Skip to main content

Abstract

Cellular energy production from mitochondria via the citric acid cycle and the electron transport chain is fundamental to health and wellness and life itself. Glucose is the molecule that fuels life, in the presence of oxygen, via cellular respiration, and ATP is the energy molecule that stores and transfers energy to where it is needed. Sufficient levels of cellular respiration are required for health and wellness. A lack of ATP can cause autonomic (P&S) and mitochondrial dysfunction, significantly effecting quality of life (QoL). Typically as ATP production decreases, free radical (including reactive oxygen species) production increases, affecting both mitochondrial and P&S health. The levels of P&S dysfunction include advanced autonomic dysfunction (AAD), also known as diabetic autonomic neuropathy (DAN, if the patient is diagnosed with diabetes), involving morbidity risk, and cardiovascular autonomic neuropathy (CAN) involving mortality risk. Normal system functions may generate oxidants (e.g., free radicals and reactive oxygen species). A small amount of oxidants are actually helpful to the body, especially the immune system where they are used to “burn out” infections (i.e., bacterial, viral, mold, and mildew). There are many adverse environmental and lifestyle sources of oxidants as well, including stress and disease. Too many oxidants lead to disorders, including atherosclerosis, autonomic neuropathy, and mitochondrial dysfunction, and the diseases that often follow those disorders. All in all, it is easy to overwhelm the body with oxidants. This is the basis for the need to have as large an antioxidant pool as possible, both from a healthy diet and from supplements. As people age or become ill, the naturally occurring antioxidant-oxidant ratio declines, and diet becomes not enough, requiring supplements to help establish and maintain healthy antioxidant-oxidant ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Dynamic balances” or “dynamic imbalances” are P&S ratios (P&S activity levels relative to each other) under challenging (e.g., non-resting or dynamic) conditions. For example, as measured during the standard clinical autonomic test, during the challenges, the P&S ratio (aka sympathovagal balance or SB = S/P) is expected to change as follows: for deep breathing (a parasympathetic challenge), where P is expected to increase and SB is expected to decrease, and for Valsalva and stand or postural change (net sympathetic challenges), where S is expected to increase and SB is expected to increase. There are normal ranges for these SB changes [1]. These normal SB changes define “dynamic balances.” Abnormal SB changes define “dynamic imbalances.”

  2. 2.

    These agents help to maintain healthy levels of NADH to boost ATP synthesis. In the brain, NADH increases the production of the neurotransmitters dopamine, norepinephrine, and serotonin, which help elevate mood and improve sleep.

References

  1. Colombo J, Arora RR, DePace NL, Vinik AI. Clinical autonomic dysfunction: measurement, indications, therapies, and outcomes. New York: Springer Science + Business Media; 2014.

    Google Scholar 

  2. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    Article  PubMed  Google Scholar 

  3. Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocr Dis. 2007;2:2–9.

    Google Scholar 

  4. Jay SJ. Orthostatic hypotension and chronic fatigue syndrome. JAMA. 2001;285(11):1441–3. https://doi.org/10.1001/jama.285.11.1441.

    Article  Google Scholar 

  5. https://my.clevelandclinic.org/health/articles/what-are-mitochondrial-diseases

  6. Zhang ZW, Cheng J, Xu F, Chen YE, Du JB, Yuan M, Zhu F, Xu XC, Yuan S. Red blood cell extrudes nucleus and mitochondria against oxidative stress. IUBMB Life. 2011;63(7):560–5. https://doi.org/10.1002/iub.490.

    Article  CAS  PubMed  Google Scholar 

  7. Fillingame RH, Angevine CM, Dmitriev OY. Coupling proton movements to c-ring rotation in F(1)F(o) ATP synthase: aqueous access channels and helix rotations at the a-c interface. Biochim Biophys Acta. 2002;1555(1–3):29–36.

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy – a review. Nutrients. 2016;8(2):68. https://doi.org/10.3390/nu8020068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tobias H, Vinitsky A, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic nervous system monitoring of patients with excess parasympathetic responses to sympathetic challenges – clinical observations. US Neurol. 2010;5(2):62–6.

    Article  Google Scholar 

  10. Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):568–71.

    Article  Google Scholar 

  11. Nanavati SH, Bulgarelli RJ, Vazquez-Tanus J, Ghosh-Dastidar S, Colombo J, Arora RR. Altered autonomic activity with atrial fibrillation as demonstrated by non-invasive autonomic monitoring. US Cardiol. 2010;7(1):47–50.

    Google Scholar 

  12. Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, Feldman CL, Levy D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994;90(2):878–83.

    Article  CAS  PubMed  Google Scholar 

  13. Maser R, Mitchell B, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes, a meta-analysis. Diabetes Care. 2003;26(6):1895–901.

    Article  PubMed  Google Scholar 

  14. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–79.

    Article  PubMed  Google Scholar 

  15. Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.

    Article  PubMed  Google Scholar 

  16. DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and diagnosing heart disease. “A clinical perspective”. Heart Int. 2014;9(2):37–44. https://doi.org/10.5301/heartint.5000218; published online 12/5/2014 12:29:58 PM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and treating heart disease. “A clinical perspective”. Heart Int. 2014;9(2):45–52. https://doi.org/10.5301/heartint.5000216; published online 11/19/2014 1:16:08 PM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bullinga JR, Alharethi R, Schram MS, Bristow MR, Gilbert EM. Changes in heart rate variability are correlated to hemodynamic improvement with chronic CARVEDILOL therapy in heart failure. J Card Fail. 2005;11(9):693–9.

    Article  CAS  PubMed  Google Scholar 

  19. Fatoni C, Raffa S, Regoli F, Giraldi F, La Rovere MT, Prentice J, Pastori F, Fratini S, Salerno-Uriarte JA, Klein HU, Auricchio A. Cardiac resynchronization therapy improves heart rate profile and heart rate variability of patients with moderate to severe heart failure. J Am Coll Cardiol. 2005;46(10):1875–82.

    Article  Google Scholar 

  20. Fathizadeh P, Shoemaker WC, Woo CCJ, Colombo J. Autonomic activity in trauma patients based on variability of heart rate and respiratory rate. Crit Care Med. 2004;32(5):1300–5.

    Article  PubMed  Google Scholar 

  21. Chen JY, Fung JW, Yu CM. The mechanisms of atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17(Suppl 3):S2–7.

    Article  PubMed  Google Scholar 

  22. Copie X, Lamaison D, Salvador M, Sadoul N, DaCosta A, Faucher L, Legal F, Le Heuzey JY, VALID Investigators. Heart rate variability before ventricular arrhythmias in patients with coronary artery disease and an implantable cardioverter defibrillator. Ann Noninvasive Electrocardiol. 2003;8(3):179–84.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alter P, Grimm W, Vollrath A, Czerny F, Maisch B. Heart rate variability in patients with cardiac hypertrophy – relation to left ventricular mass and etiology. Am Heart J. 2006;151(4):829–36.

    Article  PubMed  Google Scholar 

  24. Debono M, Cachia E. The impact of cardiovascular autonomic neuropathy in diabetes: is it associated with left ventricular dysfunction? Auton Neurosci. 2007;132(1–2):1–7.

    Article  PubMed  Google Scholar 

  25. Just H. Peripheral adaptations in congestive heart failure: a review. Am J Med. 1991;90:23S–6S.

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura K, Matsumura K, Kobayashi S, Kaneko T. Sympathetic premotor neurons mediating thermoregulatory functions. Neurosci Res. 2005;51(1):1–8.

    Article  PubMed  Google Scholar 

  27. Manfrini O, Morgagni G, Pizzi C, Fontana F, Bugiardini R. Changes in autonomic nervous system activity: spontaneous versus balloon-induced myocardial ischemia. Eur Heart J. 2004;25(17):1502–8.

    Article  PubMed  Google Scholar 

  28. Clarke B, Ewing D, Campbell I. Diabetic autonomic neuropathy. Diabetologia. 1979;17:195–212.

    Article  CAS  PubMed  Google Scholar 

  29. Litchman JH, Bigger JT Jr, Blumenthal JA, et al. Depression and coronary heart disease recommendations for screening, referral, and treatment: a science advisory from the American Heart Association Prevention Committee of the Council on Cardiovascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research: endorsed by the American Psychiatric Association. Circulation. 2008;118:1768–75.

    Article  Google Scholar 

  30. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13 (Printed in Great Britain). https://doi.org/10.1042/BJ20081386.

    Article  CAS  PubMed  Google Scholar 

  31. Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3–4):222–30.

    Article  CAS  PubMed  Google Scholar 

  32. National Institute of Standards and Technology. NIST - https://www.nist.gov/.

  33. Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair. 2008;1:5; 1–58. http://www.fibrogenesis.com/content/1/1/5.

  34. Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and X-irradiation: a mechanism in common. Science. 1954;119:623–6.

    Article  CAS  PubMed  Google Scholar 

  35. Gerschman R, Gilbert DL, Nye SW, Fenn WO. Influence of x-irradiation on oxygen poisoning in mice. Proc Soc Exp Biol Med. 1954;86(1):27–9.

    Article  CAS  PubMed  Google Scholar 

  36. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  37. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature. 2000;408:239–47.

    Article  CAS  PubMed  Google Scholar 

  38. Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol. 2011;7(8):504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    Article  PubMed  Google Scholar 

  40. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3(3):205–14.

    Article  CAS  PubMed  Google Scholar 

  41. Finkel T, Serrano M, Blasco MA. The common biology of cancer and aging. Nature. 2007;448(7155):767–74.

    Article  CAS  PubMed  Google Scholar 

  42. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.

    Article  CAS  PubMed  Google Scholar 

  43. Harman D. Free radical theory of aging. Mutat Res. 1992;275:257–66.

    Article  CAS  Google Scholar 

  44. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

    Article  CAS  PubMed  Google Scholar 

  45. Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science. 2006;312(5782):1882–3.

    Article  PubMed  Google Scholar 

  46. Kagan VE, Quinn PJ. Toward oxidative lipidomics of cell signaling. Antioxid Redox Signal. 2004;6(2):199–202.

    Article  CAS  PubMed  Google Scholar 

  47. West JD, Marnett LJ. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem Res Toxicol. 2006;19(2):173–94.

    Article  CAS  PubMed  Google Scholar 

  48. Rodella LF, Favero G. Atherosclerosis and current anti-oxidant strategies for atheroprotection. Curr Trends Atherogenesis. 2012 (InTech, Open Access). https://doi.org/10.5772/53035.

    Google Scholar 

  49. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999;340:115.

    Article  CAS  PubMed  Google Scholar 

  50. Greenland P, Gidding SS, Tracy RP. Commentary: lifelong prevention of atherosclerosis: the critical importance of major risk factor exposures. Int J Epidemiol. 2002;31:1129–34. https://doi.org/10.1093/ije/31.6.1129.

    Article  PubMed  Google Scholar 

  51. Krumova K, Cosa G. Overview of reactive oxygen species. In: Nonell S, Flors C, editors. Singlet oxygen: applications in biosciences and nanosciences, vol. 1. Cambridge: RSC Publishing; 2016. http://pubs.rsc.org/en/content/chapterhtml/2016/bk9781782620389-00001?isbn=978-1-78262-038-9.

    Chapter  Google Scholar 

  52. Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13(3):349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nathan C, Ding A. SnapShot: reactive oxygen intermediates (ROI). Cell. 2010;140(6):951.

    Article  PubMed  Google Scholar 

  54. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111(10):5944–72.

    Article  CAS  PubMed  Google Scholar 

  55. D’Autreaux B, Toledano MB. ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8(10):813–24.

    Article  PubMed  CAS  Google Scholar 

  56. Nishii W, Kukimoto-Niino M, Terada T, Shirouzu M, Muramatsu T, Kojima M, Kihara H, Yokoyama S. A redox switch shapes the Lon protease exit pore to facultatively regulate proteolysis. Nat Chem Biol. 2015;11(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  57. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature. 2000;408(6809):239–47.

    Article  CAS  PubMed  Google Scholar 

  58. Stadtman ER. Protein oxidation and aging. Free Radic Res. 2006;40(12):1250–8.

    Article  CAS  PubMed  Google Scholar 

  59. Niki E, Noguchi N. Dynamics of antioxidant action of vitamin E. Acc Chem Res. 2004;37(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  60. Caro P, Gomez J, Lopez-Torres M, Sanchez I, Naudiand A, et al. Effect of every other day feeding on mitochondrial free radical production and oxidative stress in mouse liver. Rejuvenation Res. 2008;11:621–9.

    Article  CAS  PubMed  Google Scholar 

  61. Seals DR, Edward F. Adolph distinguished lecture: the remarkable anti-aging effects of aerobic exercise on systemic arteries. J Appl Physiol. 2014;117(5):425–39. https://doi.org/10.1152/japplphysiol.00362.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Adly AAM. Oxidative stress and disease: an updated review. Res J Immunol. 2010;3:129–45.

    Article  CAS  Google Scholar 

  63. Cardinali DP. Autonomic nervous system: basic and clinical aspects. Cham: Springer International Publishing AG; 2018.

    Book  Google Scholar 

  64. Menotti A, Keys A, Blackburn H, Kromhout D, Karvonen M, Nissinen A, Pekkanen J, Punsar S, Fidanza F, Giampaoli S, Seccareccia F, Buzina R, Mohacek I, Nedeljkovic S, Aravanis C, Dontas A, Toshima H, Lanti M. Comparison of multivariate predictive power of major risk factors for coronary heart diseases in different countries: results from eight nations of the Seven Countries Study, 25-year follow-up. J Cardiovasc Risk. 1996;3(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  65. Menotti A, Seccareccia F, Blackburn H, Keys A. Coronary mortality and its prediction in samples of US and Italian railroad employees in 25 years within the Seven Countries Study of cardiovascular diseases. Int J Epidemiol. 1995;24(3):515–21.

    Article  CAS  PubMed  Google Scholar 

  66. Toshima H, Koga Y, Menotti A, Keys A, Blackburn H, Jacobs DR, Seccareccia F. The Seven Countries Study in Japan. Twenty-five-year experience in cardiovascular and all-causes deaths. Jpn Heart J. 1995;36(2):179–89.

    Article  CAS  PubMed  Google Scholar 

  67. Kostka T, Drai J, Berthouze SE, Lacour JR, Bonnefoy M. Physical activity, aerobic capacity and selected markers of oxidative stress and the anti-oxidant defense system in healthy active elderly men. Clin Physiol. 2000;20(3):185–90.

    Article  CAS  PubMed  Google Scholar 

  68. Santos-Parker JR, LaRocca TJ, Seals DR. Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv Physiol Educ. 2014;38(4):296–307. https://doi.org/10.1152/advan.00088.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Seals DR, Edward F. Adolph Distinguished Lecture: the remarkable anti-aging effects of aerobic exercise on systemic arteries. J Appl Physiol. 2014;117(5):425–39. https://doi.org/10.1152/japplphysiol.00362.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, Blackett KN, Sitthi-amorn C, Sato H, Yusuf S, INTERHEART investigators. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):953–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DePace, N.L., Colombo, J. (2019). About the Program. In: Clinical Autonomic and Mitochondrial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-17016-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17016-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17015-8

  • Online ISBN: 978-3-030-17016-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics