Skip to main content

Fatigue Life of Auxetic Re-entrant Honeycomb Structure

  • Conference paper
  • First Online:
Advances in Manufacturing II (MANUFACTURING 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Auxetic materials have unique properties which still require further evaluation. One of the least researched topics in terms of auxetics is their fatigue strength. In this article, high-cycle fatigue life of auxetic re-entrant structure unit cell was calculated using Finite Element Analysis. A fully reversed cycle consisting of alternating compressive and tensile loads was applied. Also, stress-life data had to be defined as approximated Wohler’s curve. Result in form of cycles to failure contour plot was compared with corresponding contour plot obtained for regular hexagonal honeycomb lattice unit cell. It was observed that re-entrant cell has significantly higher fatigue strength than non-auxetic honeycomb cell. The test was also carried out for the models of the structure made of array of unit cells. Their results confirmed the previous observations which bring the conclusion that auxetic materials exhibit superior fatigue life properties compared with regular microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim, T.C.: Auxetic Materials and Structures. Springer, Singapore (2015)

    Book  Google Scholar 

  2. Wormser, M., Warmuth, F., Korner, C.: Evolution of full phononic band gaps in periodic cellular structures. Appl. Phys. A 123, 661 (2017)

    Article  Google Scholar 

  3. Adler, L., Warmuth, F., Lodes, M.A., Osmanlic, F., Korner, C.: The effect of a negative Poisson’s ratio on thermal stresses in cellular metallic structures. Smart Mater. Struct. 25(11), 115038 (2016)

    Article  Google Scholar 

  4. Novak, N., Hokamoto, K., Vesenjak, M., Ren, Z.: Mechanical behavior of auxetic cellular structures built from inverted tetrapods at high strain rates. Int. J. Impact Eng. 122, 83–90 (2018)

    Article  Google Scholar 

  5. Ren, X., Das, R., Tran, P., Ngo, T.D., Xie, Y.M.: Auxetic metamaterials and structures: a review. Smart Mater. Struct. 27(2), 023001 (2018)

    Article  Google Scholar 

  6. Bauer, J., Meza, L.R., Schaedler, T.A., Schwaiger, R., Zheng, X., Valdevit, L.: Nanolattices: an emerging class of mechanical metamaterials. Adv. Mater. 29(40), 1701850 (2017)

    Article  Google Scholar 

  7. Yang, C., Vora, H.D., Chang, Y.: Behavior of auxetic structures under compression and impact forces. Smart Mater. Struct. 27(2), 025012 (2018)

    Article  Google Scholar 

  8. Duncan, O., Shepherd, T., Moroney, C., Foster, L., Venkatraman, P.D., Winwood, K., Allen, T., Alderson, A.: Review of auxetic materials for sports applications: expanding options in comfort and protection. Appl. Sci. 8(6), 941 (2018)

    Article  Google Scholar 

  9. Jopek, H., Stręk, T.: Thermoauxetic behavior of composite structures. Materials 11(2), 294 (2018)

    Article  Google Scholar 

  10. Strek, T., Jopek, H., Nienartowicz, M.: Dynamic response of sandwich panels with auxetic cores. Physica Status Solidi B (b) 252(7), 1540–1550 (2015)

    Article  Google Scholar 

  11. Strek, T., Jopek, H., Idczak, E., Wojciechowski, K.W.: Computational modelling of structures with non-intuitive behaviour. Materials 10(12), 1386 (2017)

    Article  Google Scholar 

  12. Pozniak, A., Kaminski, H., Kedziora, P., Maruszewski, B., Strek, T., Wojciechowski, K.W.: Anomalous deformation of constrained auxetic square. Rev. Adv. Mater. Sci. 23(2), 169–174 (2010)

    Google Scholar 

  13. Bezazi, A., Scarpa, F.: Mechanical behavior of conventional and negative Poisson’s ratio thermoplastic foams under compressive cyclic loading. Int. J. Fatigue 29(5), 922–930 (2007)

    Article  Google Scholar 

  14. Lisiecki, J., Nowakowski, D., Reymer, P.: Fatigue properties of polyurethane foams, with special emphasis on auxetic foams, used for helicopter pilot seat cushion inserts. Fatigue Aircraft Struct. 1(6), 72–78 (2014)

    Article  Google Scholar 

  15. Michalski, J., Strek, T.: Fatigue life of polymer dental crown. Vibr. Phys. Syst. 29, 2018010 (2018)

    Google Scholar 

  16. Brancheau, J.E.: Practical Aspects of Finite Element Simulation. A Study Guide. Altair Engineering, Troy (2015)

    Google Scholar 

  17. Gokhale, N.S., Deshpande, S.S., Bedekar, S.V., Thite, A.N.: Practical Finite Element Analysis. Finite to Infinite, Pune (2008)

    Google Scholar 

  18. Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  19. Fe-safe User Manual, Volume 2 – Fatigue Theory Reference Manual, Simulia

    Google Scholar 

  20. Yang, L., Harrysson, O., West, H.: Modeling of uniaxial compression in a 3D periodic re-entrant lattice structure. J. Mater. Sci. 48(4), 1413–1422 (2013)

    Article  Google Scholar 

  21. Abdelaal, O.A.M., Darwish, S.M.H.: Analysis, fabrication and a biomedical application of auxetic cellular structures. Int. J. Eng. Innovative Technol. 2(3), 218–223 (2012)

    Google Scholar 

  22. Hou, Y., Tai, Y.H., Lira, C., Scarpa, F., Yates, J.R., Gu, B.: The bending and failure of sandwich structures with auxetic gradient cellular cores. Compos. A Appl. Sci. Manuf. 49, 119–131 (2013)

    Article  Google Scholar 

  23. Lira, C., Scarpa, F.: Transverse shear stiffness of thickness gradient honeycombs. Compos. Sci. Technol. 70(6), 930–936 (2010)

    Article  Google Scholar 

  24. Boldrin, L., Hummel, S., Scarpa, F., Di Maio, D., Lira, C., Ruzzene, M., Remilat, C.D.L., Lim, T.C., Rajaserakan, R., Patsias, S.: Dynamic behavior of auxetic gradient composite hexagonal honeycombs. Compos. Struct. 149, 114–124 (2016)

    Article  Google Scholar 

  25. The life of the fork crown on a bicycle suspension. https://knowledge.autodesk.com/support/nastran-in-cad/getting-started/caas/CloudHelp/cloudhelp/2017/ENU/NINCAD-ES-Videos/files/GUID-18B239D7-697B-4481-8332-1BB6AB6A4D71-htm.html

Download references

Acknowledgments

This work was supported by grants of the Ministry of Science and Higher Education in Poland: 02/21/DS PB/3513/2018. The simulations have been carried out at the Institute of Applied Mechanics, Poznan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Michalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michalski, J., Strek, T. (2019). Fatigue Life of Auxetic Re-entrant Honeycomb Structure. In: Gapiński, B., Szostak, M., Ivanov, V. (eds) Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16943-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16943-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16942-8

  • Online ISBN: 978-3-030-16943-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics