Skip to main content

Cellular and Molecular Responses to Gravitational Force-Triggered Stress in Cells of the Immune System

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space
  • 1336 Accesses

Abstract

Sensitivity of the human immune system to microgravity has been supposed since the first Apollo missions and was demonstrated during several space missions in the past. In vitro experiments demonstrated that cells of the immune system are exceptionally sensitive to microgravity. Therefore, serious concerns arose whether spaceflight-associated immune system weakening ultimately precludes the expansion of human presence beyond Earth’s orbit. In human cells, gravitational forces may be sensed by an individual cell in the context of altered extracellular matrix mechanics, cell shape, cytoskeletal organization, or internal prestress in the cell–tissue matrix. The development of cellular mechanosensitivity and signal transduction was probably an evolutionary requirement to enable our cells to sense their individual microenvironment. Therefore it is possible that the same mechanisms, which enable human cells to sense and to cope with mechanical stress, are potentially dangerous in microgravity. This chapter reviews the most recent developments in investigation to elucidate the influence of microgravity on immune cell signaling and functions and hereby bridges the phenotypic changes to transcriptome and epigenetic regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian A, Schoppmann K, Sromicki J et al (2013) The oxidative burst reaction in mammalian cells depends on gravity. Cell Commun Signal 11:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albrecht-Buehler G (1991) Possible mechanisms of indirect gravity sensing by cells. ASGSB Bull 4:25–34

    CAS  PubMed  Google Scholar 

  • Armstrong JW, Gerren RA, Chapes SK (1995) The effect of space and parabolic flight on macrophage hematopoiesis and function. Exp Cell Res 216(1):160–168

    Article  CAS  PubMed  Google Scholar 

  • Athirasala A, Hirsch N, Buxboim A (2017) Nuclear mechanotransduction: sensing the force from within. Curr Opin Cell Biol 46:119–127

    Article  CAS  PubMed  Google Scholar 

  • Bakos A, Varkonyi A, Minarovits J, Batkai L (2001) Effect of simulated microgravity on human lymphocytes. J Gravit Physiol 8:69–70

    Google Scholar 

  • Barlow PW (1995) Gravity perception in plants: a multiplicity of systems derived by evolution? Plant Cell Environ 18:951–962

    Article  CAS  PubMed  Google Scholar 

  • Barritt G, Rychkov G (2005) TRPs as mechanosensitive channels. Nat Cell Biol 7:105–107

    Article  CAS  PubMed  Google Scholar 

  • Battista N, Meloni MA, Bari M et al (2012) 5-Lipoxygenase-dependent apoptosis of human lymphocytes in the International Space Station: data from the ROALD experiment. FASEB J 26:1791–1798

    Article  CAS  PubMed  Google Scholar 

  • Belaadi N, Aureille J, Guilluy C (2016) Under pressure: mechanical stress management in the nucleus. Cell 5:27

    Article  CAS  Google Scholar 

  • Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18:472–481

    Article  CAS  PubMed  Google Scholar 

  • Boonyaratanakornkit JB, Cogoli A, Li CF et al (2005) Key gravity-sensitive signaling pathways drive T cell activation. FASEB J 19:2020–2022

    Article  CAS  PubMed  Google Scholar 

  • Braeucker R, Cogoli A, Hemmersbach R (2002) Graviperception and graviresponse at the cellular level. In: Horneck G, Baumstark-Khan C (eds) Astrobiology the quest for the conditions of life. Springer, Berlin, pp 287–333

    Google Scholar 

  • Brown AH (1991) From gravity and the organism to gravity and the cell. ASGSB Bull 4:7–18

    CAS  PubMed  Google Scholar 

  • Brungs S, Kolanus W, Hemmersbach R (2015) Syk phosphorylation–a gravisensitive step in macrophage signalling. Cell Commun Signal 13:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buravkova L, Romanov Y, Rykova M et al (2005) Cell-to-cell interactions in changed gravity: ground-based and flight experiments. Acta Astronaut 57:67–74

    Article  CAS  PubMed  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  CAS  PubMed  Google Scholar 

  • Callegari A (2016) Eukaryotic transcription factor binding kinetics - a single-molecule and functional study. Thesis. EPFL, Switzerland. https://doi.org/10.5075/epfl-thesis-7267

    Book  Google Scholar 

  • Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan MW, Arora PD, Bozavikov P et al (2009) FAK, PIP5KIγ and gelsolin cooperatively mediate force-induced expression of α-smooth muscle actin. J Cell Sci 122:2769–2781

    Article  CAS  PubMed  Google Scholar 

  • Chang TT, Walther I, Li CF et al (2012) The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J Leukoc Biol 92:1133–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang W, Worman HJ, Gundersen GG (2015) Accessorizing and anchoring the LINC complex for multifunctionality. J Cell Biol 208:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88:39–48

    Article  CAS  PubMed  Google Scholar 

  • Choukèr A, Ullrich O (2016) The immune system in space: are we prepared. Springer International Publishing, New York, pp 123–127

    Book  Google Scholar 

  • Coffey DS (1998) Self-organization, complexity and chaos: the new biology for medicine. Nat Med 4:882–885

    Article  CAS  PubMed  Google Scholar 

  • Cogoli A (1993) The effect of hypogravity and hypergravity on cells of the immune system. J Leukoc Biol 54:259–268

    Article  CAS  PubMed  Google Scholar 

  • Cogoli A (1996) Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies. J Gravit Physiol 3:1–9

    CAS  PubMed  Google Scholar 

  • Cogoli A, Cogoli-Greuter M (1997) Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med 6:33–79

    Article  CAS  PubMed  Google Scholar 

  • Cogoli A, Tschopp A, Fuchs-Bislin P (1984) Cell sensitivity to gravity. Science 225:228–230

    Article  CAS  PubMed  Google Scholar 

  • Cogoli M, Bechler B, Cogoli A et al (1992) Lymphocytes on sounding rockets. Adv Space Res 12:141–144

    Article  CAS  PubMed  Google Scholar 

  • Cogoli-Greuter M, Meloni MA, Sciola L et al (1996) Movements and interactions of leukocytes in microgravity. J Biotechnol 47:279–287

    Article  CAS  PubMed  Google Scholar 

  • Cohrs RJ, Mehta SK, Schmid DS et al (2008) Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol 80:1116–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comet B (2001) Limiting factors for human health and performance: microgravity and reduced gravity. HUMEX-TN-002 Study on the survivability and adaptation of humans to long-duration interplanetary and planetary environments. Technical Note 2: Critical assessments of the limiting factors for human health and performance and recommendation of countermeasures

    Google Scholar 

  • Cubano LA, Lewis ML (2000) Fas/APO-1 protein is increased in spaceflown lymphocytes (Jurkat). Exp Gerontol 35:389–400

    Article  CAS  PubMed  Google Scholar 

  • Danko CG, Hah N, Luo X et al (2013) Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 50:212–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darzacq X, Shav-Tal Y, De Turris V et al (2007) In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol 14:796–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  CAS  PubMed  Google Scholar 

  • Dreuillet C, Tillit J, Kress M et al (2002) In vivo and in vitro interaction between human transcription factor MOK2 and nuclear lamin A/C. Nucleic Acids Res 30:4634–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont S, Morsut L, Aragona M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179

    Article  CAS  PubMed  Google Scholar 

  • Eckes B, Dogic D, Colucci-Guyon E et al (1998) Impaired mechanical stability, migration and contractile capacity in vimen-tin-deficient fibroblasts. J Cell Sci 111:1897–1907

    CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Fedorchak GR, Kaminski A, Lammerding J (2014) Cellular mechanosensing: getting to the nucleus of it all. Prog Biophys Mol Biol 115:76–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldner JC, Brandt BH (2002) Cancer cell motility–on the road from c-erbB-2 receptor steered signaling to actin reorganization. Exp Cell Res 272:93–108

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T, Finlay BJ (1986) The structure and function of Müller vesicles in loxodid ciliates. J Protozool 33:69–76

    Article  Google Scholar 

  • Frippiat JP, Crucian BE, De Quervain DJ et al (2016) Towards human exploration of space: the THESEUS review series on immunology research priorities. NPJ Microgravity 2:16040

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller B (1961) Tensegrity. Portfolio Artnews Annu 4:112–127

    Google Scholar 

  • Furuike S, Ito T, Yamazaki M (2001) Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett 498:72–75

    Article  CAS  PubMed  Google Scholar 

  • Galimberti M, Tolic-Norrelykke IM, Favillini R et al (2006) Hypergravity speeds up the development of T-lymphocyte motility. Eur Biophys J 35:393–400

    Article  PubMed  Google Scholar 

  • Garrison SR, Dietrich A, Stucky CL (2012) TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 107:913–922

    Article  CAS  PubMed  Google Scholar 

  • Gieni RS, Hendzel MJ (2009) Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem Cell Biol 87:283–306

    Article  CAS  PubMed  Google Scholar 

  • Goldermann M, Hanke W (2001) Ion channel are sensitive to gravity changes. Microgravity Sci Technol 13:35

    Article  CAS  PubMed  Google Scholar 

  • Guéguinou N, Huin-Schohn C, Bascove M et al (2009) Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond earth’s orbit? J Leukoc Biol 86:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Guelen L, Pagie L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948

    Article  CAS  PubMed  Google Scholar 

  • Häder DP, Hemmersbach R (1997) Graviperception and graviorientation in flagellates. Planta 203:7–10

    Article  Google Scholar 

  • Häder DP, Lebert M (2001) Graviperception and gravitaxis in algae. Adv Space Res 27:861–870

    Article  PubMed  Google Scholar 

  • Häder DP, Richter PR, Strauch SM et al (2006) Aquacells – flagellates under long-term microgravity and potential usage for life support systems. Microgravit Sci Technol 18:210–214

    Article  Google Scholar 

  • Häder DP, Richter PR, Schuster M et al (2009) Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: involvement of a transient receptor potential-like channel and a calmodulin. Adv Space Res 43:1179–1184

    Article  CAS  Google Scholar 

  • Häder DP, Braun M, Grimm D et al (2017) Gravireceptors in eukaryotes—a comparison of case studies on the cellular level. NPJ Microgravity 3:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haeder DP, Rosum A, Schaefer J et al (1996) Graviperception in the flagellate Euglena gracilis during a shuttle spaceflight. J Biotechnol 47:261–269

    Article  CAS  Google Scholar 

  • Haeder DP, Porst M, Tahedl H et al (1997) Gravitactic orientation in the flagellate Euglena gracilis. Microgravity Sci Technol 10:53–57

    Google Scholar 

  • Haeder DP, Hemmersbach R, Lebert M (2005) Gravity and the behaviour of unicellular organisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591

    Article  CAS  PubMed  Google Scholar 

  • Hashemi BB, Penkala JE, Vens C et al (1999) T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 13:2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Hatton JP, Gaubert F, Cazenave JP et al (2002) Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J Cell Biochem 87:39–50

    Article  CAS  PubMed  Google Scholar 

  • Haut Donahue TL, Genetos DC et al (2004) Annexin V disruption impairs mechanically induced calcium signaling in osteoblastic cells. Bone 35:656–663

    Article  CAS  PubMed  Google Scholar 

  • Hawkins W, Zieglschmid J (1975) Clinical aspects of crew health. In: Johnston R, Dietlein L, Berry C (eds) Biomedical results of Apollo. NASA, Washington, DC, pp 43–81

    Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach R, Braeucker R (2002) Gravity-related behaviour in ciliates and flagellates. In: Cogoli A (ed) Cell biology and biotechnology in space, advances in space biology and medicine, vol 8. Elsevier, Amsterdam, pp 59–75

    Chapter  Google Scholar 

  • Hemmersbach R, Haeder DP (1999) Graviresponses of certain ciliates and flagellates. FASEB J 13:S69–S75

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach R, Voormanns R, Briegleb W et al (1996) Influence of accelerations on the spatial orientation of Loxodes and Paramecium. J Biotechnol 47:271–278

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach R, Voormanns R, Bromeis B et al (1998) Comparative studies of the graviresponses of Paramecium and Loxodes. Adv Space Res 21:1285–1289

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach R, Volkmann D, Haeder DP (1999) Graviorientation in protists and plants. J Plant Physiol 154:1–15

    Article  CAS  PubMed  Google Scholar 

  • Hemmersbach-Krause R, Briegleb W, Haeder DP et al (1993) Orientation of Paramecium under the conditions of microgravity. J Eukaryot Microbiol 40:439–446

    Article  CAS  PubMed  Google Scholar 

  • Hetzer MW (2010) The nuclear envelope. Cold Spring Harb Perspect Biol 2:a000539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman BD, Crocker JC (2009) Cell mechanics: dissecting the physical responses of cells to force. Annu Rev Biomed Eng 11:259–288

    Article  CAS  PubMed  Google Scholar 

  • Hoffman BD, Massiera G, Crocker JC (2007) Fragility and mechanosensing in a thermalized cytoskeleton model with forced protein unfolding. Phys Rev E Stat Nonlinear Soft Matter Phys 76:051906

    Article  CAS  Google Scholar 

  • Hofman P, d’Andrea L, Guzman E et al (1999) Neutrophil F-actin and myosin but not microtubules functionally regulate transepithelial migration induced by interleukin 8 across a cultured intestinal epithelial monolayer. Eur Cytokine Netw 10:227–236

    CAS  PubMed  Google Scholar 

  • Horwitz AR, Parsons JT (1999) Cell migration–movin’ on. Science 286:1102–1103

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Chen J, Butler JP et al (2005) Prestress mediates force propagation into the nucleus. Biochem Biophys Res Commun 329:423–428

    Article  CAS  PubMed  Google Scholar 

  • Hubmayr RD, Shore SA, Fredberg JJ et al (1996) Pharmacological activation changes stiffness of cultured human airway smooth muscle cells. Am J Phys 271:C1660–C1668

    Article  CAS  Google Scholar 

  • Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32:1585–1593

    Article  CAS  PubMed  Google Scholar 

  • Hughes-Fulford M, Chang T, Li CF (2008) Effect of gravity on monocyte differentiation. Paper presented at the 10th ESA Life Sciences Symposium/29th Annual ISGP Meeting/24th Annual ASGSB Meeting/ELGRA Symposium “Life in Space for Life on Earth”, 22–27 June 2008 Angers, France

    Google Scholar 

  • Hughes-Fulford M, Chang TT, Martinez EM et al (2015) Spaceflight alters expression of microRNA during T-cell activation. FASEB J 29(12):4893–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihalainen TO, Aires L, Herzog FA et al (2015) Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat Mater 14:1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104:613–627

    PubMed  Google Scholar 

  • Ingber DE (1998) The architecture of life. Sci Am 278:48–57

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (1999) How cells (might) sense microgravity. FASEB J 13:S3–S15

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (2003a) Mechanobiology and diseases of mechanotransduction. Ann Med 35:564–577

    Article  PubMed  Google Scholar 

  • Ingber DE (2003b) Tensegrity I: cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–827

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97:163–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 15:825

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Huang AH, Cai Y et al (2006) Rigidity sensing at the leading edge through avb3 integrins and RPTPa. Biophys J 90:1804–1809

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Hunter T (1995) Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 5:747–757

    Article  CAS  PubMed  Google Scholar 

  • Katsch K, De Jong SJ, Albrecht JC et al (2012) Actin-dependent activation of serum response factor in T cells by the viral oncoprotein tip. Cell Commun Signal 10:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katta SS, Smoyer CJ, Jaspersen SL (2014) Destination: inner nuclear membrane. Trends Cell Biol 24:221–229

    Article  CAS  PubMed  Google Scholar 

  • Kaur I, Simons ER, Castro VA et al (2004) Changes in neutrophil functions in astronauts. Brain Behav Immun 18:443–450

    Article  CAS  PubMed  Google Scholar 

  • Kaur I, Simons ER, Castro VA et al (2005) Changes in monocyte functions of astronauts. Brain Behav Immun 19:547–554

    Article  CAS  PubMed  Google Scholar 

  • Kimzey SL (1977) Hematology and immunology studies. In: Johnson RS, Dietlein LF (eds) Biomedical results from Skylab, NASA SP-377. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC, pp 249–282

    Google Scholar 

  • Klopp E, Graff D, Struckmeier J et al (2002) The osteoblast mechano-receptor, microgravity perception and thermodynamics. J Gravit Physiol 9:269–270

    Google Scholar 

  • Kole TP, Tseng Y, Huang L et al (2004) Rho kinase regulates the intracellular micromechanical response of adherent cells to rho activation. Mol Biol Cell 15:3475–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondrachuk AV, Sirenko SP (1996) The theoretical consideration of microgravity effects on a cell. Adv Space Res 17:165–168

    Article  CAS  PubMed  Google Scholar 

  • Konstantinova IV, Antropova YN, Legenkov VI et al (1973) Study of reactivity of blood lymphoid cells in crew members of the Soyuz-6, Soyuz-7 and Soyuz-8 spaceships before and after flight. Space Biol Med 7:48–55

    Google Scholar 

  • Kossmehl P, Shakibaei M, Cogoli A et al (2002) Simulated microgravity induces programmed cell death in human thyroid carcinoma cells. J Gravit Physiol 9:P295–P296

    PubMed  Google Scholar 

  • Langenbach KJ, Sottile J (1999) Identification of protein-disulfide isomerase activity in fibronectin. J Biol Chem 274:7032–7038

    Article  CAS  PubMed  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    Article  CAS  PubMed  Google Scholar 

  • Le HQ, Ghatak S, Yeung CY et al (2016) Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol 18:864–875

    Article  CAS  PubMed  Google Scholar 

  • Lebert M, Haeder DP (1996) How Euglena tells up from down. Nature 379:590

    Article  CAS  PubMed  Google Scholar 

  • Lebert M, Richter P, Haeder DP (1997) Signal perception and transduction of gravitaxis in the flagellate Euglena gracilis. J Plant Physiol 150:685–690

    Article  CAS  Google Scholar 

  • Lebert M, Porst M, Richter P et al (1999) Physical characterization of gravitaxis in Euglena gracilis. J Plant Physiol 155:338–343

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Gotlieb AI (2002) Microtubule-actin interactions may regulate endothelial integrity and repair. Cardiovasc Pathol 11:135–140

    Article  CAS  PubMed  Google Scholar 

  • LeMasurier M, Gillespie PG (2005) Hair-cell mechanotransduction and cochlear amplification. Neuron 48:403–415

    Article  CAS  PubMed  Google Scholar 

  • Lewis ML (2004) The cytoskeleton in spaceflown cells: an overview. Gravit Space Biol 17:1–12

    Google Scholar 

  • Lewis ML, Reynolds JL, Cubano LA et al (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Limouse M, Manié S, Konstantinova I et al (1991) Inhibition of phorbol ester-induced cell activation in microgravity. Exp Cell Res 197:82–86

    Article  CAS  PubMed  Google Scholar 

  • Lombardi ML, Jaalouk DE, Shanahan CM et al (2011) The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem 286:26743–26753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machemer H, Machemer-Roehnisch S, Braeucker R et al (1991) Gravikinesis in Paramecium: theory and isolation of a physiological response to the natural gravity vector. J Comp Physiol A 168:1–12

    Article  Google Scholar 

  • Maiuri P, Knezevich A, De Marco A et al (2011) Fast transcription rates of RNA polymerase II in human cells. EMBO Rep 12:1280–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makhija E, Jokhun D, Shivashankar G (2016) Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc Natl Acad Sci U S A 113:E32–E40

    Article  CAS  PubMed  Google Scholar 

  • Mammoto A, Huang S, Moore K et al (2004) Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J Biol Chem 279:26323–26330

    Article  CAS  PubMed  Google Scholar 

  • Mammoto A, Huang S, Ingber DE (2007) Filamin links cell shape and cytoskeletal structure to Rho regulation by controlling accumulation of p190RhoGAP in lipid rafts. J Cell Sci 120:456–467

    Article  CAS  PubMed  Google Scholar 

  • Mangala LS, Zhang Y, He Z et al (2011) Effects of simulated microgravity on expression profile of microRNA in human lymphoblastoid cells. J Biol Chem 286:32483–32490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94:849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroto R, Raso A, Wood TG et al (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    Article  CAS  PubMed  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460

    Article  CAS  PubMed  Google Scholar 

  • Mazumder A, Roopa T, Basu A et al (2008) Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus. Biophys J 95:3028–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta SK, Cohrs RJ, Forghani B et al (2004) Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol 72:174–179

    Article  PubMed  Google Scholar 

  • Meissner K, Hanke W (2005) Action potential properties are gravity dependent. Microgravity Sci Technol 17:38–43

    Article  Google Scholar 

  • Meloni MA, Galleri G, Pippia P et al (2006) Cytoskeleton changes and impaired motility of monocytes at modelled low gravity. Protoplasma 229:243–249

    Article  CAS  PubMed  Google Scholar 

  • Meloni MA, Galleri G, Pani G et al (2008) Effects of real microgravity aboard international space station on monocytes motility and interaction with T-lymphocytes. Paper presented at the 10th ESA Life Sciences Symposium/29th Annual ISGP Meeting/24th Annual ASGSB Meeting/ELGRA Symposium “Life in Space for Life on Earth”, 22–27 June 2008 Angers, France

    Google Scholar 

  • Miralles F, Posern G, Zaromytidou AI et al (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342

    Article  CAS  PubMed  Google Scholar 

  • Miroshnikova YA, Nava MM, Wickström SA (2017) Emerging roles of mechanical forces in chromatin regulation. J Cell Sci 130:2243–2250

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Mayanagi T, Sobue K (2007) Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs). Exp Cell Res 313:3432–3445

    Article  CAS  PubMed  Google Scholar 

  • Mossman KD, Campi G, Groves JT et al (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310:1191–1193

    Article  CAS  PubMed  Google Scholar 

  • Najrana T, Sanchez-Esteban J (2016) Mechanotransduction as an adaptation to gravity. Front Pediatr 4:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura H, Kumei Y, Morita S et al (2003) Antagonism between apoptotic (Bax/Bcl-2) and anti-apoptotic (IAP) signals in human osteoblastic cells under vector-averaged gravity condition. Ann N Y Acad Sci 1010:143–147

    Article  CAS  PubMed  Google Scholar 

  • NASA (1967) Gemini Summary Conference. NASA-SP-138

    Google Scholar 

  • NASA (1968) Gemini midprogram conference including experiment results. NASA-SP-121, JSC-CN-29009

    Google Scholar 

  • Navarro AP, Collins MA, Folker ES (2016) The nucleus is a conserved mechanosensation and mechanoresponse organelle. Cytoskeleton 73:59–67

    Article  PubMed  Google Scholar 

  • Niggli V (2003) Microtubule-disruption-induced and chemotactic-peptide-induced migration of human neutrophils: implications for differential sets of signalling pathways. J Cell Sci 116:813–822

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Takahashi A, Wang X et al (1999) Accumulation of a tumor suppressor p53 protein in rat muscle during a space flight. Mutat Res 430:271–274

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y, Hartwig JH, Stossel TP (2006) FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8:803–814

    Article  CAS  PubMed  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR et al (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  CAS  PubMed  Google Scholar 

  • Otey CA, Carpen O (2004) Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 58:104–111

    Article  CAS  PubMed  Google Scholar 

  • Papaseit C, Pochon N, Tabony J (2000) Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci U S A 97:8364–8368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen K, Thiel C, Timm J et al (2010) Microgravity-induced alterations in signal transduction in cells of the immune system. Acta Astronaut 67(9–10):1116–1125

    Article  CAS  Google Scholar 

  • Paulsen K, Tauber S, Goelz N et al (2014) Severe disruption of the cytoskeleton and immunologically relevant surface molecules in a human macrophageal cell line in microgravity—results of an in vitro experiment on board of the Shenzhou-8 space mission. Acta Astronaut 94:277–292

    Article  CAS  Google Scholar 

  • Paulsen K, Tauber S, Dumrese C et al (2015) Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity. Biomed Res Int 2015:538786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellis NR, Goodwin TJ, Risin D et al (1997) Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell Dev Biol Anim 33:398–405

    Article  CAS  PubMed  Google Scholar 

  • Penard E (1917) Le genre Loxodes. Rev Suisse Zool 25:453–489

    Google Scholar 

  • Planel H (2004) Space and life: an introduction to space biology and medicine. CRC Press, Boca Raton

    Book  Google Scholar 

  • Planel H, Richoilley G, Tixador R et al (1981) Space flight effects on Paramecium tetraurelia flown aboard Salyut 6 in the Cytos 1 and Cytos M experiment. Adv Space Res 1:95–101

    Article  Google Scholar 

  • Planel H, Tixador R, Nefedov Y et al (1982) Effect of space flight factors at the cellular level: results of the CYTOS experiment. Aviat Space Environ Med 53:370–374

    CAS  PubMed  Google Scholar 

  • Pletser V (2016) European aircraft parabolic flights for microgravity research, applications and exploration: a review. REACH-Rev Human Space Explor 1:11–19

    Google Scholar 

  • Plett PA, Abonour R, Frankovitz SM et al (2004) Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Exp Hematol 32:773–781

    Article  CAS  PubMed  Google Scholar 

  • Pollard EC (1965) Theoretical studies on living systems in the absence of mechanical stress. J Theor Biol 8:113–123

    Article  CAS  PubMed  Google Scholar 

  • Pourati J, Maniotis A, Spiegel D et al (1998) Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am J Phys 274:C1283–C1289

    Article  CAS  Google Scholar 

  • Ramdas NM, Shivashankar G (2015) Cytoskeletal control of nuclear morphology and chromatin organization. J Mol Biol 427:695–706

    Article  CAS  PubMed  Google Scholar 

  • Rieder N (1977) Die Müllerschen Körperchen von Loxodes magnus (Ciliata, Holotricha): Ihr Bau und ihre mögliche Funktion als Schwererezeptor. In: Verhandlungen der Deutschen Zoologischen Gesellschaft, vol 70. Jahresversammlung, Erlangen, Gustav Fisher Verlag, Stuttgart, p 254

    Google Scholar 

  • Rief M, Pascual J, Saraste M et al (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286:553–561

    Article  CAS  PubMed  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ et al (2001) Focal contacts as mechanosensors externally applied local mechanical force induces growth of focal contacts by an mdia1-dependent and rock-independent mechanism. J Cell Biol 153:1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesner H, Wassermann T, Moeller W et al (2006) Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma 229:225–234

    Article  Google Scholar 

  • Romanov YA, Buravkova LB, Rikova MP et al (2001) Expression of cell adhesion molecules and lymphocyte-endothelium interaction under simulated hypogravity in vitro. J Gravit Physiol 8:5–8

    Google Scholar 

  • Sathe AR, Shivashankar G, Sheetz MP (2016) Nuclear transport of paxillin depends on focal adhesion dynamics and FAT domains. J Cell Sci 129:1981–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatten H, Lewis ML, Chakrabarti A (2001) Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut 49:399–418

    Article  CAS  PubMed  Google Scholar 

  • Schmitt DA, Hatton JP, Emond C et al (1996) The distribution of protein kinase C in human leukocytes is altered in microgravity. FASEB J 10:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Schnepel J, Tschesche H (2000) The proteolytic activity of the recombinant cryptic human fibronectin type IV collagenase from E. coli expression. J Protein Chem 19:685–692

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenberg M, Pippia P, Meloni MA et al (1999) Signal transduction in T lymphocytes–a comparison of the data from space, the free fall machine and the random positioning machine. Adv Space Res 24:793–800

    Article  CAS  PubMed  Google Scholar 

  • Schwer CI, Lehane C, Guelzow T et al (2013) Thiopental inhibits global protein synthesis by repression of eukaryotic elongation factor 2 and protects from hypoxic neuronal cell death. PLoS One 8:e77258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sciola L, Cogoli-Greuter M, Cogoli A et al (1999) Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells. Adv Space Res 24:801–805

    Article  CAS  PubMed  Google Scholar 

  • Sheetz MP (2001) Cell control by membrane–cytoskeleton adhesion. Nat Rev Mol Cell Biol 2:392–396

    Article  CAS  PubMed  Google Scholar 

  • Shevelyov YY, Nurminsky DI (2012) The nuclear lamina as a gene-silencing hub. Curr Issues Mol Biol 14:27

    CAS  PubMed  Google Scholar 

  • Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769–775

    Article  CAS  PubMed  Google Scholar 

  • Singh KP, Kumari R, Dumond JW (2010) Simulated microgravity-induced epigenetic changes in human lymphocytes. J Cell Biochem 111(1):123–129

    Article  CAS  PubMed  Google Scholar 

  • Solovei I, Wang AS, Thanisch K et al (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–598

    Article  CAS  PubMed  Google Scholar 

  • Spisni E, Toni M, Strillacci A et al (2006) Caveolae and caveolae constituents in mechanosensing: effect of modeled microgravity on cultured human endothelial cells. Cell Biochem Biophys 46:155–164

    Article  CAS  PubMed  Google Scholar 

  • Stamenovic D, Mijailovich SM, Tolic-Norrelykke IM et al (2002) Cell prestress. II: Contribution of microtubules. Am J Physiol Cell Physiol 282:C617–C624

    Article  CAS  PubMed  Google Scholar 

  • Stossel TP, Condeelis J, Cooley L et al (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    Article  CAS  PubMed  Google Scholar 

  • Stowe RP, Sams CF, Mehta SK et al (1999) Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 65:179–186

    Article  CAS  PubMed  Google Scholar 

  • Streb C, Richter P, Ntefidou M et al (2002) Sensory transduction of gravitaxis in Euglena gracilis. J Plant Physiol 159:855–862

    Article  CAS  Google Scholar 

  • Strohman RC (1997) The coming Kuhnian revolution in biology. Nat Biotechnol 15:194–200

    Article  CAS  PubMed  Google Scholar 

  • Studer M, Thiel C, Bradacs G et al (2010) Parabolic maneuvers of the Swiss Air Force fighter jet Northrop F5-E as a new platform to identify rapid gravi-responsive mechanisms in cultured mammalian cells. Paper presented at the 61st International Astronautical Congress, IAC-10. A1.7.9, 27 Sep–01 Oct 2010, Prague Czech Republic

    Google Scholar 

  • Sundaresan A, Risin D, Pellis NR (2002) Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity. In Vitro Cell Dev Biol Anim 38:118–122

    Article  PubMed  Google Scholar 

  • Tabony J, Rigotti N, Glade N et al (2007) Effect of weightlessness on colloidal particle transport and segregation in self-organisingmicrotubule preparations. Biophys Chem 127:172–180

    Article  CAS  PubMed  Google Scholar 

  • Tahedl H, Richter P, Lebert M et al (1997) cAMP is involved in gravitxis signal transduction of Euglena gracilis. Microgravit Sci Technol 10:53–57

    Google Scholar 

  • Tairbekov MG (1996) The role of signal systems in cell gravisensitivity. Adv Space Res 17:113–119

    Article  CAS  PubMed  Google Scholar 

  • Tajik A, Zhang Y, Wei F et al (2016) Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater 15:1287–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamada M, Sheetz MP, Sawada Y (2004) Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 7:709–718

    Article  CAS  PubMed  Google Scholar 

  • Tauber S, Hauschild S, Crescio C et al (2013) Signal transduction in primary human T lymphocytes in altered gravity–results of the MASER-12 suborbital space flight mission. Cell Commun Signal 11:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tauber S, Hauschild S, Paulsen K et al (2015) Signal transduction in primary human T lymphocytes in altered gravity during parabolic flight and clinostat experiments. Cell Physiol Biochem 35:1034–1051

    Article  CAS  PubMed  Google Scholar 

  • Tauber S, Lauber B, Paulsen K et al (2017) Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS One 12:e0175599. https://doi.org/10.1371/journal.pone.0175599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiam HR, Vargas P, Carpi N et al (2016) Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat Commun 7:10997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel CS, Paulsen K, Bradacs G et al (2012) Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun Signal 10:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel CS, Hauschild S, Tauber S et al (2015) Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity. Biomed Res Int 2015:363575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel CS, Lauber BA, Polzer J et al (2017a) Time course of cellular and molecular regulation in the immune system in altered gravity: progressive damage or adaptation ? REACH-Rev Human Space Explor 5:22–32

    Google Scholar 

  • Thiel CS, de Zélicourt D, Tauber S et al (2017b) Rapid adaptation to microgravity in mammalian macrophage cells. Sci Rep 7:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel CS, Hauschild S, Huge A et al (2017c) Dynamic gene expression response to altered gravity in human T cells. Sci Rep 7:5204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel CS, Huge A, Hauschild S et al (2017d) Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15. 4. NPJ Microgravity 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiel CS, Tauber S, Christoffel S et al (2018) Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells. Sci Rep 8(1)

    Google Scholar 

  • Thiel CS, Tauber S, Lauber B et al (2019) Rapid morphological and cytoskeletal response to microgravity in human primary macrophages. Int J Mol Sci 20(10):2402

    Google Scholar 

  • Thorpe SD, Lee DA (2017) Dynamic regulation of nuclear architecture and mechanics—a rheostatic role for the nucleus in tailoring cellular mechanosensitivity. Nucleus 8(3):287–300

    Google Scholar 

  • Tsang E, Giannetti AM, Shaw D et al (2008) Molecular mechanism of the Syk activation switch. J Biol Chem 283:32650–32659

    Article  CAS  PubMed  Google Scholar 

  • Tzima E, Irani-Tehrani M, Kiosses WB et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    Article  CAS  PubMed  Google Scholar 

  • Uhler C, Shivashankar GV (2016) Geometric control and modeling of genome reprogramming. BioArchitecture 6:76–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhler C, Shivashankar GV (2018) Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol 18(12):717–727

    Article  CAS  Google Scholar 

  • Uva BM, Masini MA, Sturla M et al (2002a) Microgravity-induced programmed cell death in astrocytes. J Gravit Physiol 9:P275–P276

    CAS  PubMed  Google Scholar 

  • Uva BM, Masini MA, Sturla M et al (2002b) Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res 934:132–139

    Article  CAS  PubMed  Google Scholar 

  • Uva BM, Strollo F, Ricci F et al (2005) Morpho-functional alterations in testicular and nervous cells submitted to modelled microgravity. J Endocrinol Investig 28:84–91

    CAS  Google Scholar 

  • Vargas P, Barbier L, Sáez PJ et al (2017) Mechanisms for fast cell migration in complex environments. Curr Opin Cell Biol 48:72–78

    Article  CAS  PubMed  Google Scholar 

  • Vartiainen MK, Guettler S, Larijani B et al (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316:1749–1752

    Article  CAS  PubMed  Google Scholar 

  • Versaevel M, Grevesse T, Gabriele S (2012) Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun 3:671

    Article  CAS  PubMed  Google Scholar 

  • Verschueren H, van der Taelen I, Dewit J et al (1995) Effects of Clostridium botulinum C2 toxin and cytochalasin D on in vitro invasiveness, motility and F-actin content of a murine T-lymphoma cell line. Eur J Cell Biol 66:335–341

    CAS  PubMed  Google Scholar 

  • Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  CAS  PubMed  Google Scholar 

  • Volkmann D, Baluska F (2006) Gravity: one of the driving forces for evolution. Protoplasma 229:143–148

    Article  CAS  PubMed  Google Scholar 

  • Vorselen D, Roos WH, MacKintosh FC et al (2014) The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J 28:536–547

    Article  CAS  PubMed  Google Scholar 

  • Walther I, Pippia P, Meloni MA et al (1998) Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett 436:115–118

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gilmore TD (2003) Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochim Biophys Acta Mol Cell Res 1593:115–120

    Article  CAS  Google Scholar 

  • Wang N, Stamenovic D (2000) Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol 279:C188–C194

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Naruse K, Stamenović D et al (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci U S A 98:7765–7770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Tolić-Nørrelykke IM, Chen J et al (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282:C606–C616

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Botvinick EL, Zhao Y et al (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Nagarajan M, Uhler C et al (2017) Orientation and repositioning of chromosomes correlate with cell geometry–dependent gene expression. Mol Biol Cell 28(14):1997–2009

    Google Scholar 

  • Wilson KL, Foisner R (2010) Lamin-binding proteins. Cold Spring Harb Perspect Biol 2:a000554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng B, Han M, Bernier M et al (2009) Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J 276:2669–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support by the German Aerospace Center (DLR), Space Agency (grant no. 50WB0613, no. 50WB0912, no. 50WB1219, no. 50WB1519), and ESA (ESTEC Contract nr 20562/07/NL/VJ ESA-CORA-GBF-2005-005). We also gratefully thank our collaboration partners DLR, ESA, NASA, Spaceflorida, Airbus Defense and Space, Novespace, the Swiss Air Force, the Swiss International Airlines, and the Deutsche Lufthansa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Ullrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ullrich, O., Thiel, C.S. (2020). Cellular and Molecular Responses to Gravitational Force-Triggered Stress in Cells of the Immune System. In: Choukèr, A. (eds) Stress Challenges and Immunity in Space. Springer, Cham. https://doi.org/10.1007/978-3-030-16996-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16996-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16995-4

  • Online ISBN: 978-3-030-16996-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics