Skip to main content

Finite Difference Methods for Incompressible and Compressible Turbulence

  • Chapter
  • First Online:
High-Performance Computing of Big Data for Turbulence and Combustion

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 592))

  • 796 Accesses

Abstract

We provide a brief overview of the state of the art in numerical methods for direct numerical simulation of turbulent flows, with special reference to wall-bounded flows. Fundamentals of numerical discretization of the incompressible and compressible Navier–Stokes equations will be given in section “Numerical Methods”, which also includes practical implementation details, such as choice of the computational mesh, and suggestions for implementation on parallel computers. Selected applications of DNS will be the subject of the section “Selected DNS Applications” where the focus will be on recent results obtained for flows at high Reynolds number and on ‘non-classical’ effects associated with the formation of large rollers (Couette flow), and with compressibility effects. The behavior of passive scalars advected by the fluid phase is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, H., & Antonia, R. A. (2009). Near-wall similarity between velocity and scalar fluctuations in a turbulent channel flow. Physics of Fluids, 21, 025109.

    Article  MATH  Google Scholar 

  • Abe, H., Kawamura, H., & Matsuo, Y. (2004) Surface heat-flux fluctuations in a turbulent channel flow up to Re\(_{\tau }=1020\) with Pr\(= 0.025\) and \(0.71\). International Journal of Heat and Fluid Flow, 25, 404–419.

    Google Scholar 

  • Afzal, N., & Yajnik, K. (1973). Analysis of turbulent pipe and channel flows at moderately large Reynolds number. Journal of Fluid Mechanics, 61, 23–31.

    Article  Google Scholar 

  • Alfredsson, P. H., Segalini, A., & Örlü, R. (2011). A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the ‘outer’ peak. Physics of Fluids, 23, 041702.

    Article  Google Scholar 

  • Alfredsson, P. H., Örlü, R., & Segalini, A. (2012) A new formulation for the streamwise turbulence intensity distribution in wall-bounded turbulent flows. European Journal of Mechanics B fluids, 36, 167–175.

    Google Scholar 

  • Avsarkisov, V., Hoyas, S., Oberlack, M., & García-Galache, J. P. (2014). Turbulent plane Couette flow at moderately high Reynolds number. Journal of Fluid Mechanics, 751, R1.

    Article  Google Scholar 

  • Aydin, E. M., & Leutheusser, H. J. (1991). Plane-Couette flow between smooth and rough walls. Experiments in Fluids, 11, 302–312.

    Article  Google Scholar 

  • Batchelor G. K. (1959). Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity. Journal of Fluid Mechanics, 5, 113–133.

    Article  MathSciNet  MATH  Google Scholar 

  • Beam, R. M., & Warming, R. F. (1978). An implicit factored scheme for the compressible navier-stokes equations. AIAA Journal, 16(4), 393–402.

    Article  MATH  Google Scholar 

  • Bech, K. H., Tillmark, N., Alfredsson, P. H., & Andersson, H. I. (1995). An investigation of turbulent plane Couette flow at low Reynolds numbers. Journal of Fluid Mechanics, 286, 291–325.

    Article  Google Scholar 

  • Bernardini, M., Pirozzoli, S., Quadrio, M., & Orlandi, P. (2013). Turbulent channel flow simulations in convecting reference frames. Journal of Computational Physics, 232, 1–6.

    Article  Google Scholar 

  • Bernardini, M., Pirozzoli, S., & Orlandi, P. (2014). Velocity statistics in turbulent channel flow up to Re\(_{\tau }=4000\). Journal of Fluid Mechanics, 742, 171–191.

    Article  Google Scholar 

  • Blaisdell, G. A., Spyropoulos, E. T., & Qin, J. H. (1996). The effect of the formulation of non-linear terms on aliasing errors in spectral methods. Applied Numerical Mathematics, 21, 207–219.

    Article  MathSciNet  MATH  Google Scholar 

  • Cebeci, T., & Bradshaw, P. (1984). Physical and computational aspects of convective heat transfer. New York, NY: Springer.

    Book  MATH  Google Scholar 

  • Chorin, A. J. (1969). On the convergence of discrete approximations to the Navier-Stokes equations. Mathematics of Computation, 23(106), 341–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Coleman, G. N., Kim, J., & Moser, R. D. (1995). A numerical study of turbulent supersonic isothermal-wall channel flow. Journal of Fluid Mechanics, 305, 159–183.

    Article  MATH  Google Scholar 

  • Colonius, T., & Lele, S. K. (2004). Computational aeroacoustics: Progress on nonlinear problems of sound generation. Progress in Aerospace Sciences, 40, 345–416.

    Article  Google Scholar 

  • del Álamo, J. C., & Jiménez, J. (2003). Spectra of the very large anisotropic scales in turbulent channels. Physics of Fluids, 15, L41–L44.

    Article  MATH  Google Scholar 

  • Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., & Caruelle, B. (2000). High-order fluxes for conservative skew-symmetric-like schemes in structures meshes: application to compressible flows. Journal of Computational Physics, 161, 114–139.

    Article  MathSciNet  MATH  Google Scholar 

  • El Telbany, M. M. M., & Reynolds, A. J. (1982). Velocity distributions in plane turbulent channel flows. Transactions of the ASME: Journal of Fluids Engineering, 104, 367–372.

    Google Scholar 

  • Feiereisen, W. J., Reynolds, W. C., & Ferziger, J. H. (1981). Numerical simulation of a compressible, homogeneous, turbulent shear flow. Report TF 13, Thermosciences Division, Mechanical Engineering, Stanford University.

    Google Scholar 

  • Fernholz, H. H., & Finley, P. J. (1980). A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers (Vol. 253). AGARDograph.

    Google Scholar 

  • Ferziger, J. H., & Peric, M. (2012). Computational methods for fluid dynamics. Berlin: Springer Science & Business Media.

    MATH  Google Scholar 

  • Flores, O., & Jimenez, J. (2010). Hierarchy of minimal flow units in the logarithmic layer. Physics of Fluids, 22, 071704.

    Article  Google Scholar 

  • Garcia-Villalba, M., & Del Alamo, J. C. (2011). Turbulence modification by stable stratification in channel flow. Physics of Fluids, 23(4), 045104.

    Google Scholar 

  • Gowen, R. A., & Smith, J. W. (1967). The effect of the Prandtl number on temperature profiles for heat transfer in turbulent pipe flow. Chemical Engineering Science, 22, 1701–1711.

    Article  Google Scholar 

  • Guarini, S. E., Moser, R. D., Shariff, K., & Wray, A. (2000). Direct numerical simulation of a supersonic boundary layer at Mach 2.5. Journal of Fluid Mechanics, 414, 1–33.

    Article  MATH  Google Scholar 

  • Hamilton, J. M., Kim, J., & Waleffe, F. (1995). Regeneration mechanisms of near-wall turbulent structures. Journal of Fluid Mechanics, 287, 317–348.

    Article  MATH  Google Scholar 

  • Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8(12), 2182–2189.

    Article  MathSciNet  MATH  Google Scholar 

  • Harten, A. (1983). On the symmetric form of systems of conservation laws with entropy. Journal of Computational Physics, 49, 151–164.

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch, C. (2007). Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Honein, A. E., & Moin, P. (2004). Higher entropy conservation and numerical stability of compressible turbulence simulations. Journal of Computational Physics, 201, 531–545.

    Article  MATH  Google Scholar 

  • Howarth, L. (1948). Concerning the effect of compressibility on laminar boundary layers and their separation. Proceedings of the Royal Society of London Series A, 194(1036), 16–42.

    MathSciNet  MATH  Google Scholar 

  • Hoyas, S., & Jiménez, J. (2006). Scaling of velocity fluctuations in turbulent channels up to \({R}e_{\tau } = 2003\). Physics of Fluids, 18, 011702.

    Article  Google Scholar 

  • Hoyas, S., & Jiménez, J. (2008). Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Physics of Fluids, 20, 101511.

    Article  MATH  Google Scholar 

  • Huang, P. G., & Coleman, G. N. (1994). van Driest transformation and compressible wall-bounded flows. AIAA Journal, 32(10), 2110–2113.

    Article  Google Scholar 

  • Huang, P. G., Coleman, G. N., & Bradshaw, P. (1995). Compressible turbulent channel flows: DNS results and modeling. Journal of Fluid Mechanics, 305, 185–218.

    Article  MATH  Google Scholar 

  • Hultmark, M., Vallikivi, M., Bailey, S. C. C., & Smits, A. J. (2012). Turbulent pipe flow at extreme Reynolds numbers. Physical Review Letters, 108, 094501.

    Article  Google Scholar 

  • Hunt, J. C. R., & Morrison, J. F. (2001). Eddy structure in turbulent boundary layers. European Journal of Mechanics-B/Fluids, 19, 673–694.

    Article  MATH  Google Scholar 

  • Hutchins, N., & Marusic, I. (2007). Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. Journal of Fluid Mechanics, 579, 1–28.

    Article  MATH  Google Scholar 

  • Hutchins, N., Nickels, T. B., Marusic, I., & Chong, M. S. (2009). Hot-wire spatial resolution issues in wall-bounded turbulence. Journal of Fluid Mechanics, 635, 103–136.

    Article  MATH  Google Scholar 

  • Hwang, Y., & Cossu, C. (2010). Amplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number. Journal of Fluid Mechanics, 643, 333–348.

    Article  MATH  Google Scholar 

  • Jiménez, J., & Moin, P. (1991). The minimal flow unit in near-wall turbulence. Journal of Fluid Mechanics, 225, 213–240.

    Article  MATH  Google Scholar 

  • Jiménez, J., Wray, A. A., Saffman, P. G., & Rogallo, R. S. (1993). The structure of intense vorticity in isotropic turbulence. Journal of Fluid Mechanics, 255, 65–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Kader, B. A. (1981). Temperature and concentration profiles in fully turbulent boundary layers. International Journal of Heat and Mass Transfer, 24, 1541–1544.

    Article  Google Scholar 

  • Kawamura, H., Abe, H., & Matsuo, Y. (1999). DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. International Journal of Heat and Fluid Flow, 20, 196–207.

    Article  Google Scholar 

  • Kennedy, C. A., & Gruber, A. (2008). Reduced aliasing formulations of the convective terms within the Navier-Stokes equations. Journal of Computational Physics, 227, 1676–1700.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, J., Moin, P., & Moser, R. D. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133–166.

    Article  MATH  Google Scholar 

  • Kim, K. C., & Adrian, R. J. (1999). Very large-scale motion in the outer layer. Physics of Fluids, 11, 417–422.

    Article  MathSciNet  MATH  Google Scholar 

  • Kitoh, O., Nakabayashi, K., & Nishimura, F. (2005). Experimental study on mean velocity and turbulence characteristics of plane Couette flow: Low-Reynolds-number effects and large longitudinal vortical structure. Journal of Fluid Mechanics, 539, 199–227.

    Article  MATH  Google Scholar 

  • Klein, M., Sadiki, A., & Janicka, J. (2003). A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of Computational Physics, 186, 652–665.

    Article  MATH  Google Scholar 

  • Komminaho, J., Lundbladh, A., & Johansson, A. V. (1996). Very large structures in plane turbulent Couette flow. Journal of Fluid Mechanics, 320, 259–285.

    Article  MATH  Google Scholar 

  • Kravchenko, A. G., & Moin, P. (1997). On the effect of numerical errors in large eddy simulations of turbulent flows. Journal of Computational Physics, 131, 310–322.

    Article  MATH  Google Scholar 

  • Lax, P. D. (1973). Hyperbolic systems of conservation laws and the mathematical theory of shock waves., Regional Conference Series in Applied Mathematics Providence: SIAM.

    Book  MATH  Google Scholar 

  • Lee, M., & Moser, R. D. (2015). Direct simulation of turbulent channel flow layer up to Re\(_{\tau } = 5200\). Journal of Fluid Mechanics, 774, 395–415.

    Article  Google Scholar 

  • Lee, M. J., & Kim, J. (1991). The structure of turbulence in a simulated plane Couette flow. In Proceedings 8th Symposium Turbulent Shear Flows (pp. 5.3.1–5.3.6). Munich

    Google Scholar 

  • Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103, 16–42.

    Article  MathSciNet  MATH  Google Scholar 

  • LeVecque, R. (1990). Numerical methods for conservation laws. Basel: Birkhauser-Verlag.

    Book  Google Scholar 

  • Lilly, D. K. (1965). On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems. Journal of Computational Physics, 93, 11–26.

    Google Scholar 

  • Mahesh, K., Constantinescu, G., & Moin, P. (2004). A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics, 197(1), 215–240.

    Article  MATH  Google Scholar 

  • Majda, A. (1984). Compressible fluid flow and systems of conservation laws in several space variables (Vol. 53)., Applied Mathematical Sciences Berlin: Springer.

    MATH  Google Scholar 

  • Mansour, N. N., Moin, P., Reynolds, W. C., & Ferziger, J. H. (1979). Improved methods for large eddy simulations of turbulence. In B. F. Launder, F. W. Schmidt, & H. H. Whitelaw (Eds.), Turbulent Shear Flows I (pp. 386–401). Berlin: Springer.

    Chapter  Google Scholar 

  • Martín, M. P. (2007). Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. Journal of Fluid Mechanics, 570, 347–364.

    Article  MATH  Google Scholar 

  • Modesti, D., & Pirozzoli, S. (2016). Reynolds and Mach number effects in compressible turbulent channel flow. International Journal of Heat and Fluid Flow, 59, 33–49.

    Article  Google Scholar 

  • Monin, A. S., & Yaglom, A. M. (1971). Statistical fluid mechanics: Mechanics of turbulence (Vol. 1). Cambridge MA: MIT Press.

    Google Scholar 

  • Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I., & Chong, M. S. (2009). A comparison of turbulent pipe, channel and boundary layer flows. Journal of Fluid Mechanics, 632, 431–442.

    Article  MATH  Google Scholar 

  • Morinishi, Y. (2010). Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows. Journal of Computational Physics, 229, 276–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Morinishi, Y., Lund, T. S., Vasiliev, O. V., & Moin, P. (1998). Fully conservative higher order finite difference schemes for incompressible flow. Journal of Computational Physics, 143, 90–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Morinishi, Y., Tamano, S., & Nakabayashi, K. (2004). Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. Journal of Fluid Mechanics, 502, 273–308.

    Article  MATH  Google Scholar 

  • Morkovin, M. V. (1961). Effects of compressibility on turbulent flows. In A. Favre (Ed.), Mécanique de la Turbulence (pp. 367–380). Paris: CNRS.

    Google Scholar 

  • Nagano, Y., & Tagawa, M. (1988). Statistical characteristics of wall turbulence with a passive scalar. Journal of Fluid Mechanics, 196, 157–185.

    Article  MATH  Google Scholar 

  • Nagib, H. M., & Chauhan, K. A. (2008). Variations of von Kármán coefficient in canonical flows. Physics of Fluids, 20, 101518.

    Article  MATH  Google Scholar 

  • Nagib, H. M., Chauhan, K. A., & Monkewitz, P. A. (2007). Approach to an asymptotic state of zero pressure gradient turbulent boundary layers. Philosophical Transactions of the Royal Society of London A, 365, 755–770.

    Article  MATH  Google Scholar 

  • Oliver, T. A., Malaya, N., Ulerich, R., & Moser, R. D. (2014). Estimating uncertainties in statistics computed from direct numerical simulation. Physics of Fluids, 26(3), 035101.

    Article  Google Scholar 

  • Orlandi, P. (1998). Numerical solution of 3D flows periodic in one direction and with complex geometries in 2D. Center for Turbulence Research: Annual research briefs.

    Google Scholar 

  • Orlandi, P. (2000). Fluid flow phenomena: A numerical toolkit. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Orlandi, P., Bernardini, M., & Pirozzoli, S. (2015). Poiseuille and Couette flows in the transitional and fully turbulent regime. Journal of Fluid Mechanics, 770, 424–441.

    Article  Google Scholar 

  • Papavassiliou, D. V., & Hanratty, T. J. (1997). Interpretation of large-scale structures observed in a turbulent planet Couette flow. International Journal of Heat and Fluid Flow, 18, 55–69.

    Article  Google Scholar 

  • Perry, A. E., & Li, J. D. (1990). Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. Journal of Fluid Mechanics, 218, 405–438.

    Article  Google Scholar 

  • Peyret, R., & Taylor, T. D. (2012). Computational methods for fluid flow. Berlin: Springer Science & Business Media.

    MATH  Google Scholar 

  • Phillips, N. A. (1959). An example of nonlinear computational instability. The atmosphere and the sea in motion (pp. 501–504). New York: Rockefeller Institute Press and Oxford University Press.

    Google Scholar 

  • Pirozzoli, S. (2007). Performance analysis and optimization of finite difference schemes for wave propagation problems. Journal of Computational Physics, 222, 809–831.

    Article  MathSciNet  MATH  Google Scholar 

  • Pirozzoli, S. (2010). Generalized conservative approximations of split convective derivative operators. Journal of Computational Physics, 229, 7180–7190.

    Article  MathSciNet  MATH  Google Scholar 

  • Pirozzoli, S. (2014). Revisiting the mixing-length hypothesis in the outer part of turbulent wall layers: mean flow and wall friction. Journal of Fluid Mechanics, 745, 378–397.

    Article  MathSciNet  Google Scholar 

  • Pirozzoli, S., & Bernardini, M. (2011). Turbulence in supersonic boundary layers at moderate Reynolds number. Journal of Fluid Mechanics, 688, 120–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Pirozzoli, S., & Bernardini, M. (2013). Probing high-Reynolds-number effects in numerical boundary layers. Physics of Fluids, 25, 021704.

    Article  Google Scholar 

  • Pirozzoli, S., Grasso, F., & Gatski, T. B. (2004). Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at \(M=2.25\). Physics of Fluids, 16(3), 530–545.

    Article  MATH  Google Scholar 

  • Pirozzoli, S., Bernardini, M., & Grasso, F. (2008). Characterization of coherent vortical structures in a supersonic turbulent boundary layer. Journal of Fluid Mechanics, 613, 205–231.

    Article  MATH  Google Scholar 

  • Pirozzoli, S., Bernardini, M., & Grasso, F. (2010). Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech., 657, 361–393.

    Article  MATH  Google Scholar 

  • Pirozzoli, S., Bernardini, M., & Orlandi, P. (2011). Large-scale organization and inner-outer layer interactions in turbulent Couette-Poiseuille flows. Journal of Fluid Mechanics, 680, 534–563.

    Article  MATH  Google Scholar 

  • Pirozzoli, S., Bernardini, M., & Orlandi, P. (2014). Turbulence statistics in Couette flow at high Reynolds number. Journal of Fluid Mechanics, 758, 327–343.

    Article  MathSciNet  Google Scholar 

  • Pirozzoli, S., Bernardini, M., & Orlandi, P. (2016). Passive scalars in turbulent channel flow at high Reynolds number. Journal of Fluid Mechanics, 788, 614–639.

    Article  MathSciNet  MATH  Google Scholar 

  • Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Quadrio, M., Frohnapfel, B., & Hasegawa, Y. (2016). Does the choice of the forcing term affect flow statistics in dns of turbulent channel flow? European Journal of Mechanics-B/Fluids, 55, 286–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Rai, M. M., & Moin, P. (1993). Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer. Journal of Computational Physics, 109, 169–192.

    Article  MATH  Google Scholar 

  • Rai, M. M., & Moin, P. (1991). Direct simulations of turbulent flow using finite-difference schemes. Journal of Computational Physics, 96, 15–53.

    Article  MATH  Google Scholar 

  • Reichardt, H. (1956). Über die Geschwindigkeitsverteilung in einer geradlinigen turbulenten Couetteströmung. Zeitschrift für Angewandte Mathematik und Mechanik, 36, 26–29.

    Article  Google Scholar 

  • Robertson, J. M. (1959). On turbulent plane Couette flow. In Proceedings of Sixth Midwestern Conference on Fluid Mechanics (pp. 169–182). University of Texas: Austin.

    Google Scholar 

  • Schlatter, P., & Örlü, R. (2010). Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics, 659, 116–126.

    Article  MATH  Google Scholar 

  • Schlichting, H., & Gersten, K. (2000). Boundary layer theory (8th ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Sengupta, T. K., Ganeriwal, G., & De, S. (2003). Analysis of central and upwind compact schemes. Journal of Computational Physics, 192(2), 677–694.

    Article  MATH  Google Scholar 

  • Sengupta, T. K., Sircar, S. K., & Dipankar, A. (2006). High accuracy schemes for DNS and acoustics. Journal of Scientific Computing, 26, 151–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Sillero, J., Jiménez, J., Moser, R. D., & Malaya, N. P. (2011). Direct simulation of a zero-pressure-gradient turbulent boundary layer up to Re\(_{\theta } = 6650\). Journal of Physics: Conference Series, 318(022023),

    Google Scholar 

  • Simens, M. P., Jimenez, J., Hoyas, S., & Mizuno, Y. (2009). A high-resolution code for turbulent boundary layers. Journal of Computational Physics, 228, 4218–4231.

    Article  MATH  Google Scholar 

  • Smith, M. W., & Smits, A. J. (1995). Visualization of the structure of supersonic turbulent boundary layers. Experiments in Fluids, 18, 288–302.

    Article  Google Scholar 

  • Smith, R. W. (1994) Effect of reynolds number on the structure of turbulent boundary layers. Ph.D. thesis, Department of Mechanical and Aerospace Engineering, Princeton University.

    Google Scholar 

  • Smits, A. J., & Dussauge, J.-P. (1996). Turbulent shear layers in supersonic flow (2nd ed.). New York: American Institute of Physics.

    Google Scholar 

  • Smits, A. J., & Dussauge, J.-P. (2006). Turbulent shear layers in supersonic flow (2nd ed.). New York: American Institute of Physics.

    Google Scholar 

  • Smits, A. J., Matheson, N., & Joubert, P. N. (1983). Low-Reynolds-number turbulent boundary layers in zero and favourable pressure gradients. Journal of Ship Research, 147–157.

    Google Scholar 

  • Spina, E. F., Smits, A. J., & Robinson, S. K. (1994). The physics of supersonic turbulent boundary layers. Annual Review of Fluid Mechanics, 26, 287–319.

    Article  Google Scholar 

  • Steger, J. L., & Warming, R. F. (1981). Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. Journal of Computational Physics, 40, 263–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Strand, B. (1994). Summation by parts for finite difference approximations for d/dx. Journal of Computational Physics, 110, 47–67.

    Article  MathSciNet  MATH  Google Scholar 

  • Subramanian, C. S., & Antonia, R. A. (1981). Effect of Reynolds number on a slightly heated turbulent boundary layer. International Journal of Heat and Mass Transfer, 24, 1833–1846.

    Article  Google Scholar 

  • Tillmark, N., & Alfredsson, P. H. (1992). Experiments on transition in plane Couette flow. Journal of Fluid Mechanics, 235, 89–102.

    Article  Google Scholar 

  • Townsend, A. A. (1976). The structure of turbulent shear flow (2nd ed.). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Trettel, S., & Larsson, J. (2016). Mean velocity scaling for compressible wall turbulence with heat transfer. Physics of Fluids, 28(2), 026102.

    Article  Google Scholar 

  • Tsukahara, T., Kawamura, H., & Shingai, K. (2006). DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region. Journal of Turbulence, 7, 1–16.

    Article  MathSciNet  Google Scholar 

  • van der Poel, E. P., Ostilla-Mónico, R., Donners, J., & Verzicco, R. (2015). A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Computers and Fluids, 116, 10–16.

    Article  MathSciNet  MATH  Google Scholar 

  • van Driest, E. R. (1951). Turbulent boundary layer in compressible fluids. Journal of the Aeronautical Sciences, 18, 145–160.

    Article  MathSciNet  MATH  Google Scholar 

  • van Driest, E. R. (1956). The problem of aerodynamic heating. Aeronautical Engineering Review, 15, 26–41.

    Google Scholar 

  • Verzicco, R., & Orlandi, P. (1996). A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. Journal of Computational Physics, 123(2), 402–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Vichnevetsky, R., & Bowles, J. B. (1982). Fourier analysis of numerical approximations of hyperbolic equations. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Waleffe, F. (1997). On a self-sustaining process in shear flows. Physics of Fluids, 9, 883–900.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Pirozzoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pirozzoli, S. (2019). Finite Difference Methods for Incompressible and Compressible Turbulence. In: Pirozzoli, S., Sengupta, T. (eds) High-Performance Computing of Big Data for Turbulence and Combustion. CISM International Centre for Mechanical Sciences, vol 592. Springer, Cham. https://doi.org/10.1007/978-3-030-17012-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17012-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17011-0

  • Online ISBN: 978-3-030-17012-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics