsor SK, Laukkanen JA, Whitehouse MR, Blom AW. Adherence to a Mediterranean-style diet and incident fractures: pooled analysis of observational evidence. Eur J Nutr. 2017;  https://doi.org/10.1007/s00394-017-1432-0.CrossRefGoogle Scholar
  46. 46.
    Malmir H, Saneei P, Larijani B, Esmaillzadeh A. Adherence to Mediterranean diet in relation to bone mineral density and risk of fracture: a systematic review and meta-analysis of observational studies. Eur J Nutr. 2017.  https://doi.org/10.1007/s00394-017-1490-3.CrossRefGoogle Scholar
  47. 47.
    Papamichael MM, Itsiopoulos C, Susanto NH, Erbas B. Does adherence to the Mediterranean dietary pattern reduce asthma symptoms in children? A systematic review of observational studies. Public Health Nutr. 2017;14:1–13.  https://doi.org/10.1017/S1368980017001823.CrossRefGoogle Scholar
  48. 48.
    Sainani GS. Role of diet, exercise and drugs in modulation of endothelial cell dysfunction. J Assoc Physicians India. 2012;60:14–9.PubMedGoogle Scholar
  49. 49.
    Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev. 2009;2(5):270–8.  https://doi.org/10.4161/oxim.2.5.9498. Review.CrossRefGoogle Scholar
  50. 50.
    Graf BA, Milbury PE, Blumberg JB. Flavonols, favonones, flavanones and human health: epidemiological evidence. J Med Food. 2005;8:281–90.CrossRefGoogle Scholar
  51. 51.
    Arts ICW, Hollman PCH. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005;81:317–25.CrossRefGoogle Scholar
  52. 52.
    García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res. 2009;58:537–52.CrossRefGoogle Scholar
  53. 53.
    Pirola L, Frojdo S. Resveratrol: one molecule, many targets. IUBMB Life. 2008;60:323–32.CrossRefGoogle Scholar
  54. 54.
    Kamaraj S, Vinodhkumar R, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biol Pharm Bull. 2007;30:2268–73.CrossRefGoogle Scholar
  55. 55.
    Scarmeas N, Luchsinger JA, Mayeux R, Stern Y. Mediterranean diet and Alzheimer disease mortality. Neurology. 2007;69:1084–93.CrossRefGoogle Scholar
  56. 56.
    Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res. 2008;33:2416–26.CrossRefGoogle Scholar
  57. 57.
    Rossi L, Mazzitelli S, Arciello M, Capo CR, Rotilio G. Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochem Res. 2008;33:2390–400.CrossRefGoogle Scholar
  58. 58.
    Kiritsakis A. Olive oil- from the tree to the table. 2nd ed. Trumbull: Food and Nutrition Press, Inc; 1998. p. 006611.Google Scholar
  59. 59.
    Visioli F, Poli A, Gall C. Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev. 2002;22(1):65–75.CrossRefGoogle Scholar
  60. 60.
    Baldioli M, Servili M, Perretti G, Montedoro GF. Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J Am Oil Chem Soc. 1996;73(11):1589–93.CrossRefGoogle Scholar
  61. 61.
    Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci. 2007;8(9):950–88.  https://doi.org/10.3390/i8090950. Review.CrossRefPubMedCentralGoogle Scholar
  62. 62.
    Calabriso N, Massaro M, Scoditti E, D’Amore S, Gnoni A, Pellegrino M, Storelli C, De Caterina R, Palasciano G, Carluccio MA. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression. J Nutr Biochem. 2016;28:19–29.  https://doi.org/10.1016/j.jnutbio.2015.09.026.CrossRefPubMedGoogle Scholar
  63. 63.
    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA, PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.  https://doi.org/10.1056/NEJMoa1200303. Epub 2013 Feb 25. Erratum in: N Engl J Med. 2014 Feb 27;370(9):886.CrossRefGoogle Scholar
  64. 64.
    Escribá PV, Halver JE. How Oleic acid in olive oil reduces blood pressure. www.pitt.edu/~super4/33011-34001/33541.ppt
  65. 65.
    Seeram NP, Aviram M, Zhang Y, Henning SM, Feng L, Dreher M, Heber D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem. 2008;56(4):1415–22.CrossRefGoogle Scholar
  66. 66.
    Durak I, Avci A, Kacmaz M, Büyükkoçak S, Cimen MY, Elgün S, Oztürk HS. Comparison of antioxidant potentials of red wine, white wine, grape juice and alcohol. Curr Med Res Opin. 1999;15(4):316–20.CrossRefGoogle Scholar
  67. 67.
    Keevil JG, Osman HE, Reed JD, Folts JD. Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. J Nutr. 2000;130(1):53–6.CrossRefGoogle Scholar
  68. 68.
    Folts JD. Antithrombotic potential of grape juice and red wine for preventing heart attacks. Pharm Biol. 1998;36(Supplement 1):21–7.CrossRefGoogle Scholar
  69. 69.
    Freedman JE, Parker C 3rd, Li L, Perlman JA, Frei B, Ivanov V, Deak LR, Iafrati MD, Folts JD. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 2001;103(23):2792–8.CrossRefGoogle Scholar
  70. 70.
    O’Byrne DJ, Devaraj S, Grundy SM, Jialal I. Comparison of the antioxidant effects of Concord grape juice flavonoids alpha-tocopherol on markers of oxidative stress in healthy adults. Am J Clin Nutr. 2002;76(6):1367–74.CrossRefGoogle Scholar
  71. 71.
    Stein JH, Keevil JG, Wiebe DA, Aeschlimann S, Folts JD. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation. 1999;100(10):1050–5.CrossRefGoogle Scholar
  72. 72.
    Park YK, Kim JS, Kang MH. Concord grape juice supplementation reduces blood pressure in Korean hypertensive men: double-blind, placebo controlled intervention trial. Biofactors. 2004;22(1–4):145–7.CrossRefGoogle Scholar
  73. 73.
    Mark D, Maki K. Concord grape juice reduces blood pressure in men with high systolic blood pressure. Experimental biology. San Diego. 11–15 Apr 2003.Google Scholar
  74. 74.
    Dohadwala MM, Hamburg NM, Holbrook M, Kim BH, Duess M, Levit A, Titas M, Chung WB, Vincent FB, Caiano T, Frame AA, Keaney JF Jr, Vita JA. Effects of Concord grape juice on ambulatory blood pressure in prehypertension and stage 1 hypertension. Am J Clin Nutr. 2010;91(5):1052–9.CrossRefGoogle Scholar
  75. 75.
    Dohadwala MM, Vita JA. Grapes and cardiovascular disease. J Nutr. 2009;139(9):1788S–93S.CrossRefGoogle Scholar
  76. 76.
    Chou EJ, Keevil JG, Aeschlimann S, Wiebe DA, Folts JD, Stein JH. Effect of ingestion of purple grape juice on endothelial function in patients with coronary heart disease. Am J Cardiol. 2001;88(5):553–5.CrossRefGoogle Scholar
  77. 77.
    Anselm E, Chataigneau M, Ndiaye M, Chataigneau T, Schini-Kerth VB. Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of eNOS. Cardiovasc Res. 2007;73(2):404–13.CrossRefGoogle Scholar
  78. 78.
    Fitzpatrick DF, Hirschfield SL, Coffey RG. Endothelium-dependent vasorelaxing activity of wine and other grape products. Am J Physiol Heart Circ Physiol. 1993;265(34):H774–8.CrossRefGoogle Scholar
  79. 79.
    Albers AR, Varghese S, Vitseva O, Vita JA, Freedman JE. The antiinflammatory effects of purple grape juice consumption in subjects with stable coronary artery disease. Arterioscler Thromb Vasc Biol. 2004;24(Nov):e179–80.PubMedGoogle Scholar
  80. 80.
    Vislocky LM, Fernandez MLF. Biomedical effects of grape products. Nutr Rev. 2010;68(11):656–70.CrossRefGoogle Scholar
  81. 81.
    Krikorian R, Nash TA, Shidler MD, Shukitt-Hale B, Joseph JA. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr. 2010;103(5):730–4.CrossRefGoogle Scholar
  82. 82.
    Shukitt-Hale B, Carey A, Simon L, Mark DA, Joseph JA. Effects of Concord grape juice on cognitive and motor deficits in aging. Nutrition. 2006;22(3):295–302.CrossRefGoogle Scholar
  83. 83.
    Ho L, Ferruzzi MG, Janle EM, Lobo J, Chen TY, Talcott ST, Simon J, Wu QL, Wang J, Cheng A, Weaver CM, Percival SS, Pasinetti GM. Bioavailability of grape-derived polyphenolics and implications in Alzheimer’s disease prevention and therapy. Presented at Experimental Biology; 2010 Apr 24–28; Anaheim;2010.Google Scholar
  84. 84.
    Joseph JA, Shukitt-Hale B, Casadesus G. Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr. 2005;81(1 Suppl):313S–6S.CrossRefGoogle Scholar
  85. 85.
    Lipson SM, Cohen P, Zhou J, Burdowski A, Stotzky G. Cranberry cocktail juice, cranberry concentrates, and proanthocyanidins reduce reovirus infectivity titers in African green monkey kidney epithelial cell cultures. Mol Nutr Food Res. 2007;51(6):752–8.CrossRefGoogle Scholar
  86. 86.
    Rodella LF, Favero G. Atherosclerosis and current anti-oxidant strategies for atheroprotection. Curr Trends Atherogenesis. 2012 (InTech, Open Access).  https://doi.org/10.5772/53035.Google Scholar
  87. 87.
    Mallol J, Crane J, von Mutius E, Odhiambo J, Keil U, Stewart A, ISAAC Phase Three Study Group. The International Study of Asthma and Allergies in Childhood (ISAAC) phase three: a global synthesis. Allergol Immunopathol (Madr). 2013;41(2):73–85.  https://doi.org/10.1016/j.aller.2012.03.001. Epub 2012 Jul 6.CrossRefGoogle Scholar
  88. 88.
    Fremont L. Biological effects of resveratrol. Life Sci. 2000;66(8):663–73.CrossRefGoogle Scholar
  89. 89.
    Khakimov B, Engelsen SB. Resveratrol in the foodomics era: 1:25,000. Ann N Y Acad Sci. 2017.  https://doi.org/10.1111/nyas.13425. [Epub ahead of print] Review.CrossRefGoogle Scholar
  90. 90.
    Higdon J, Drake VJ, Steward WP. Resveratrol. Corvallis: Micronutrient Information Center. Linus Pauling Institute, Oregon State University; 2016.Google Scholar
  91. 91.
    Schwager J, Richard N, Widmer F, Raederstorff D. Resveratrol distinctively modulates the inflammatory profiles of immune and endothelial cells. BMC Complement Altern Med. 2017;17(1):309.  https://doi.org/10.1186/s12906-017-1823-z.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta. 2015;1852(6):1114–23.  https://doi.org/10.1016/j.bbadis.2014.10.005. Epub 2014 Oct 12. Review.CrossRefPubMedGoogle Scholar
  93. 93.
    Kim I, He YY. Targeting the AMP-activated protein kinase for cancer prevention and therapy. Front Oncol. 2013;3:175.  https://doi.org/10.3389/fonc.2013.00175. eCollection 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kitada M, Koya D. Renal protective effects of resveratrol. Oxid Med Cell Longev. 2013;2013, Article ID 568093, 7 pages.  https://doi.org/10.1155/2013/568093.CrossRefGoogle Scholar
  95. 95.
    Wang S, Wang J, Zhao A, Li J. SIRT1 activation inhibits hyperglycemia-induced apoptosis by reducing oxidative stress and mitochondrial dysfunction in human endothelial cells. Mol Med Rep. 2017;16(3):3331–8.  https://doi.org/10.3892/mmr.2017.7027. Epub 2017 Jul 17.CrossRefPubMedGoogle Scholar
  96. 96.
    Teixeira J, Chavarria D, Borges F, Wojtczak L, Wieckowski MR, Karkucińska-Wieckowska A, Oliveira PJ. Dietary polyphenols and mitochondrial function: role in health and disease. Curr Med Chem. 2017.  https://doi.org/10.2174/0929867324666170529101810. [Epub ahead of print].
  97. 97.
    Yousuf S, Atif F, Ahmad M, Hoda N, Ishrat T, Khan B, Islam F. Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res. 2009;1250:242–53.  https://doi.org/10.1016/j.brainres.2008.10.068. Epub 2008 Nov 11.CrossRefPubMedGoogle Scholar
  98. 98.
    Bhandari R, Kuhad A. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochem Int. 2017;103:8–23.  https://doi.org/10.1016/j.neuint.2016.12.012. Epub 2016 Dec 23.CrossRefPubMedGoogle Scholar
  99. 99.
    Hermann DM, Zechariah A, Kaltwasser B, Bosche B, Caglayan AB, Kilic E, Doeppner TR. Sustained neurological recovery induced by resveratrol is associated with angioneurogenesis rather than neuroprotection after focal cerebral ischemia. Neurobiol Dis. 2015;83:16–25.  https://doi.org/10.1016/j.nbd.2015.08.018. Epub 2015 Aug 24.CrossRefPubMedGoogle Scholar
  100. 100.
    Pang C, Cao L, Wu F, Wang L, Wang G, Yu Y, Zhang M, Chen L, Wang W, Lv W, Chen L, Zhu J, Pan J, Zhang H, Xu Y, Ding L. The effect of trans-resveratrol on post-stroke depression via regulation of hypothalamus-pituitary-adrenal axis. Neuropharmacology. 2015;97:447–56.  https://doi.org/10.1016/j.neuropharm.2015.04.017. Epub 2015 Apr 29.CrossRefPubMedGoogle Scholar
  101. 101.
    Zhang F, Wang H, Wu Q, Lu Y, Nie J, Xie X, Shi J. Resveratrol protects cortical neurons against microglia-mediated neuroinflammation. Phytother Res. 2013;27(3):344–9.  https://doi.org/10.1002/ptr.4734. Epub 2012 May 14.CrossRefPubMedGoogle Scholar
  102. 102.
    Anekonda TS. Resveratrol – a boon for treating Alzheimer’s disease? Brain Res Rev. 2006;52(2):316–26. Review.CrossRefGoogle Scholar
  103. 103.
    Ferrières J. The French paradox: lessons for other countries. Heart. 2004;90(1):107–11.CrossRefGoogle Scholar
  104. 104.
    Voulgari C, Pagoni S, Vinik A, Poirier P. Exercise improves cardiac autonomic function in obesity and diabetes. Metabolism. 2013;62:609–21.CrossRefGoogle Scholar
  105. 105.
    Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, Rashid R, Miall P, Deanfield J, Benjamin N, MacAllister R, Hobbs AJ, Ahluwalia A. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51(3):784–90.  https://doi.org/10.1161/HYPERTENSIONAHA.107.103523. Epub 2008 Feb 4.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lock K, Promerleau J, Causer L, Altman DR, McKee M. The global burden of disease attributable to low consumption of fruit and vegetables: implications for the global strategy of diet. Bull World Health Organ. 2005;83:100–8.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Quin X, Huo Y, Langman CB, Hou F, Chen Y, Matossin D, et al. Folic acid therapy and cardiovascular disease in end-stage renal disease or advanced chronic kidney disease: a metaanalysis. Clin J Am Soc Nephrol. 2011;6:482–8.CrossRefGoogle Scholar
  108. 108.
    Lee M, Hong KS, Chang SC, Saver JL. Efficiency of homocysteine lowering therapy with folic acid and stroke prevention: a metaanalysis. Stroke. 2010;41:1205–12.CrossRefGoogle Scholar
  109. 109.
    Potter JD. Cancer prevention: epidemiology and experiment. Cancer Lett. 1997;114(1–2):7–9.CrossRefGoogle Scholar
  110. 110.
    Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78(1):53–97.CrossRefGoogle Scholar
  111. 111.
    Rubinshtein R, Kuvin JT, Soffler M, Lennon RJ, Lavi S, Nelson RE, Pumper GM, Lerman LO, Lerman A. Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur Heart J. 2010;31(9):1142–8.  https://doi.org/10.1093/eurheartj/ehq010. Epub 2010 Feb 24.CrossRefPubMedGoogle Scholar
  112. 112.
    Mita T, Watada H, Ogihara T, Nomiyama T, Ogawa O, Kinoshita J, Shimizu T, Hirose T, Tanaka Y, Kawamori R. Eicosapentaenoic acid reduces the progression of carotid intima-media thickness in patients with type 2 diabetes. Atherosclerosis. 2007;191(1):162–7. Epub 2006 Apr 17.CrossRefGoogle Scholar
  113. 113.
    Wu JH, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, Djousse L, Hu FB, Mozaffarian D. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr. 2012;107(Suppl 2):S214–27.  https://doi.org/10.1017/S0007114512001602. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Brinton EA, Ballantyne CM, Bays HE, Kastelein JJ, Braeckman RA, Soni PN. Effects of icosapent ethyl on lipid and inflammatory parameters in patients with diabetes mellitus-2, residual elevated triglycerides (200–500 mg/dL), and on statin therapy at LDL-C goal: the ANCHOR study. Cardiovasc Diabetol. 2013;12:100.  https://doi.org/10.1186/1475-2840-12-100. Erratum in: Cardiovasc Diabetol. 2015 Jul–Aug;9(4):618.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Menotti A, Puddu PE. How the Seven Countries Study contributed to the definition and development of the Mediterranean diet concept: a 50-year journey. Nutr Metab Cardiovasc Dis. 2015;25(3):245–52.  https://doi.org/10.1016/j.numecd.2014.12.001. Epub 2014 Dec 12.CrossRefGoogle Scholar
  116. 116.
    Nanri A, Mizoue T, Shimazu T, Ishihara J, Takachi R, Noda M, Iso H, Sasazuki S, Sawada N, Tsugane S, Japan Public Health Center-Based Prospective Study Group. Dietary patterns and all-cause, cancer, and cardiovascular disease mortality in Japanese men and women: the Japan public health center-based prospective study. PLoS One. 2017;12(4):e0174848.  https://doi.org/10.1371/journal.pone.0174848. eCollection 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Benbaibeche H, Haffaf el M, Kacimi G, Oudjit B, Khan NA, Koceïr EA. Implication of corticotropic hormone axis in eating behaviour pattern in obese and type 2 diabetic participants. Br J Nutr. 2015;113(8):1237–43.  https://doi.org/10.1017/S0007114515000549. Epub 2015 Mar 18.CrossRefPubMedGoogle Scholar
  118. 118.
    García-Prieto MD, Tébar FJ, Nicolás F, Larqué E, Zamora S, Garaulet M. Cortisol secretary pattern and glucocorticoid feedback sensitivity in women from a Mediterranean area: relationship with anthropometric characteristics, dietary intake and plasma fatty acid profile. Clin Endocrinol. 2007;66(2):185–91.CrossRefGoogle Scholar
  119. 119.
    Kanauchi M, Kanauchi K. Development of a Mediterranean diet score adapted to Japan and its relation to obesity risk. Food Nutr Res. 2016;60:32172.  https://doi.org/10.3402/fnr.v60.32172. eCollection 2016.CrossRefPubMedGoogle Scholar
  120. 120.
    Zhang R, Wang Z, Fei Y, Zhou B, Zheng S, Wang L, Huang L, Jiang S, Liu Z, Jiang J, Yu Y. The difference in nutrient intakes between Chinese and Mediterranean, Japanese and American diets. Nutrients. 2015;7(6):4661–88.  https://doi.org/10.3390/nu7064661.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Verberne L, Bach-Faig A, Buckland G, Serra-Majem L. Association between the Mediterranean diet and cancer risk: a review of observational studies. Nutr Cancer. 2010;62(7):860–70.  https://doi.org/10.1080/01635581.2010.509834. Review.CrossRefPubMedGoogle Scholar
  122. 122.
    Tyrovolas S, Panagiotakos DB. The role of Mediterranean type of diet on the development of cancer and cardiovascular disease, in the elderly: a systematic review. Maturitas. 2010;65(2):122–30.  https://doi.org/10.1016/j.maturitas.2009.07.003. Epub 2009 Aug 4. Review.CrossRefPubMedGoogle Scholar
  123. 123.
    Pelucchi C, Bosetti C, Rossi M, Negri E, La Vecchia C. Selected aspects of Mediterranean diet and cancer risk. Nutr Cancer. 2009;61(6):756–66.  https://doi.org/10.1080/01635580903285007. Review.CrossRefPubMedGoogle Scholar
  124. 124.
    La Vecchia C. Mediterranean diet and cancer. Public Health Nutr. 2004;7(7):965–8. Review.CrossRefGoogle Scholar
  125. 125.
    La Vecchia C. Estrogen and combined estrogen-progestogen therapy in the menopause and breast cancer. Breast. 2004;13(6):515–8. Review.CrossRefGoogle Scholar
  126. 126.
    Giacosa A, Barale R, Bavaresco L, Gatenby P, Gerbi V, Janssens J, Johnston B, Kas K, La Vecchia C, Mainguet P, Morazzoni P, Negri E, Pelucchi C, Pezzotti M, Rondanelli M. Cancer prevention in Europe: the Mediterranean diet as a protective choice. Eur J Cancer Prev. 2013;22(1):90–5.  https://doi.org/10.1097/CEJ.0b013e328354d2d7. Review.CrossRefPubMedGoogle Scholar
  127. 127.
    Dalvi TB, Canchola AJ, Horn-Ross PL. Dietary patterns, Mediterranean diet, and endometrial cancer risk. Cancer Causes Control. 2007;18(9):957–66. Epub 2007 Jul 19.CrossRefGoogle Scholar
  128. 128.
    Kontou N, Psaltopoulou T, Panagiotakos D, Dimopoulos MA, Linos A. The Mediterranean diet in cancer prevention: a review. J Med Food. 2011;14(10):1065–78.  https://doi.org/10.1089/jmf.2010.0244. Epub 2011 Jun 11. Review.CrossRefPubMedGoogle Scholar
  129. 129.
    Sacchi R, Paduano A, Savarese M, Vitaglione P, Fogliano V. Extra virgin olive oil: from composition to “molecular gastronomy”. Cancer Treat Res. 2014;159:325–38.  https://doi.org/10.1007/978-3-642-38007-5_19. Review.CrossRefPubMedGoogle Scholar
  130. 130.
    Kang BY. Curcumin reduces angiotensin to mediated cardiomyocyte growth via LOX-1 inhibition. J Cardiovasc Pharmacol. 2010;55:417–24.CrossRefGoogle Scholar
  131. 131.
    Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol. 2017;70(8):913–22.  https://doi.org/10.1016/j.jacc.2017.06.054.CrossRefPubMedGoogle Scholar
  132. 132.
    de Gaetano G, Costanzo S. Alcohol and health: praise of the J curves. J Am Coll Cardiol. 2017;70(8):923–5.  https://doi.org/10.1016/j.jacc.2017.07.710.CrossRefPubMedGoogle Scholar
  133. 133.
    Plunk AD, Syed-Mohammed H, Cavazos-Rehg P, Bierut LJ, Grucza RA. Alcohol consumption, heavy drinking and mortality: re-thinking the J-shaped curve. Alcohol Clin Exp Res. 2014;38(2):471–8.  https://doi.org/10.1111/acer.12250.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicholas L. DePace
    • 1
  • Joseph Colombo
    • 2
  1. 1.Franklin Cardiovascular Associates, PA and Autonomic Dysfunction and POTS CenterSewellUSA
  2. 2.TMCAMS, Inc.Franklin Cardiovascular Associates, PA and Autonomic Dysfunction and POTS CenterRichboroUSA

Personalised recommendations