Advertisement

Nitric Oxide (Prong-2)

  • Nicholas L. DePace
  • Joseph Colombo
Chapter
  • 333 Downloads

Abstract

Nitric oxide is a small molecule gas that is primarily produced by epithelial cells throughout the body (e.g., the inner lining of blood vessels, the blood-brain barrier, and barriers in the gut and around reproductive structures). Nitric oxide is known as the universal messenger, made in ubiquitous quantities to signal both defense mechanisms blocking harmful substances from entering the body and the mechanisms that permit helpful substances to enter the body. As such it is involved in many processes, for example, detoxification and the urea cycle, tissue regeneration, blood flow, prevention of atherosclerosis, and regulation of inflammation and oxidation. A large reservoir of nitric oxide is very important to health and wellness, but not too large. As with everything else in life, there still needs to be a proper balance. However, with the typical Western lifestyle, most do not have nearly as large a reservoir as is needed for wellness. Therefore, supplements are strongly recommended.

There are two processes by which supplemental nitric oxide may enter the body. The primary pathway is through the gut by consuming foods that are rich in the precursors to nitric oxide (e.g., L-arginine, L-citrulline, and L-carnitine). However, this pathway is limited. The secondary pathway is not rate limited and is assisted by friendly bacteria in the mouth. The secondary pathway is supplemented by products such as beetroot powder. Granted eating red beets is very healthful and does help, but it is not possible for the average person to eat enough red beets to match the nitric oxide-producing potential of one serving of beetroot powder.

The benefits of beetroot powder are discussed in examples involving heart failure, erectile dysfunction, and the nervous system. Also, there is a “dark side” to nitric oxide. Again, too much is not good either. The dark side of nitric oxide and how it may be avoided will also be discussed.

Keywords

Anti-inflammatory Anti-atherosclerotic Antioxidant Beetroot powder Detoxification Epithelial cells Erectile dysfunction Heart failure L-carnitine L-arginine L-citrulline Nervous system Nitric oxide production “Universal messenger” Urea cycle 

References

  1. 1.
    Widmer RJ, Lerman A. Endothelial dysfunction and cardiovascular disease. Glob Cardiol Sci Pract. 2014;2014(3):291–308.  https://doi.org/10.5339/gcsp.2014.43. eCollection 2014. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–92. Review.PubMedCrossRefGoogle Scholar
  3. 3.
    Hadi HA, Carr CS, Al SJ. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183–98. Review.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch. 2010;459(6):807–16.  https://doi.org/10.1007/s00424-009-0765-9. Epub 2010 Jan 16. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Snyder SH. Nitric oxide: first in a new class of neurotransmitters. Science. 1992;257(5069):494–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Groneberg D, Voussen B, Friebe A. Integrative control of gastrointestinal motility by nitric oxide. Curr Med Chem. 2016;23(24):2715–35. Review.PubMedCrossRefGoogle Scholar
  7. 7.
    Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988;157(1):87–94. Erratum in: Biochem Biophys Res Commun 1989 Jan 31;158(2):624.PubMedCrossRefGoogle Scholar
  8. 8.
    Hibbs JB Jr. Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res Immunol. 1991;142(7):565–9; discussion 596–8. Review.PubMedCrossRefGoogle Scholar
  9. 9.
    Nathan CF, Hibbs JB Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991;3(1):65–70. Review.PubMedCrossRefGoogle Scholar
  10. 10.
    Margel D, Mizrahi M, Regev-Shoshani G, Ko M, Moshe M, Ozalvo R, Shavit-Grievink L, Baniel J, Kedar D, Yossepowitch O, Lifshitz D, Nadu A, Greenberg D, Av-Gay Y. Nitric oxide charged catheters as a potential strategy for prevention of hospital acquired infections. PLoS One. 2017;12(4):e0174443.  https://doi.org/10.1371/journal.pone.0174443. eCollection 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tsukiyama Y, Ito T, Nagaoka K, Eguchi E, Ogino K. Effects of exercise training on nitric oxide, blood pressure and antioxidant enzymes. J Clin Biochem Nutr. 2017;60(3):180–6.  https://doi.org/10.3164/jcbn.16-108. Epub 2017 Apr 7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Faraci FM. Reactive oxygen species: influence on cerebral vascular tone. J Appl Physiol (1985). 2006;100(2):739–43. Review.CrossRefGoogle Scholar
  13. 13.
    Faraci FM, Brian JE Jr. Nitric oxide and the cerebral circulation. Stroke. 1994;25(3):692–703.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Musicki B, Lagoda G, Goetz T, La Favor JD, Burnett AL. Transnitrosylation: a factor in nitric oxide-mediated penile erection. J Sex Med. 2016;13(5):808–14.  https://doi.org/10.1016/j.jsxm.2016.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
  16. 16.
    Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2001;1504(1):46–57. Review.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Damodaran VB, Leszczak V, Wold KA, Lantvit SM, Popat KC, Reynolds MM. Anti-thrombogenic properties of a nitric oxide-releasing dextran derivative: evaluation of platelet activation and whole blood clotting kinetics. RSC Adv. 2013;3(46).  https://doi.org/10.1039/C3RA45521A.CrossRefGoogle Scholar
  18. 18.
    Lefer AM. Nitric oxide: nature’s naturally occurring leukocyte inhibitor. Circulation. 1997;95(3):553–4. Review.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lefer AM, Lefer DJ. Nitric oxide. II. Nitric oxide protects in intestinal inflammation. Am J Phys. 1999;276(3 Pt 1):G572–5. Review.Google Scholar
  20. 20.
    Ashraf MZ, Srivastava S. Oxidized phospholipids: introduction and biological significance. In: Lipoproteins. Gerhard Kostner; 2012.  https://doi.org/10.5772/50461.Google Scholar
  21. 21.
    Predonzani A, Calì B, Agnellini AH, Molon B. Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med. 2015;5(2):64–76.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Korhonen R, Korpela R, Saxelin M, Mäki M, Kankaanranta H, Moilanen E. Induction of nitric oxide synthesis by probiotic lactobacillus rhamnosus GG in J774 macrophages and human T84 intestinal epithelial cells. Inflammation. 2001;25(4):223–32.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, Zamboni N, Sallusto F, Lanzavecchia A. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016;167(3):829–842.e13.  https://doi.org/10.1016/j.cell.2016.09.031. Epub 2016 Oct 13.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Niedbala W, Cai B, Liew FY. Role of nitric oxide in the regulation of T cell functions. Ann Rheum Dis. 2006;65(Suppl 3):iii37–40. Review.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Niedbala W, Besnard AG, Jiang HR, Alves-Filho JC, Fukada SY, Nascimento D, Mitani A, Pushparaj P, Alqahtani MH, Liew FY. Nitric oxide-induced regulatory T cells inhibit Th17 but not Th1 cell differentiation and function. J Immunol. 2013;191(1):164–70.  https://doi.org/10.4049/jimmunol.1202580. Epub 2013 May 29.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Winkler MS, Kluge S, Holzmann M, Moritz E, Robbe L, Bauer A, Zahrte C, Priefler M, Schwedhelm E, Böger RH, Goetz AE, Nierhaus A, Zoellner C. Markers of nitric oxide are associated with sepsis severity: an observational study. Crit Care. 2017;21(1):189.  https://doi.org/10.1186/s13054-017-1782-2.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Predonzani A, Calì B, Agnellini AH, Molon B. Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med. 2015;5(2):64–76.  https://doi.org/10.5493/wjem.v5.i2.64. eCollection 2015 May 20.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Predonzani A, Calì B, Agnellini AH, Molon B. Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med. 2015;5(2):64–76.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ying L, Hofseth LJ. An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res. 2007;67:1407–10.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V. Nitric oxide and cancer: a review. World J Surg Oncol. 2013;11:118.  https://doi.org/10.1186/1477-7819-11-118. Review.CrossRefPubMedGoogle Scholar
  31. 31.
    Li LM, Kibourn RG, Adams J, Filder IJ. Role of NO in lysis of tumor cells by cytokine activated endothelial cells. Cancer Res. 1991;51:2531–5.PubMedGoogle Scholar
  32. 32.
    Shang ZJ, Li JR. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in oral squamous cell carcinoma: its correlation with angiogenesis and disease progression. J Oral Pathol Med. 2005;4:134–9.CrossRefGoogle Scholar
  33. 33.
    Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol. 2005;15:277–89.PubMedCrossRefGoogle Scholar
  34. 34.
    Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol. 2015;6:311–7.  https://doi.org/10.1016/j.redox.2015.07.015. Epub 2015 Jul 31. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol. 2015;6:311–7.  https://doi.org/10.1016/j.redox.2015.07.015. Epub 2015 Jul 31. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Reveneau S, Arnould L, Jolimoy G, Hilpert S, Lejeune P, Saint-Giorgio V, Belichard C, Jeannin JF. Nitric oxide synthase in human breast cancer is associated with tumor grade, proliferation rate, and expression of progesterone receptor. Lab Investig. 1999;79:1215–25.PubMedGoogle Scholar
  37. 37.
    Seabra AB, de Lima R, Calderón M. Nitric oxide releasing nanomaterials for cancer treatment: current status and perspectives. Curr Top Med Chem. 2015;15(4):298–308. Review.PubMedCrossRefGoogle Scholar
  38. 38.
    Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Review. Biochim Biophys Acta Bioenerg. 2001;1504(1):46–57.CrossRefGoogle Scholar
  39. 39.
    Brown GC. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Review. Biochim Biophys Acta Bioenerg. 2001;1504(1):46–57.CrossRefGoogle Scholar
  40. 40.
    Chakraborty S, Ain R. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem. 2017;292(16):6600–20.  https://doi.org/10.1074/jbc.M116.742627. Epub 2017 Feb 24.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Siegel C, McCullough LD. NAD+ depletion or PAR polymer formation: which plays the role of executioner in ischemic cell death? Acta Physiol (Oxf). 2011;203(1):225–34.  https://doi.org/10.1111/j.1748-1716.2010.02229.x.CrossRefGoogle Scholar
  42. 42.
    Siegel C, McCullough LD. NAD+ depletion or PAR polymer formation: which plays the role of executioner in ischemic cell death? Acta Physiol (Oxf). 2011;203(1):225–34.  https://doi.org/10.1111/j.1748-1716.2010.02229.x.CrossRefGoogle Scholar
  43. 43.
    Morbidelli L, Chang CH, Douglas JG, Granger HJ, Ledda F, Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Phys. 1996;270(1 Pt 2):H411–5.Google Scholar
  44. 44.
    Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, Bicknell R. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest. 1997;99(11):2625–34.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Uhlmann S, Friedrichs U, Eichler W, Hoffmann S, Wiedemann P. Direct measurement of VEGF-induced nitric oxide production by choroidal endothelial cells. Microvasc Res. 2001;62(2):179–89.PubMedCrossRefGoogle Scholar
  46. 46.
    Kimura H, Esumi H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol. 2003;50(1):49–59. Review.PubMedGoogle Scholar
  47. 47.
    Zhang HH, Chen JC, Sheibani L, Lechuga TJ, Chen DB. Pregnancy augments VEGF-stimulated in vitro angiogenesis and vasodilator (NO and H2S) production in human uterine artery endothelial cells. J Clin Endocrinol Metab. 2017.  https://doi.org/10.1210/jc.2017-00437.CrossRefGoogle Scholar
  48. 48.
    Estrada C, Murillo-Carretero M. Nitric oxide and adult neurogenesis in health and disease. Neuroscientist. 2005;11(4):294.PubMedCrossRefGoogle Scholar
  49. 49.
    Wimalawansa SJ. Nitric oxide and bone. Ann N Y Acad Sci. 2010;1192:391–403.  https://doi.org/10.1111/j.1749-6632.2009.05230.x. Review.CrossRefPubMedGoogle Scholar
  50. 50.
    Yu Q, Li T, Li J, Zhong L, Mao X. Nitricoxidesynthase in male urological and andrologic functions. Nitric oxide synthase – simple enzyme-complex roles. 113–36. http://www.intechopen.com/books/nitric-oxide-synthase-simpleenzyme-complex-roles
  51. 51.
    Emanuele MA, Wezeman F, Emanuele NV. Alcohol’s effect on female reproductive function. Alcohol Res Health. 2002;26(4):274–81. National Institute on Alcohol Abuse and Alcoholism (NIAAA). June, 2003. https://pubs.niaaa.nih.gov/publications/arh26-4/274-281.htm
  52. 52.
    Ferrier DP. Biochemistry. 6th ed. Philadelphia: Lippincott, Williams & Williams, a Wolters Kluwer Business; 2014.Google Scholar
  53. 53.
    Erez A. Arginosuccinate acidura: from monogenic to a complex disorder. Genet Med. 2013;15:251–7.  https://doi.org/10.1038/gim.2012.166. Epub 2013 Jan 10.CrossRefPubMedGoogle Scholar
  54. 54.
    Kelm M. Nitric oxide metabolism and breakdown. BBA. 1999;1411:273–89.  https://doi.org/10.1016/S0005-2728(99)00020-1.CrossRefPubMedGoogle Scholar
  55. 55.
    Tiso M, Schechter AN. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS One. 2015;10(3):e0119712.  https://doi.org/10.1371/journal.one.0119712.
  56. 56.
    Gad MZ. Anti-aging effects of L-arginine. J Adv Res. 2010;1:169–77. Review.CrossRefGoogle Scholar
  57. 57.
    Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, Lima JA, Crouse JR, Herrington DM. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(6):502–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Huang A, Silver AE, Shvenke E, Schopfer DW, Jahangir E, Titas MA, Shpilman A, Menzoian JO, Watkins MT, Raffetto JD, Gibbons G, Woodson J, Shaw PM, Dhadly M, Eberhardt RT, Keaney JF Jr, Gokce N, Vita JA. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler Thromb Vasc Biol. 2007;27(10):2113–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Anderson T, Charbonneau F, Title LM, Buithieu J, Rose MS, Conradson H, Hildebrand K, Fung M, Verma S, Lonn EM. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the firefighters and their endothelium (FATE) study. Circulation. 2011;123(2):163–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Lind L, Berglund L, Larsson A, Sundström J. Endothelial function in resistance and conduit arteries and 5-year risk of cardiovascular disease. Circulation. 2011;123(14):1545–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Gorren AC, Mayer B. Tetrahydrobiopterin in nitric oxide synthesis: a novel biological role for pteridines. Curr Drug Metab. 2002;3(2):133–57. Review.PubMedCrossRefGoogle Scholar
  62. 62.
    Michel T. NO way to relax: the complexities of coupling nitric oxide synthase pathways in the heart. Circulation. 2010;121(4):484–6.  https://doi.org/10.1161/CIR.0b013e3181d1e24e. Epub 2010 Jan 18.CrossRefPubMedGoogle Scholar
  63. 63.
    Channon KM. Tetrahydrobiopterin: a vascular redox target to improve endothelial function. Curr Vasc Pharmacol. 2012;10(6):705–8. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Zhang Y, Janssens SP, Wingler K, Schmidt HH, Moens AL. Modulating endothelial nitric oxide synthase: a new cardiovascular therapeutic strategy. Am J Physiol Heart Circ Physiol. 2011;301(3):H634–46.  https://doi.org/10.1152/ajpheart.01315.2010. Epub 2011 May 27. Review. Erratum in: Am J Physiol Heart Circ Physiol. 2012 Jul 15;303(2):H241.CrossRefPubMedGoogle Scholar
  65. 65.
    Menzel D, Haller H, Wilhelm M, et al. L-arginine and B vitamins improve endothelial function in subjects with mild to moderate blood pressure elevation. Eur J Nutr. 2018;57(2):557–68.  https://doi.org/10.1007/s00394-016-1342-6 (Springer Berlin Heidelberg).PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Stuehr DJ. Enzymes of the L-arginine to nitric oxide pathway. J Nutr. 2004;134(10 Suppl):2748S–51S; discussion 2765S–2767S. ReviewPubMedCrossRefGoogle Scholar
  67. 67.
    Lai WK, Kan MY. Homocysteine-induced endothelial dysfunction. Ann Nutr Metab. 2015;67:1–12.  https://doi.org/10.1159/000437098.CrossRefPubMedGoogle Scholar
  68. 68.
    Scalera F, Bode-Böger SM. Nitric oxide–asymmetric dimethylarginine system in endothelial cell senescence. In: Ignarro LJ, editor. Nitric oxide biology and pathobiology. 2nd ed. San Diego: Elsevier; 2010.Google Scholar
  69. 69.
    Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988;85(18):6622–6.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Blackburn EH. Telomere states and cell fates. Nature. 2000;408:53–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106:661–73.PubMedCrossRefGoogle Scholar
  72. 72.
    Blasco MA. Mammalian telomeres and telomerase: why they matter for cancer and aging. Eur J Cell Biol. 2003;82:441–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Bode-Böger SM, Martens-Lobenhoffer J, Täger M, Schröder H, Scalera F. Aspirin reduces endothelial cell senescence. Biochem Biophys Res Commun. 2005;334:1226–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Scalera F, Martens-Lobenhoffer J, Bukowska A, Lendeckel U, Täger M, Bode-Böger SM. Effect of telmisartan on nitric oxide-asymmetrical dimethylarginine system. Role of angiotensin II type 1 receptor and peroxisome proliferator activated receptor γ signaling during endothelial aging. Hypertension. 2008;51:696–703.PubMedCrossRefGoogle Scholar
  75. 75.
    Jin ZG. Where is endothelial nitric oxide synthase more critical: plasma membrane or Golgi? Arterioscler Thromb Vasc Biol. 2006;26(5):959–61.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Petruson K, Stalfors J, Jacobsson KE, Ny L, Petruson B. Nitric oxide production in the sphenoidal sinus by the inducible and constitutive isozymes of nitric oxide synthase. Rhinology. 2005;43(1):18–23.PubMedGoogle Scholar
  77. 77.
    Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2003;284(1):R1–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Ostrom RS, Bundey RA, Insel PA. Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes. J Biol Chem. 2004;279(19):19846–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Minshall RD, Sessa WC, Stan RV, Anderson RG, Malik AB. Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol. 2003;285(6):L1179–83.PubMedCrossRefGoogle Scholar
  80. 80.
    Ho FM, Lin WW, Chen BC, Chao CM, Yang CR, Lin LY, Lai CC, Liu SH, Liau CS. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH(2)-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cell Signal. 2006;18(3):391–9. Epub 2005 Jun 20.PubMedCrossRefGoogle Scholar
  81. 81.
    Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol. 2003;285(3):C499–508.PubMedCrossRefGoogle Scholar
  82. 82.
    Goubareva I, Gkaliagkousi E, Shah A, Queen L, Ritter J, Ferro A. Age decreases nitric oxide synthesis and responsiveness in human platelets and increases formation of monocyte-platelet aggregates. Cardiovasc Res. 2007;75(4):793–802. Epub 2007 May 24.PubMedCrossRefGoogle Scholar
  83. 83.
    Eggebeen J, Kim-Shapiro DB, Haykowsky M, Morgan TM, Basu S, Brubaker P, Rejeski J, Kitzman DW. One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2016;4(6):428–37.  https://doi.org/10.1016/j.jchf.2015.12.013. Epub 2016 Feb 10.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Shaltout HA, Eggebeen J, Marsh AP, Brubaker PH, Laurienti PJ, Burdette JH, Basu S, Morgan A, Dos Santos PC, Norris JL, Morgan TM, Miller GD, Rejeski WJ, Hawfield AT, Diz DI, Becton JT, Kim-Shapiro DB, Kitzman DW. Effects of supervised exercise and dietary nitrate in older adults with controlled hypertension and/or heart failure with preserved ejection fraction. Nitric Oxide. 2017;69:78–90.  https://doi.org/10.1016/j.niox.2017.05.005. Epub 2017 May 23.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Woessner MN, McIlvenna LC, Ortiz de Zevallos J, Neil C, Allen JD. Dietary nitrate supplementation in cardiovascular health: an ergogenic aid or exercise therapeutic? Am J Physiol Heart Circ Physiol. 2017:ajpheart004142017.  https://doi.org/10.1152/ajpheart.00414.2017.PubMedCrossRefGoogle Scholar
  86. 86.
    Notay K, Incognito AV, Millar PJ. Acute beetroot juice supplementation on sympathetic nerve activity: a randomized, double-blind, placebo-controlled proof-of-concept study. Am J Physiol Heart Circ Physiol. 2017;313(1):H59–65.  https://doi.org/10.1152/ajpheart.00163.2017. Epub 2017 May 5.CrossRefPubMedGoogle Scholar
  87. 87.
    Ashor AW, Lara J, Siervo M. Medium-term effects of dietary nitrate supplementation on systolic and diastolic blood pressure in adults: a systematic review and meta-analysis. J Hypertens. 2017;35(7):1353–9.  https://doi.org/10.1097/HJH.0000000000001305.CrossRefPubMedGoogle Scholar
  88. 88.
    Clements WT, Lee SR, Bloomer RJ. Nitrate ingestion: a review of the health and physical performance effects. Nutrients. 2014;6(11):5224–64.  https://doi.org/10.3390/nu6115224. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Siervo M, Lara J, Ogbonmwan I, Mathers JC. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J Nutr. 2013;143(6):818–26.  https://doi.org/10.3945/jn.112.170233. Epub 2013 Apr 17. Review.CrossRefPubMedGoogle Scholar
  90. 90.
    Coles LT, Clifton PM. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: a randomized, placebo-controlled trial. Nutr J. 2012;11:106.  https://doi.org/10.1186/1475-2891-11-106.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Hobbs DA, Goulding MG, Nguyen A, Malaver T, Walker CF, George TW, Methven L, Lovegrove JA. Acute ingestion of beetroot bread increases endothelium-independent vasodilation and lowers diastolic blood pressure in healthy men: a randomized controlled trial. J Nutr. 2013;143(9):1399–405.  https://doi.org/10.3945/jn.113.175778. Epub 2013 Jul 24.CrossRefPubMedGoogle Scholar
  92. 92.
    Jajja A, Sutyarjoko A, Lara J, Rennie K, Brandt K, Qadir O, Siervo M. Beetroot supplementation lowers daily systolic blood pressure in older, overweight subjects. Nutr Res. 2014;34(10):868–75.  https://doi.org/10.1016/j.nutres.2014.09.007. Epub 2014 Sep 28.CrossRefPubMedGoogle Scholar
  93. 93.
    Wong RH, Garg ML, Wood LG, Howe PR. Antihypertensive potential of combined extracts of olive leaf, green coffee bean and beetroot: a randomized, double-blind, placebo-controlled crossover trial. Nutrients. 2014;6(11):4881–94.  https://doi.org/10.3390/nu6114881.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Clements WT, Lee SR, Bloomer RJ. Nitrate ingestion: a review of the health and physical performance effects. Nutrients. 2014;6(11):5224–64.  https://doi.org/10.3390/nu6115224. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Lara J, Ashor AW, Oggioni C, Ahluwalia A, Mathers JC, Siervo M. Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysis. Eur J Nutr. 2016;55(2):451–9.  https://doi.org/10.1007/s00394-015-0872-7. Epub 2015 Mar 13. Review.CrossRefPubMedGoogle Scholar
  96. 96.
    Lee JS, Stebbins CL, Jung E, Nho H, Kim JK, Chang MJ, Choi HM. Effects of chronic dietary nitrate supplementation on the hemodynamic response to dynamic exercise. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R459–66.  https://doi.org/10.1152/ajpregu.00099.2015. Epub 2015 Jun 17.CrossRefPubMedGoogle Scholar
  97. 97.
    Clifford T, Howatson G, West DJ, Stevenson EJ. The potential benefits of red beetroot supplementation in health and disease. Nutrients. 2015;7(4):2801–22.  https://doi.org/10.3390/nu7042801. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Bondonno CP, Liu AH, Croft KD, Ward NC, Shinde S, Moodley Y, Lundberg JO, Puddey IB, Woodman RJ, Hodgson JM. Absence of an effect of high nitrate intake from beetroot juice on blood pressure in treated hypertensive individuals: a randomized controlled trial. Am J Clin Nutr. 2015;102(2):368–75.  https://doi.org/10.3945/ajcn.114.101188. Epub 2015 Jul 1.CrossRefPubMedGoogle Scholar
  99. 99.
    Kelly J, Vanhatalo A, Wilkerson DP, Wylie LJ, Jones AM. Effects of nitrate on the power-duration relationship for severe-intensity exercise. Med Sci Sports Exerc. 2013;45(9):1798–806.  https://doi.org/10.1249/MSS.0b013e31828e885c.CrossRefPubMedGoogle Scholar
  100. 100.
    Muggeridge DJ, Howe CC, Spendiff O, Pedlar C, James PE, Easton C. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int J Sport Nutr Exerc Metab. 2013;23(5):498–506. Epub 2013 Apr 9. Erratum in: Int J Sport Nutr Exerc Metab. 2013 Dec;23 (6):642.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Hoon MW, Jones AM, Johnson NA, Blackwell JR, Broad EM, Lundy B, Rice AJ, Burke LM. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2,000-m rowing performance in trained athletes. Int J Sports Physiol Perform. 2014;9(4):615–20.  https://doi.org/10.1123/ijspp.2013-0207. Epub 2013 Sep 30.CrossRefPubMedGoogle Scholar
  102. 102.
    Breese BC, McNarry MA, Marwood S, Blackwell JR, Bailey SJ, Jones AM. Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate. Am J Physiol Regul Integr Comp Physiol. 2013;305(12):R1441–50.  https://doi.org/10.1152/ajpregu.00295.2013. Epub 2013 Oct 2.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Lowery RP, Joy JM, Dudeck JE, Oliveira de Souza E, McCleary SA, Wells S, Wildman R, Wilson JM. Effects of 8 weeks of Xpand® 2X pre workout supplementation on skeletal muscle hypertrophy, lean body mass, and strength in resistance trained males. J Int Soc Sports Nutr. 2013;10(1):44.  https://doi.org/10.1186/1550-2783-10-44.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Thompson KG, Turner L, Prichard J, Dodd F, Kennedy DO, Haskell C, Blackwell JR, Jones AM. Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir Physiol Neurobiol. 2014;193:11–20.  https://doi.org/10.1016/j.resp.2013.12.015. Epub 2013 Dec 31.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Pinna M, Roberto S, Milia R, Marongiu E, Olla S, Loi A, Migliaccio GM, Padulo J, Orlandi C, Tocco F, Concu A, Crisafulli A. Effect of beetroot juice supplementation on aerobic response during swimming. Nutrients. 2014;6(2):605–15.  https://doi.org/10.3390/nu6020605.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Flanagan SD, Looney DP, Miller MJ, DuPont WH, Pryor L, Creighton BC, Sterczala AJ, Szivak TK, Hooper DR, Maresh CM, Volek JS, Ellis LA, Kraemer WJ. The effects of nitrate-rich supplementation on neuromuscular efficiency during heavy resistance exercise. J Am Coll Nutr. 2016;35(2):100–7.  https://doi.org/10.1080/07315724.2015.1081572. Epub 2016 Feb 17.CrossRefPubMedGoogle Scholar
  107. 107.
    Petrie M, Rejeski WJ, Basu S, Laurienti PJ, Marsh AP, Norris JL, Kim-Shapiro DB, Burdette JH. Beet root juice: an ergogenic aid for exercise and the aging brain. J Gerontol A Biol Sci Med Sci. 2016.  https://doi.org/10.1093/gerona/glw219. [Epub ahead of print].
  108. 108.
    Domínguez R, Cuenca E, Maté-Muñoz JL, García-Fernández P, Serra-Paya N, Estevan MC, Herreros PV, Garnacho-Castaño MV. Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients. 2017;9(1). pii: E43.  https://doi.org/10.3390/nu9010043. Review.PubMedCentralCrossRefPubMedGoogle Scholar
  109. 109.
    Montenegro CF, Kwong DA, Minow ZA, Davis BA, Lozada CF, Casazza GA. Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl Physiol Nutr Metab. 2017;42(2):166–72.  https://doi.org/10.1139/apnm-2016-0452. Epub 2016 Oct 14.CrossRefPubMedGoogle Scholar
  110. 110.
    Vanhatalo A, Jones AM, Blackwell JR, Winyard PG, Fulford J. Dietary nitrate accelerates postexercise muscle metabolic recovery and O2 delivery in hypoxia. J Appl Physiol (1985). 2014;117(12):1460–70.  https://doi.org/10.1152/japplphysiol.00096.2014. Epub 2014 Oct 9.CrossRefGoogle Scholar
  111. 111.
    Kim JK, Moore DJ, Maurer DG, Kim-Shapiro DB, Basu S, Flanagan MP, Skulas-Ray AC, Kris-Etherton P, Proctor DN. Acute dietary nitrate supplementation does not augment submaximal forearm exercise hyperemia in healthy young men. Appl Physiol Nutr Metab. 2015;40(2):122–8.  https://doi.org/10.1139/apnm-2014-0228. Epub 2014 Oct 15.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    MacLeod KE, Nugent SF, Barr SI, Koehle MS, Sporer BC, MacInnis MJ. Acute beetroot juice supplementation does not improve cycling performance in normoxia or moderate hypoxia. Int J Sport Nutr Exerc Metab. 2015;25(4):359–66.  https://doi.org/10.1123/ijsnem.2014-0129. Epub 2015 Mar 26.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Arnold JT, Oliver SJ, Lewis-Jones TM, Wylie LJ, Macdonald JH. Beetroot juice does not enhance altitude running performance in well-trained athletes. Appl Physiol Nutr Metab. 2015;40(6):590–5.  https://doi.org/10.1139/apnm-2014-0470. Epub 2015 Feb 4.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Flueck JL, Bogdanova A, Mettler S, Perret C. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise. Appl Physiol Nutr Metab. 2016;41(4):421–9.  https://doi.org/10.1139/apnm-2015-0458. Epub 2015 Dec 23.CrossRefPubMedGoogle Scholar
  115. 115.
    Chirinos JA, Akers SR, Trieu L, Ischiropoulos H, Doulias PT, Tariq A, Vassim I, Koppula MR, Syed AA, Soto-Calderon H, Townsend RR, Cappola TP, Margulies KB, Zamani P. Heart failure, left ventricular remodeling, and circulating nitric oxide metabolites. J Am Heart Assoc. 2016;5(10). pii: e004133. Erratum in: J Am Heart Assoc. 2017 Feb 14;6(2).Google Scholar
  116. 116.
    Zamani P, Tan V, Soto-Calderon H, Beraun M, Brandimarto JA, Trieu L, Varakantam S, Doulias PT, Townsend RR, Chittams J, Margulies KB, Cappola TP, Poole DC, Ischiropoulos H, Chirinos JA. Pharmacokinetics and pharmacodynamics of inorganic nitrate in heart failure with preserved ejection fraction. Circ Res. 2017;120(7):1151–61.  https://doi.org/10.1161/CIRCRESAHA.116.309832. Epub 2016 Dec 7.CrossRefPubMedGoogle Scholar
  117. 117.
    Jacob T, Ascher E, Vorsanger M, Hingorani A, Kallakuri S, Yorkovich W, Schuzter R. Decreased production of nitric oxide by peripheral blood mononuclear cells of patients with peripheral vascular disease. Vasc Endovasc Surg. 2005;39(2):175–81.CrossRefGoogle Scholar
  118. 118.
    Tapiero H, Mathé G, Couvreur P, Tew KD. L-Arginine. Biomed Pharmacother. 2002;56(9):439–45.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME. Renal arginine synthesis: studies in vitro and in vivo. Am J Phys. 1990;259(3 Pt1):E437–42.Google Scholar
  120. 120.
    Watford M. The urea cycle: a two-compartment system. Essays Biochem. 1991;26:49–58.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Fritz JH. Arginine cools the inflamed gut. Infect Immun. 2013;81(10):3500–2.  https://doi.org/10.1128/IAI.00789-13. Epub 2013 Jul 29.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Patel VB, Preedy VR, Rajendram R, editors. L-arginine in clinical nutrition. Cham: Humana Press, Springer International Publishing; 2017.Google Scholar
  123. 123.
    Pahlavani N, Jafari M, Sadeghi O, Rezaei M, Rasad H, Rahdar HA, Entezari MH. L-arginine supplementation and risk factors of cardiovascular diseases in healthy men: a double-blind randomized clinical trial. Version 2. F1000Res. 2014 [revised 2017 Jun 1];3:306.  https://doi.org/10.12688/f1000research.5877.2. eCollection 2014.PubMedCentralCrossRefGoogle Scholar
  124. 124.
    Clifford T, Howatson G, West DJ, Stevenson EJ. The potential benefits of red beetroot supplementation in health and disease. Nutrients. 2015;7(4):2801–22.  https://doi.org/10.3390/nu7042801. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Flanagan SD, Looney DP, Miller MJ, DuPont WH, Pryor L, Creighton BC, Sterczala AJ, Szivak TK, Hooper DR, Maresh CM, Volek JS, Ellis LA, Kraemer WJ. The effects of nitrate-rich supplementation on neuromuscular efficiency during heavy resistance exercise. J Am Coll Nutr. 2016;35(2):100–7.  https://doi.org/10.1080/07315724.2015.1081572. Epub 2016 Feb 17.CrossRefPubMedGoogle Scholar
  126. 126.
    Domínguez R, Cuenca E, Maté-Muñoz JL, García-Fernández P, Serra-Paya N, Estevan MC, Herreros PV, Garnacho-Castaño MV. Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients. 2017;9(1). pii: E43.  https://doi.org/10.3390/nu9010043. Review.PubMedCentralCrossRefPubMedGoogle Scholar
  127. 127.
    Bondonno CP, Liu AH, Croft KD, Ward NC, Shinde S, Moodley Y, Lundberg JO, Puddey IB, Woodman RJ, Hodgson JM. Absence of an effect of high nitrate intake from beetroot juice on blood pressure in treated hypertensive individuals: a randomized controlled trial. Am J Clin Nutr. 2015;102(2):368–75.  https://doi.org/10.3945/ajcn.114.101188. Epub 2015 Jul 1.CrossRefPubMedGoogle Scholar
  128. 128.
    Arnold JT, Oliver SJ, Lewis-Jones TM, Wylie LJ, Macdonald JH. Beetroot juice does not enhance altitude running performance in well-trained athletes. Appl Physiol Nutr Metab. 2015;40(6):590–5.  https://doi.org/10.1139/apnm-2014-0470. Epub 2015 Feb 4.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Boger RH, Bode Boger SM. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol. 2001;41:79–99.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Kamada Y, Nagaretani H, Tamura S, Ohama T, Maruyama T, Hiraoka H, et al. Vascular endothelial dysfunction resulting from L-arginine deficiency in a patient with lysinuric protein intolerance. J Clin Invest. 2001;108(5):717–24.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Boger RH, Ron ES. L-arginine improves vascular function by overcoming deleterious effects of ADMA, a novel cardiovascular risk factor. Altern Med Rev. 2005;10(1):14–23.PubMedGoogle Scholar
  132. 132.
    Holt LE Jr, Albanese AA. Observations on amino acid deficiencies in man. Trans Assoc Am Phys. 1944;58:143–56.Google Scholar
  133. 133.
    Tanimura J. Studies on arginine in human semen. II. The effects of medication with L-arginine-HCL on male infertility. Bull Osaka Med Sch. 1967;13(2):84–9.PubMedGoogle Scholar
  134. 134.
    Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature. 2000;408(6809):239–47.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Schwentker A, Vodovotz Y, Weller R, Billiar TR. Nitric oxide and wound repair: role of cytokines? Nitric Oxide. 2002;7(1):1–10.PubMedCrossRefGoogle Scholar
  136. 136.
    Seifter E, Rettura G, Barbul A, Levenson SM. Arginine: an essential amino acid for injured rats. Surgery. 1978;84(2):224–30.PubMedGoogle Scholar
  137. 137.
    Kirk SJ, Hurson M, Regan MC, Holt DR, Wasserkrug HL, Barbul A. Arginine stimulates wound healing and immune function in elderly human beings. Surgery. 1993;114(2):155–9.PubMedGoogle Scholar
  138. 138.
    Arbss MA, Ferrando JM, Vidal J, Quiles MT, Huguet P, Castells J, et al. Early effects of exogenous arginine after the implantation of prosthetic material into the rat abdominal wall. Life Sci. 2000;67(20):2493–512.PubMedCrossRefGoogle Scholar
  139. 139.
    Albina JE, Mills CD, Henry WL Jr, Caldwell MD. Temporal expression of different pathways of L-arginine metabolism in healing wounds. J Immunol. 1990;144(10):3877–80.PubMedGoogle Scholar
  140. 140.
    Shi HP, Efron DT, Most D, Tantry US, Barbul A. Supplemental dietary arginine enhances wound healing in normal but not inducible nitric oxide synthase knockout mice. Surgery. 2000;128(2):374–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Angele MK, Nitsch SM, Hatz RA, Angele P, Hernandez Richter T, Wichmann MW, et al. L-arginine: a unique amino acid for improving depressed wound immune function following hemorrhage. Eur Surg Res. 2002;34(1–2):53–60.PubMedCrossRefGoogle Scholar
  142. 142.
    Chen X, Li Y, Cai X, Xu W, Lu S, Shi J. Dose–effect of dietary L-arginine supplementation on burn wound healing in rats. Chin Med J. 1999;112(9):828–31.PubMedGoogle Scholar
  143. 143.
    Yu YM, Ryan CM, Castillo L, Lu XM, Beaumier L, Tompkins RG, et al. Arginine and ornithine kinetics in severely burned patients: increased rate of arginine disposal. Am J Physiol Endocrinol Metab. 2001;280(3):E509–17.PubMedCrossRefGoogle Scholar
  144. 144.
    Pieper GM, Siebeneich W, Dondlinger LA. Short-term oral administration of L-arginine reverses defective endothelium-dependent relaxation and cGMP generation in diabetes. Eur J Pharmacol. 1996;317(2–3):317–20.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Abbasi F, Asagmi T, Cooke JP, Lamendola C, McLaughlin T, Reaven GM, et al. Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus. Am J Cardiol. 2001;88(10):1201–3.PubMedCrossRefGoogle Scholar
  146. 146.
    Giugliano D, Marfella R, Verrazzo G, Acampora R, Nappo F, Ziccardi P, et al. L-arginine for testing endothelium-dependent vascular functions in health and disease. Am J Phys. 1997;273(3 Pt 1):E606–12.Google Scholar
  147. 147.
    Wascher TC, Graier WF, Dittrich P, Hussain MA, Bahadori B, Wallner S, et al. Effects of low-dose L-arginine on insulin-mediated vasodilatation and insulin sensitivity. Eur J Clin Investig. 1997;27(8):690–5.CrossRefGoogle Scholar
  148. 148.
    Lubec B, Hayn M, Kitzmuller E, Vierhapper H, Lubec G. L-arginine reduces lipid peroxidation in patients with diabetes mellitus. Free Radic Biol Med. 1997;22(1–2):355–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Piatti PM, Monti LD, Valsecchi G, Magni F, Setola E, Marchesi F, et al. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care. 2001;24(5):875–80.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Bohme GA, Bon C, Stutzmann JM, Doble A, Blanchard JC. Possible involvement of nitric oxide in long-term potentiation. Eur J Pharmacol. 1991;199(3):379–81.PubMedCrossRefGoogle Scholar
  151. 151.
    Moncada S, Higgs A. The L-arginine–nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12. [73] Campbell BI, La Bounty PM, Roberts M. The ergogenic potential of arginine. J Int Soc Sports Nutr 2004;1(2):35–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Campbell BI, La Bounty PM, Roberts M. The ergogenic potential of arginine. J Int Soc Sports Nutr. 2004;1(2):35–8.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Fossel ET. Improvement of temperature and flow in feet of subjects with diabetes with use of a transdermal preparation of L-arginine: a pilot study. Diabetes Care. 2004;27(1):284–5.PubMedCrossRefGoogle Scholar
  154. 154.
    Klahr S. Can L-arginine manipulation reduce renal disease? Semin Nephrol. 1999;19(3):304–9.PubMedGoogle Scholar
  155. 155.
    Park KG, Hayes PD, Garlick PJ, Sewell H, Eremin O. Stimulation of lymphocyte natural cytotoxicity by L-arginine. Lancet. 1991;337(8742):645–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Gupta V, Gupta A, Saggu S, Divekar HM, Grover SK, Kumar R. Antistress and adaptogenic activity of L-arginine supplementation. Evid Based Complement Alternat Med. 2005;2(1):93–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Collier SR, Casey DP, Kanaley JA. Growth hormone responses to varying doses of oral arginine. Growth Hormon IGF Res. 2005;15(2):136–9.CrossRefGoogle Scholar
  158. 158.
    Boger RH, Bode Boger SM. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol. 2001;41:79–99.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Boger RH, Bode Boger SM, Mugge A, Kienke S, Brandes R, Dwenger A, et al. Supplementation of hypercholesterolaemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production. Atherosclerosis. 1995;117(2):273–84.PubMedCrossRefGoogle Scholar
  160. 160.
    Grasemann H, Kurtz F, Ratjen F. Inhaled L-arginine improves exhaled nitric oxide and pulmonary function in patients with cystic fibrosis. Am J Respir Crit Care Med. 2006;174(2):208–12.PubMedCrossRefGoogle Scholar
  161. 161.
    Frostegard J, Haegerstrand A, Gidlund M, Nilsson J. Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis. 1991;90:119–26.PubMedCrossRefGoogle Scholar
  162. 162.
    Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990;344:254–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Yla-Herttuala S, Lipton BA, Rosenfeld ME, Sarkioja T, Yoshimura T, Leonard EJ, Witztum JL, Steinberg D. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991;88:5252–6.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Catapano AL, Maggi FM, Tragni E. Low density lipoprotein oxidation, antioxidants, and atherosclerosis. Curr Opin Cardiol. 2000;15:355–63.PubMedCrossRefGoogle Scholar
  165. 165.
    Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A. 1987;84:2995–8.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37, 837a–837d.PubMedCrossRefGoogle Scholar
  167. 167.
    Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem. 1999;274:32512–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Cominacini L, Rigoni A, Pasini AF, Garbin U, Davoli A, Campagnola M, Pastorino AM, Lo Cascio V, Sawamura T. The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. J Biol Chem. 2001;276:13750–5.PubMedCrossRefGoogle Scholar
  169. 169.
    Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther. 2002;95:89–100.PubMedCrossRefGoogle Scholar
  170. 170.
    Kataoka H, Kume N, Miyamoto S, Minami M, Moriwaki H, Murase T, Sawamura T, Masaki T, Hashimoto N, Kita T. Expression of lectinlike oxidized lowdensity lipoprotein receptor-1 in human atherosclerotic lesions. Circulation. 1999;99:3110–3117. Role of Oxidized LDL in Atherosclerosis.  https://doi.org/10.5772/5937573.
  171. 171.
    Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation. 2000;101:2889–95.PubMedCrossRefGoogle Scholar
  172. 172.
    Li D, Chen H, Romeo F, Sawamura T, Saldeen T, Mehta JL. Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1. J Pharmacol Exp Ther. 2002;302:601–5.PubMedCrossRefGoogle Scholar
  173. 173.
    Cominacini L, Fratta Pasini A, Garbin U, Pastorino A, Rigoni A, Nava C, Davoli A, Lo Cascio V, Sawamura T. The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells. J Am Coll Cardiol. 2003;41:499–507.PubMedCrossRefGoogle Scholar
  174. 174.
    Valente AJ, Irimpen AM, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med. 2014;70C:117–28.CrossRefGoogle Scholar
  175. 175.
    Leiva E, Wehinger S, Guzmán L, Orrego R. Role of oxidized LDL in atherosclerosis. In: Kumar SA, editor. Hypercholesterolemia; 2015.  https://doi.org/10.5772/59375.CrossRefGoogle Scholar
  176. 176.
    Rosen P, Nawroth PP, King G, Möller W, Tritschler H-J, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev. 2001;17(3):189–209.  https://doi.org/10.1002/dmrr.196.CrossRefPubMedGoogle Scholar
  177. 177.
    Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009;6(6):399–409.  https://doi.org/10.1038/nrcardio.2009.55. Epub 2009 Apr 28. Review.CrossRefPubMedGoogle Scholar
  178. 178.
    Shindel AW, Kishore S, Lue TF. Drugs designed to improve endothelial function: effects on erectile dysfunction. Curr Pharm Des. 2008;14(35):3758–67. Review.PubMedCrossRefGoogle Scholar
  179. 179.
    Enzlin P, Mathieu C, Vanderschueren D, Demyttenaere K. Diabetes mellitus and female sexuality: a review of 25 years’ research. Diabet Med. 1998;15(10):809–15.PubMedCrossRefGoogle Scholar
  180. 180.
    Ryan JJ, Fang JC. Taking NO for an answer: exploring the therapeutic potential of nitrite in HFpEF. Circ Res. 2016;119(7):782–4.  https://doi.org/10.1161/CIRCRESAHA.116.309623.CrossRefPubMedGoogle Scholar
  181. 181.
    Zuo L, Chuang CC, Hemmelgarn BT, Best TM. Heart failure with preserved ejection fraction: defining the function of ROS and NO. J Appl Physiol. 2015;119(8):944–51.  https://doi.org/10.1152/japplphysiol.01149.2014.CrossRefPubMedGoogle Scholar
  182. 182.
    Gevaert AB, Shakeri H, Leloup AJ, Van Hove CE, De Meyer GRY, Vrints CJ, Lemmens K, Van Craenenbroeck EM. Endothelial senescence contributes to heart failure with preserved ejection fraction in an aging mouse model. Circ Heart Fail. 2017;10(6). pii: e003806.  https://doi.org/10.1161/CIRCHEARTFAILURE.116.003806.
  183. 183.
    Octavia Y, Kararigas G, de Boer M, Chrifi I, Kietadisorn R, Swinnen M, Duimel H, Verheyen FK, Brandt MM, Fliegner D, Cheng C, Janssens S, Duncker DJ, Moens AL. Folic acid reduces doxorubicin-induced cardiomyopathy by modulating endothelial nitric oxide synthase. J Cell Mol Med. 2017.  https://doi.org/10.1111/jcmm.13231. [Epub ahead of print].PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Lahera V. Nitric oxide: a possible new biomarker in heart failure? Relationship with pulmonary hypertension secondary to left heart failure. Clin Investig Arterioscler. 2017;29(3):127–8.  https://doi.org/10.1016/j.arteri.2017.04.001.CrossRefPubMedGoogle Scholar
  185. 185.
    Kraehling JR, Sessa WC. Contemporary approaches to modulating the nitric oxide-cGMP pathway in cardiovascular disease. Circ Res. 2017;120(7):1174–82.  https://doi.org/10.1161/CIRCRESAHA.117.303776. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Ritchie RH, Drummond GR, Sobey CG, De Silva TM, Kemp-Harper BK. The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res. 2017;116:57–69.  https://doi.org/10.1016/j.phrs.2016.12.017. Epub 2016 Dec 15.CrossRefPubMedGoogle Scholar
  187. 187.
    Sharma NM, Patel KP. Post-translational regulation of neuronal nitric oxide synthase: implications for sympathoexcitatory states. Expert Opin Ther Targets. 2017;21(1):11–22. Epub 2016 Dec 2. Review.PubMedCrossRefGoogle Scholar
  188. 188.
    Zhang YH. Neuronal nitric oxide synthase in hypertension – an update. Clin Hypertens. 2016;22:20. eCollection 2016. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Simon MA, Vanderpool RR, Nouraie M, Bachman TN, White PM, Sugahara M, Gorcsan J 3rd, Parsley EL, Gladwin MT. Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction. JCI Insight. 2016;1(18):e89620.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Forte M, Conti V, Damato A, Ambrosio M, Puca AA, Sciarretta S, Frati G, Vecchione C, Carrizzo A. Targeting nitric oxide with natural derived compounds as a therapeutic strategy in vascular diseases. Oxidative Med Cell Longev. 2016;2016:7364138.  https://doi.org/10.1155/2016/7364138. Epub 2016 Aug 29. Review.CrossRefGoogle Scholar
  191. 191.
    Shabeeh H, Seddon M, Brett S, Melikian N, Casadei B, Shah AM, Chowienczyk P. Sympathetic activation increases NO release from eNOS but neither eNOS nor nNOS play an essential role in exercise hyperemia in the human forearm. Am J Physiol Heart Circ Physiol. 2013;304(9):H1225–30.  https://doi.org/10.1152/ajpheart.00783.2012. Epub 2013 Feb 22.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Colombo J, Arora RR, DePace NL, Vinik AI. Clinical autonomic dysfunction: measurement, indications, therapies, and outcomes. New York: Springer Science + Business Media; 2014.Google Scholar
  193. 193.
    Zhang YH, Jin CZ, Jang JH, Wang Y. Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J Physiol. 2014;592(15):3189–200.  https://doi.org/10.1113/jphysiol.2013.270306. Epub 2014 Apr 22. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Mohan RM, Choate JK, Golding S, Herring N, Casadei B, Paterson DJ. Peripheral pre-synaptic pathway reduces the heart rate response to sympathetic activation following exercise training: role of NO. Cardiovasc Res. 2000;47:90–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Choate JK, Danson EJ, Morris JF, Paterson DJ. Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice. Am J Physiol Heart Circ Physiol. 2001;281:H2310–7.PubMedCrossRefGoogle Scholar
  196. 196.
    Danson EJ, Choate JK, Paterson DJ. Cardiac nitric oxide: emerging role for nNOS in regulating physiological function. Pharmacol Ther. 2005;106:57–74.PubMedCrossRefGoogle Scholar
  197. 197.
    Han G, Ma H, Chintala R, Miyake K, Fulton DJ, Barman SA, White RE. Nongenomic, endothelium-independent effects of estrogen on human coronary smooth muscle are mediated by type I (neuronal) NOS and PI3-kinase-Akt signalling. Am J Physiol Heart Circ Physiol. 2007;293:H314–21.PubMedCrossRefGoogle Scholar
  198. 198.
    Seddon M, Melikian N, Dworakowski R, Shabeeh H, Jiang B, Byrne J, Casadei B, Chowienczyk P, Shah AM. Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation. 2009;119:2656–62.PubMedCrossRefGoogle Scholar
  199. 199.
    Wang Y, Golledge J. Neuronal nitric oxide synthase and sympathetic nerve activity in neurovascular and metabolic systems. Curr Neurovasc Res. 2013;10(1):81–9. Review.PubMedCrossRefGoogle Scholar
  200. 200.
    Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.CrossRefGoogle Scholar
  201. 201.
    Pyner S. The paraventricular nucleus and heart failure. Exp Physiol. 2014;99(2):332–9.  https://doi.org/10.1113/expphysiol.2013.072678. Epub 2013 Dec 6. Review.CrossRefPubMedGoogle Scholar
  202. 202.
    Rocha BML, Cunha GJL, Menezes Falcão LF. The burden of iron deficiency in heart failure: therapeutic approach. J Am Coll Cardiol. 2018;71(7):782–93.PubMedCrossRefGoogle Scholar
  203. 203.
    Hu PJ, Pittet JF, Kerby JD, Bosarge PL, Wagener BM. Acute brain trauma, lung injury and pneumonia: more than just altered mental status and decreased airway protection. Am J Physiol Lung Cell Mol Physiol. 2017:ajplung.00485.2016.  https://doi.org/10.1152/ajplung.00485.2016. [Epub ahead of print].CrossRefGoogle Scholar
  204. 204.
    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Spanagel R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev. 2009;89(2):649–705.  https://doi.org/10.1152/physrev.00013.2008. Review.CrossRefPubMedGoogle Scholar
  206. 206.
    Lee RH, Tseng TY, Wu CY, Chen PY, Chen MF, Kuo JS, Lee TJ. Memantine inhibits α3β2-nAChRs-mediated nitrergic neurogenic vasodilation in porcine basilar arteries. PLoS One. 2012;7(7):e40326.  https://doi.org/10.1371/journal.pone.0040326. Epub 2012 Jul 5.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Filiano AJ, Gadani SP, Kipnis J. Interactions of innate and adaptive immunity in brain development and function. Brain Res. 2015;1617:18–27. PMC 4320678. PMID 25110235.  https://doi.org/10.1016/j.brainres.2014.07.050.PubMedCrossRefGoogle Scholar
  208. 208.
    Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev. 2014;43(19):6814–38.  https://doi.org/10.1039/c3cs60467e. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Bowerman M, Vincent T, Scamps F, Perrin FE, Camu W, Raoul C. Neuroimmunity dynamics and the development of therapeutic strategies for amyotrophic lateral sclerosis. Front Cell Neurosci. 2013;7:214.  https://doi.org/10.3389/fncel.2013.00214. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev. 1995;20(3):269–87.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65.  https://doi.org/10.1016/j.addr.2011.11.010. Epub 2011 Nov 28.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Streit WJ. Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci. 2006;29(9):506–10.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Wood P. Neuroinflammation: mechanisms and management. Totowa: Humana Press; 2003.Google Scholar
  214. 214.
    Clark AK, Staniland AA, Marchand F, Kaan TKY, McMahon SB, Malcangio M. P2X7-dependent release of interleukin-1 and nociception in the spinal cord following lipopolysaccharide. J Neurosci. 2010;30(2):573–82.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S, Inoue K. Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem. 2001;78(6):1339–49.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y. Extracellular ATP triggers tumor necrosis factor-α release from rat microglia. J Neurochem. 2002;75(3):965–72.CrossRefGoogle Scholar
  217. 217.
    Witcher KG, Eiferman DS, Godbout JP. Priming the inflammatory pump of the CNS after traumatic brain injury. Trends Neurosci. 2015;38(10):609–20.  https://doi.org/10.1016/j.tins.2015.08.002. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Gokce N. L-arginine and hypertension. J Nutr. 2004;134(10 Suppl):2807S–11S; discussion 2818S–2819S.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Higashi Y, Oshima T, Ozono R, et al. Aging and severity of hypertension attenuate endothelium-dependent renal vascular relaxation in humans. Hypertension. 1997;30(2 Pt 1):252–8.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Clarkson P, Adams MR, Powe AJ, et al. Oral L-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest. 1996;97(8):1989–94.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Kawano H, Motoyama T, Hirai N, et al. Endothelial dysfunction in hypercholesterolemia is improved by L-arginine administration: possible role of oxidative stress. Atherosclerosis. 2002;161(2):375–80.PubMedCrossRefGoogle Scholar
  222. 222.
    Adams MR, McCredie R, Jessup W, et al. Oral L-arginine improves endothelium-dependent dilatation and reduces monocyte adhesion to endothelial cells in young men with coronary artery disease. Atherosclerosis. 1997;129(2):261–9.PubMedCrossRefGoogle Scholar
  223. 223.
    Sydow K, Mondon CE, Cooke JP. Insulin resistance: potential role of the endogenous nitric oxide synthase inhibitor ADMA. Vasc Med. 2005;10(Suppl 1):S35–43.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Piatti PM, Monti LD, Valsecchi G, et al. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care. 2001;24(5):875–80.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Pieper GM, Siebeneich W, Dondlinger LA. Short-term oral administration of L-arginine reverses defective endothelium-dependent relaxation and cGMP generation in diabetes. Eur J Pharmacol. 1996;317(2–3):317–20.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Bode-Boger SM, Muke J, Surdacki A, et al. Oral L-arginine improves endothelial function in healthy individuals older than 70 years. Vasc Med. 2003;8(2):77–81.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Alvares TS, Meirelles CM, Bhambhani YN, et al. L-arginine as a potential ergogenic aid in healthy subjects. Sports Med. 2011;41(3):233–48.PubMedCrossRefGoogle Scholar
  228. 228.
    Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Heart. 2001;85(3):342–50.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Boger RH, Cooke JP, Vallance P. ADMA: an emerging cardiovascular risk factor. Vasc Med. 2005;10(Suppl 1):S1–2.PubMedCrossRefGoogle Scholar
  230. 230.
    Cooke JP. ADMA: its role in vascular disease. Vasc Med. 2005;10(Suppl 1):S11–7.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Boger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “L-arginine paradox” and acts as a novel cardiovascular risk factor. J Nutr. 2004;134(10 Suppl):2842S–7S; discussion 2853S.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Sibal L, Agarwal SC, Home PD, et al. The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev. 2010;6(2):82–90.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Cooke JP. Asymmetrical dimethylarginine: the Uber marker? Circulation. 2004;109(15):1813–8.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Tran CT, Leiper JM, Vallance P. The DDAH/ADMA/NOS pathway. Atheroscler Suppl. 2003;4(4):33–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicholas L. DePace
    • 1
  • Joseph Colombo
    • 2
  1. 1.Franklin Cardiovascular Associates, PA and Autonomic Dysfunction and POTS CenterSewellUSA
  2. 2.TMCAMS, Inc.Franklin Cardiovascular Associates, PA and Autonomic Dysfunction and POTS CenterRichboroUSA

Personalised recommendations