Impedance-Based PZT Transducer and Fuzzy Logic to Detect Damage in Multi-point Dressers

  • Pedro O. JuniorEmail author
  • Doriana M. D’Addona
  • Felipe A. Alexandre
  • Rodrigo Ruzzi
  • Paulo R. Aguiar
  • Fabricio G. Baptista
  • Eduardo C. Bianchi
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Alternative techniques such as impedance-based lead zirconate titanate (PZT) transducers has emerged as an innovative approach for manufacturing monitoring process, because its flexibility of using low-cost piezoelectric diaphragms and its simple methodology in terms of apparatus by using the electromechanical impedance (EMI). In addition, this technique has been under several improvements due to the advance of artificial intelligent systems. On this point, the use of fuzzy logic systems has been reported in literature as an attractive combination to improve the process performance. Therefore, this study proposes an approach to detect damage in multi-point dresser based on EMI technique incorporating a fuzzy logic system. To this end, a fuzzy model is built considering the information obtained from representative damage indices corresponding to the different damage cases that are generated at the dresser. At the end, authors expected that the dressing operation can be optimized, preventing the operation from being performed with worn or damaged dressers and ensuring quality standards and precision to the grinding process, which have a high benefit to the manufacturing chain.


Electromechanical impedance PZT transducers Fuzzy logic Tool condition Grinding process 



The authors would like to thank the Sao Paulo Research Foundation (FAPESP), under grant #2016/02831-5 and grant #2017/16921-9 for supporting this research work.


  1. 1.
    Pombo, I., Cearsolo, X., Sánchez, J.A., Cabanes, I.: Experimental and numerical analysis of thermal phenomena in the wear of single point diamond dressing tools. J. Manuf. Process. 27, 145–157 (2017)CrossRefGoogle Scholar
  2. 2.
    Wegener, K., Hoffmeister, H.-W., Karpuschewski, B., Kuster, F., Hahmann, W.-C., Rabiey, M.: Conditioning and monitoring of grinding wheels. CIRP Ann. - Manuf. Technol. 60(2), 757–777 (2011)CrossRefGoogle Scholar
  3. 3.
    Junior, P.O.C., Marchi, M., Henrique, C., Martins, R., Aguiar, P.R., Bianchi, E.C.: Spectral estimation of vibration signal for monitoring the wear of single-point dresser. Mater. J. Scielo. 21(04), 827–840 (2016)Google Scholar
  4. 4.
    Junior, P.O.C., Ruzzi, R.S., Lopes, W.N., et al.: A new approach for dressing operation monitoring using voltage signals via impedance-based structural health monitoring. KnE Eng. 3, 942–952 (2018)Google Scholar
  5. 5.
    Aguiar, P.R., Souza, A.G.O., Bianchi, E.C., Leite, R.R., Dotto, F.R.L.: Monitoring the dressing operation in the grinding process. Int. J. Mach. Mach. Mater. 5(1), 3–22 (2009)Google Scholar
  6. 6.
    Martins, C.H.R., Aguiar, P.R., Frech, A., Bianchi, E.C.: Tool condition monitoring of single-point dresser using acoustic emission and neural networks models. IEEE Trans. Instrum. Meas. 63(3), 667–679 (2014)CrossRefGoogle Scholar
  7. 7.
    Martins, C.H.R., Aguiar, P.R., Frech, A., Bianchi, E.C.: Neural networks models for wear patterns recognition of single-point dresser. In: IFAC 2013 (2013)CrossRefGoogle Scholar
  8. 8.
    D’Addona, D.M.A., Conte, S., Lopes, W.N., Aguiar, P.R., Bianchi, E.C., Teti, R.: Tool condition monitoring of single-point dressing operation by digital signal processing of AE and AI. Procedia CIRP 67, 307–312 (2018)CrossRefGoogle Scholar
  9. 9.
    Junior, P.O.C., Souza, R.V., Ferreira, F.I., Martins, C.H., Aguiar, P.R., Bianchi, E.C.: Wear monitoring of single-point dresser in dry dressing operation based on neural models. In: Proceedings of the IASTED International Conference on Modelling, Identification and Control (2017)Google Scholar
  10. 10.
    D’Addona, D.M., Matarazzo, D., de Aguiar, P.R., Bianchi, E.C., Martins, C.H.R.: Neural networks tool condition monitoring in single-point dressing operations. Procedia CIRP 41, 431–436 (2016)CrossRefGoogle Scholar
  11. 11.
    Miranda, H.I., Rocha, C.A., Oliveira, P., Martins, C., Aguiar, P.R., Bianchi, E.C.: Monitoring single-point dressers using fuzzy models. Procedia CIRP 33, 281–286 (2015)CrossRefGoogle Scholar
  12. 12.
    Adnan, M.R.H., Sarkheyli, A., Mohd Zain, A., Haron, H.: Fuzzy logic for modeling machining process: a review. Artif. Intell. Rev. 43(3), 345–379 (2015)Google Scholar
  13. 13.
    Miranda, H.I.C., Aguiar, P.R., Euzebio, C.D.G., Bianchi, E.C.: Fuzzy logic to predict thermal damages of ground parts. In: Scopus, pp. 434–441 (2010)Google Scholar
  14. 14.
    Azadegan, A., Porobic, L., Ghazinoory, S., Samouei, P., Saman Kheirkhah, A.: Fuzzy logic in manufacturing: a review of literature and a specialized application. Int. J. Prod. Econ. 132(2), 258–270 (2011)CrossRefGoogle Scholar
  15. 15.
    La, Z.: Fuzzy sets. Info. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  16. 16.
    Marchi, M., Baptista, F.G., de Aguiar, P.R., Bianchi, E.C.: Grinding process monitoring based on electromechanical impedance measurements. Meas. Sci. Technol. 26(4), 045601 (2015)CrossRefGoogle Scholar
  17. 17.
    da Silva, R.B., Ferreira, F.I., Baptista, F.G., et al.: Electromechanical impedance (EMI) technique as alternative to monitor workpiece surface damages after the grinding operation. Int. J. Adv. Manuf. Technol. 98, 1–10 (2018)CrossRefGoogle Scholar
  18. 18.
    Ribeiro, D.M.S., Junior, P.O.C., Sodário, R.D., Marchi, M., Aguiar, P.R., Bianchi, E.C.: Low-Cost Piezoelectric transducer applied to workpiece surface monitoring in grinding process. In: ABCM International Congress Mechanical Engineering - COBEM, vol. 23, pp. 1–7 (2015)Google Scholar
  19. 19.
    Ribeiro, D.M.S., Aguiar, P.R., Fabiano, L.F.G., et al.: Spectra measurements using piezoelectric diaphragms to detect burn in grinding process. IEEE Trans. Instrum. Meas. 66(11), 3052–3063 (2017)CrossRefGoogle Scholar
  20. 20.
    Junior, P.O.C., Ferreira, F.I., Aguiar, P.R., Batista, F.G., Bianchi, E.C., Daddona, D.M.: Time-domain analysis based on the electromechanical impedance method for monitoring of the dressing operation. Procedia CIRP 67, 319–324 (2018)CrossRefGoogle Scholar
  21. 21.
    Junior, P., D’Addona, D.M., Aguiar, P.R.: Dressing tool condition monitoring through impedance-based sensors: part 1—PZT diaphragm transducer response and EMI sensing technique. Sensors 18(12), 4455 (2018)CrossRefGoogle Scholar
  22. 22.
    Vieira, R., Park, S., Steffen, V., Inman, D.J.: Fuzzy logic applied to damage characterization through SHM techniques. Allen Inst. Artif. Intell. Semant. Sch. 1–8 (2007)Google Scholar
  23. 23.
    Junior, P.O.C., D’Addona, D., Aguiar, P., Teti, R.: Dressing tool condition monitoring through impedance-based sensors: part 2—neural networks and k-nearest neighbor classifier approach. Sensors 18(12), 4453 (2018)CrossRefGoogle Scholar
  24. 24.
    Ju, M.D., Lopes, V., Brennan, M.J.: Structural damage detection by fuzzy clustering. Mech. Syst. Signal Process. 22, 1636–1649 (2008)CrossRefGoogle Scholar
  25. 25.
    Reda, T.M., Lucero, J.: Damage identification for structural health monitoring using fuzzy pattern recognition. Eng. Struct. 27(12), 1774–1783 (2005)CrossRefGoogle Scholar
  26. 26.
    Baptista, F.G., Vieira, J.F.: A new impedance measurement system for PZT based structural health monitoring. IEEE Trans. Instrum. Meas. 58, 3602–3608 (2009)CrossRefGoogle Scholar
  27. 27.
    Murata, M.C.: Piezoelectric Sound Components.
  28. 28.
    Na, S., Lee, H.K.: A multi-sensing electromechanical impedance method for non-destructive evaluation of metallic structures. Smart Mater. Struct. 22(9), 095011 (2013)CrossRefGoogle Scholar
  29. 29.
    de Almeida, V.A.D., Baptista, F.G., de Aguiar, P.R.: Piezoelectric Transducers assessed by the pencil lead break for impedance-based structural health monitoring. IEEE Sens. J. 15(2), 693–702 (2015)Google Scholar
  30. 30.
    Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)CrossRefGoogle Scholar
  31. 31.
    Alexandre, F.A., Lopes, W.N., Dotto, F.R.L., et al.: Tool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model. Int. J. Adv. Manuf. Technol. 96, 67–79 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pedro O. Junior
    • 1
    Email author
  • Doriana M. D’Addona
    • 2
  • Felipe A. Alexandre
    • 1
  • Rodrigo Ruzzi
    • 1
  • Paulo R. Aguiar
    • 1
  • Fabricio G. Baptista
    • 1
  • Eduardo C. Bianchi
    • 1
  1. 1.Department of Electrical and Mechanical Engineering, Bauru School of EngineeringSao Paulo State University (UNESP)BauruBrazil
  2. 2.Department of Chemical, Materials and Industrial Production EngineeringUniversity of Naples Federico IINaplesItaly

Personalised recommendations