Skip to main content

Pericytes in Alzheimer’s Disease: Novel Clues to Cerebral Amyloid Angiopathy Pathogenesis

  • Chapter
  • First Online:
Pericyte Biology in Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1147))

Abstract

Pericytes in the central nervous system attract growing attention of neurobiologists because of obvious opportunities to use them as target cells in numerous brain diseases. Functional activity of pericytes includes control of integrity of the endothelial cell layer, regeneration of vascular cells, and regulation of microcirculation. Pericytes are well integrated in the so-called neurovascular unit (NVU) serving as a platform for effective communications of neurons, astrocytes, endothelial cells, and pericytes. Contribution of pericytes to the establishment and maintaining the structural and functional integrity of blood–brain barrier is confirmed in numerous experimental and clinical studies. The review covers current understandings on the role of pericytes in molecular pathogenesis of NVU/BBB dysfunction in Alzheimer’s disease with the special focus on the development of cerebral amyloid angiopathy, deregulation of cerebral angiogenesis, and progression of BBB breakdown seen in Alzheimer’s type neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, K., Tunaru, S., Tang, C., Muller, M., Gille, A., Sassmann, A., Hanson, J., & Offermanns, S. (2010). An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metabolism, 11, 311–319.

    Article  CAS  PubMed  Google Scholar 

  • An, Y., Varma, V. R., Varma, S., Casanova, R., Dammer, E., Pletnikova, O., Chia, C. W., Egan, J. M., Ferrucci, L., Troncoso, J., Levey, A. I., Lah, J., Seyfried, N. T., Legido-Quigley, C., O’Brien, R., & Thambisetty, M. (2018). Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimer’s & Dementia, 14, 318–329.

    Article  Google Scholar 

  • Arboleda-Velasquez, J. F., Valdez, C., Marko, C. K., & D’Amore, P. A. (2015). From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy. Current Diabetes Reports, 15, 573–573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armulik, A., Genové, G., & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215.

    Article  CAS  PubMed  Google Scholar 

  • Attwell, D., Mishra, A., Hall, C. N., O’Farrell, F. M., & Dalkara, T. (2016). What is a pericyte? Journal of Cerebral Blood Flow & Metabolism, 36, 451–455.

    Article  CAS  Google Scholar 

  • Avolio, E., Alvino, V. V., Ghorbel, M. T., & Campagnolo, P. (2017). Perivascular cells and tissue engineering: Current applications and untapped potential. Pharmacology & Therapeutics, 171, 83–92.

    Article  CAS  Google Scholar 

  • Banks, W. A., Owen, J. B., & Erickson, M. A. (2012). Insulin in the brain: There and back again. Pharmacology & Therapeutics, 136, 82–93.

    Article  CAS  Google Scholar 

  • Bell, R. D., Winkler, E. A., Singh, I., Sagare, A. P., Deane, R., Wu, Z., Holtzman, D. M., Betsholtz, C., Armulik, A., Sallstrom, J., Berk, B. C., & Zlokovic, B. V. (2012). Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature, 485, 512–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin, L. E., Hemo, I., & Keshet, E. (1998). A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125, 1591–1598.

    CAS  PubMed  Google Scholar 

  • Bergers, G., & Song, S. (2005). The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology, 7, 452–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthiaume, A. A., Grant, R. I., McDowell, K. P., Underly, R. G., Hartmann, D. A., Levy, M., Bhat, N. R., & Shih, A. Y. (2018). Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Reports, 22, 8–16.

    Article  CAS  PubMed  Google Scholar 

  • Biffi, A., & Greenberg, S. M. (2011). Cerebral amyloid angiopathy: A systematic review. Journal of Clinical Neurology, 7, 1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2013). Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. American Journal of Physiology. Cell Physiology, 305, C1098–C1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., Zhang, T., Files, D. C., Mannava, S., Smith, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2014a). Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Research & Therapy, 5, 122.

    Article  CAS  Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z.-M., Messi, M. L., Mintz, A., & Delbono, O. (2014b). Pericytes: Multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Frontiers in Aging Neuroscience, 6, 245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. (2014c). Type-2 pericytes participate in normal and tumoral angiogenesis. American Journal of Physiology. Cell Physiology, 307, C25–C38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biron, K. E., Dickstein, D. L., Gopaul, R., & Jefferies, W. A. (2011). Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One, 6, e23789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biron, K. E., Dickstein, D. L., Gopaul, R., Fenninger, F., & Jefferies, W. A. (2013). Cessation of neoangiogenesis in Alzheimer’s disease follows amyloid-beta immunization. Scientific Reports, 3, 1354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blocki, A., Wang, Y., Koch, M., Peh, P., Beyer, S., Law, P., Hui, J., & Raghunath, M. (2013). Not all MSCs can act as pericytes: Functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis. Stem Cells and Development, 22, 2347–2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodnar, R. J., Rodgers, M. E., Chen, W. C. W., & Wells, A. (2013). Pericyte regulation of vascular remodeling through the CXC receptor 3. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2818–2829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantelmo, A. R., Conradi, L.-C., Brajic, A., Goveia, J., Kalucka, J., Pircher, A., Chaturvedi, P., Hol, J., Thienpont, B., Teuwen, L.-A., Schoors, S., Boeckx, B., Vriens, J., Kuchnio, A., Veys, K., Cruys, B., Finotto, L., Treps, L., Stav-Noraas, T. E., Bifari, F., Stapor, P., Decimo, I., Kampen, K., De Bock, K., Haraldsen, G., Schoonjans, L., Rabelink, T., Eelen, G., Ghesquière, B., Rehman, J., Lambrechts, D., Malik, A. B., Dewerchin, M., & Carmeliet, P. (2016). Inhibition of the glycolytic activator pfkfb3 in endothelial cells induces tumor vessel normalization, impairs metastasis and improves chemotherapy. Cancer Cell, 30, 968–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey, C. S., Atagi, Y., Yamazaki, Y., Shinohara, M., Tachibana, M., Fu, Y., Bu, G., & Kanekiyo, T. (2015). Apolipoprotein E inhibits cerebrovascular pericyte mobility through a RhoA protein-mediated pathway. The Journal of Biological Chemistry, 290, 14208–14217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Luo, Y., Hui, H., Cai, T., Huang, H., Yang, F., Feng, J., Zhang, J., & Yan, X. (2017). CD146 coordinates brain endothelial cell–pericyte communication for blood–brain barrier development. Proceedings of the National Academy of Sciences, 114, E7622–E7631.

    Article  CAS  Google Scholar 

  • Crouch, E. E., Liu, C., Silva-Vargas, V., & Doetsch, F. (2015). Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. The Journal of Neuroscience, 35, 4528–4539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruys, B., Wong, B. W., Kuchnio, A., Verdegem, D., Cantelmo, A. R., Conradi, L.-C., Vandekeere, S., Bouché, A., Cornelissen, I., Vinckier, S., Merks, R. M. H., Dejana, E., Gerhardt, H., Dewerchin, M., Bentley, K., & Carmeliet, P. (2016). Glycolytic regulation of cell rearrangement in angiogenesis. Nature Communications, 7, 12240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Torre, J. C. (2004). Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurology, 3, 184–190.

    Article  PubMed  Google Scholar 

  • Desai, M. K., Mastrangelo, M. A., Ryan, D. A., Sudol, K. L., Narrow, W. C., & Bowers, W. J. (2010). Early oligodendrocyte/myelin pathology in Alzheimer’s disease mice constitutes a novel therapeutic target. The American Journal of Pathology, 177, 1422–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias Moura Prazeres, P. H., Sena, I. F. G., Borges, I. D. T., de Azevedo, P. O., Andreotti, J. P., de Paiva, A. E., de Almeida, V. M., de Paula Guerra, D. A., Pinheiro Dos Santos, G. S., Mintz, A., Delbono, O., & Birbrair, A. (2017). Pericytes are heterogeneous in their origin within the same tissue. Developmental Biology, 427, 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Ding, X., Zhang, M., Gu, R., Xu, G., & Wu, H. (2017). Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes. Graefe’s Archive for Clinical and Experimental Ophthalmology, 255, 777–788.

    Article  CAS  PubMed  Google Scholar 

  • Ehret, F., Vogler, S., & Kempermann, G. (2015). A co-culture model of the hippocampal neurogenic niche reveals differential effects of astrocytes, endothelial cells and pericytes on proliferation and differentiation of adult murine precursor cells. Stem Cell Research, 15, 514–521.

    Article  CAS  PubMed  Google Scholar 

  • Eilken, H. M., Dieguez-Hurtado, R., Schmidt, I., Nakayama, M., Jeong, H. W., Arf, H., Adams, S., Ferrara, N., & Adams, R. H. (2017). Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nature Communications, 8, 1574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Escudero, C. A., Herlitz, K., Troncoso, F., Guevara, K., Acurio, J., Aguayo, C., Godoy, A. S., & Gonzalez, M. (2017). Pro-angiogenic role of insulin: From physiology to pathology. Frontiers in Physiology, 8, 204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Franco, M., Roswall, P., Cortez, E., Hanahan, D., & Pietras, K. (2011). Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood, 118, 2906–2917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannoni, P., Arango-Lievano, M., Neves, I. D., Rousset, M. C., Baranger, K., Rivera, S., Jeanneteau, F., Claeysen, S., & Marchi, N. (2016). Cerebrovascular pathology during the progression of experimental Alzheimer’s disease. Neurobiology of Disease, 88, 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Grammas, P., Moore, P., & Weigel, P. H. (1999). Microvessels from Alzheimer’s disease brains kill neurons in vitro. The American Journal of Pathology, 154, 337–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood-Goodwin, M., Yang, J., Hassanipour, M., & Larocca, D. (2016). A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells. Scientific Reports, 6, 24403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, C. N., Reynell, C., Gesslein, B., Hamilton, N. B., Mishra, A., Sutherland, B. A., O’Farrell, F. M., Buchan, A. M., Lauritzen, M., & Attwell, D. (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 508, 55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday, M. R., Rege, S. V., Ma, Q., Zhao, Z., Miller, C. A., Winkler, E. A., & Zlokovic, B. V. (2016). Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. Journal of Cerebral Blood Flow and Metabolism, 36, 216–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, B. H., Zhou, M. L., Johnson, A. W., Singh, I., Liao, F., Vellimana, A. K., Nelson, J. W., Milner, E., Cirrito, J. R., Basak, J., Yoo, M., Dietrich, H. H., Holtzman, D. M., & Zipfel, G. J. (2015). Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice. Proceedings of the National Academy of Sciences of the United States of America, 112, E881–E890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herland, A., van der Meer, A. D., FitzGerald, E. A., Park, T.-E., Sleeboom, J. J. F., & Ingber, D. E. (2016). Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS One, 11, e0150360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes, S., Gardiner, T., Hu, P., Baxter, L., Rosinova, E., & Chan-Ling, T. (2006). Altered pericyte-endothelial relations in the rat retina during aging: Implications for vessel stability. Neurobiology of Aging, 27, 1838–1847.

    Article  CAS  PubMed  Google Scholar 

  • Ito, S., Yanai, M., Yamaguchi, S., Couraud, P. O., & Ohtsuki, S. (2017). Regulation of tight-junction integrity by insulin in an in vitro model of human blood-brain barrier. Journal of Pharmaceutical Sciences, 106, 2599–2605.

    Article  CAS  PubMed  Google Scholar 

  • Jellinger K. A. (2002). Alzheimer disease and cerebrovascular pathology: an update. Journal of Neural Transmission (Vienna), 109(5–6), 813–836.

    Article  CAS  PubMed  Google Scholar 

  • Kang, E., & Shin, J. W. (2016). Pericyte-targeting drug delivery and tissue engineering. International Journal of Nanomedicine, 11, 2397–2406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapogiannis, D., & Reiter, D. (2014). Low glucose utilization and high lactate production in the Alzheimer’s disease brain. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10, P62.

    Article  Google Scholar 

  • Karow, M., Sanchez, R., Schichor, C., Masserdotti, G., Ortega, F., Heinrich, C., Gascon, S., Khan, M. A., Lie, D. C., Dellavalle, A., Cossu, G., Goldbrunner, R., Gotz, M., & Berninger, B. (2012). Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell, 11, 471–476.

    Article  CAS  PubMed  Google Scholar 

  • Khilazheva, E. D., Pisareva, N. V., Morgun, A. V., Boytsova, E. B., Taranushenko, T. E., Frolova, O. V., & Salmina, A. B. (2017). Activation of GPR81 lactate receptors stimulates mitochondrial biogenesis in cerebral microvessel endothelial cells. Annals of Clinical and Experimental Neurology, 11, 34–39.

    Google Scholar 

  • Kisler, K., Nelson, A. R., Montagne, A., & Zlokovic, B. V. (2017a). Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nature Reviews Neuroscience, 18, 419–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisler, K., Nelson, A. R., Rege, S. V., Ramanathan, A., Wang, Y., Ahuja, A., Lazic, D., Tsai, P. S., Zhao, Z., Zhou, Y., Boas, D. A., Sakadžić, S., & Zlokovic, B. V. (2017b). Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nature Neuroscience, 20, 406–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovac, A., Erickson, M. A., & Banks, W. A. (2011). Brain microvascular pericytes are immunoactive in culture: Cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. Journal of Neuroinflammation, 8, 139–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange, S., Trost, A., Tempfer, H., Bauer, H.-C., Bauer, H., Rohde, E., Reitsamer, H. A., Franklin, R. J. M., Aigner, L., & Rivera, F. J. (2013). Brain pericyte plasticity as a potential drug target in CNS repair. Drug Discovery Today, 18, 456–463.

    Article  CAS  PubMed  Google Scholar 

  • Lauritzen, K. H., Morland, C., Puchades, M., Holm-Hansen, S., Hagelin, E. M., Lauritzen, F., Attramadal, H., Storm-Mathisen, J., Gjedde, A., & Bergersen, L. H. (2014). Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cerebral Cortex, 24, 2784–2795.

    Article  PubMed  Google Scholar 

  • Li, Y., Lucas-Osma, A. M., Black, S., Bandet, M. V., Stephens, M. J., Vavrek, R., Sanelli, L., Fenrich, K. K., Di Narzo, A. F., Dracheva, S., Winship, I. R., Fouad, K., & Bennett, D. J. (2017). Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nature Medicine, 23, 733–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liguori, C., Stefani, A., Sancesario, G., Sancesario, G. M., Marciani, M. G., & Pierantozzi, M. (2015). CSF lactate levels, tau proteins, cognitive decline: A dynamic relationship in Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 655–659.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Saffi, G. T., Vasefi, M. S., Choi, Y., Kruk, J. S., Ahmed, N., Gondora, N., Mielke, J., Leonenko, Z., & Beazely, M. A. (2018). Amyloid-beta inhibits PDGFbeta receptor activation and prevents PDGF-BB-induced neuroprotection. Current Alzheimer Research, 15, 618–627.

    Article  CAS  PubMed  Google Scholar 

  • Maki, T., Maeda, M., Uemura, M., Lo, E. K., Terasaki, Y., Liang, A. C., Shindo, A., Choi, Y. K., Taguchi, A., Matsuyama, T., Takahashi, R., Ihara, M., & Arai, K. (2015). Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter. Neuroscience Letters, 597, 164–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangialardi, G., Cordaro, A., & Madeddu, P. (2016). The bone marrow pericyte: An orchestrator of vascular niche. Regenerative Medicine, 11, 883–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayo, J. N., & Bearden, S. E. (2015). Driving the hypoxia inducible pathway in human pericytes promotes vascular density in an exosome dependent manner. Microcirculation (New York, NY), 22, 711–723.

    Article  CAS  Google Scholar 

  • Miners, J. S., Schulz, I., & Love, S. (2018). Differing associations between Abeta accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer’s disease. Journal of Cerebral Blood Flow and Metabolism, 38, 103–115.

    Article  CAS  PubMed  Google Scholar 

  • Montagne, A., Barnes, S. R., Sweeney, M. D., Halliday, M. R., Sagare, A. P., Zhao, Z., Toga, A. W., Jacobs, R. E., Liu, C. Y., Amezcua, L., Harrington, M. G., Chui, H. C., Law, M., & Zlokovic, B. V. (2015). Blood-brain barrier breakdown in the aging human hippocampus. Neuron, 85, 296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morland, C., Andersson, K. A., Haugen, Ø. P., Hadzic, A., Kleppa, L., Gille, A., Rinholm, J. E., Palibrk, V., Diget, E. H., Kennedy, L. H., Stølen, T., Hennestad, E., Moldestad, O., Cai, Y., Puchades, M., Offermanns, S., Vervaeke, K., Bjørås, M., Wisløff, U., Storm-Mathisen, J., & Bergersen, L. H. (2017). Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nature Communications, 8, 15557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolakopoulou, A. M., Zhao, Z., Montagne, A., & Zlokovic, B. V. (2017). Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling. PLoS One, 12, e0176225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Farrell, F. M., Mastitskaya, S., Hammond-Haley, M., Freitas, F., Wah, W. R., & Attwell, D. (2017). Capillary pericytes mediate coronary no-reflow after myocardial ischaemia. eLife, 6, e29280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ottone, C., Krusche, B., Whitby, A., Clements, M., Quadrato, G., Pitulescu, M. E., Adams, R. H., & Parrinello, S. (2014). Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nature Cell Biology, 16, 1045–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piegsa, J., Miners, S., Love, S., Shore, A., Tamagnini, F., & Randall, A. (2017). Ca2+ signalling in human brain pericytes: Investigation of effects of amyloid beta treatment. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 13, P331.

    Article  Google Scholar 

  • Pluta, R., Jabłoński, M., Ułamek-Kozioł, M., Kocki, J., Brzozowska, J., Januszewski, S., Furmaga-Jabłońska, W., Bogucka-Kocka, A., Maciejewski, R., & Czuczwar, S. J. (2013). Sporadic Alzheimer’s disease begins as episodes of brain ischemia and ischemically dysregulated Alzheimer’s disease genes. Molecular Neurobiology, 48, 500–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozhilenkova, E. A., Lopatina, O. L., Komleva, Y. K., Salmin, V. V., & Salmina, A. B. (2017). Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Reviews in the Neurosciences, 28, 397–415.

    Article  PubMed  Google Scholar 

  • Rensink, A. A., Otte-Holler, I., de Boer, R., Bosch, R. R., ten Donkelaar, H. J., de Waal, R. M., Verbeek, M. M., & Kremer, B. (2004a). Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes. Neurobiology of Aging, 25, 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Rensink, A. A., Otte-Holler, I., ten Donkelaar, H. J., De Waal, R. M., Kremer, B., & Verbeek, M. M. (2004b). Differential gene expression in human brain pericytes induced by amyloid-beta protein. Neuropathology and Applied Neurobiology, 30, 279–291.

    Article  CAS  PubMed  Google Scholar 

  • Ribatti, D., Nico, B., & Crivellato, E. (2011). The role of pericytes in angiogenesis. The International Journal of Developmental Biology, 55, 261–268.

    Article  CAS  PubMed  Google Scholar 

  • Rustenhoven, J., Aalderink, M., Scotter, E. L., Oldfield, R. L., Bergin, P. S., Mee, E. W., Graham, E. S., Faull, R. L. M., Curtis, M. A., Park, T. I. H., & Dragunow, M. (2016). TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. Journal of Neuroinflammation, 13, 37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sagare, A. P., Bell, R. D., Zhao, Z., Ma, Q., Winkler, E. A., Ramanathan, A., & Zlokovic, B. V. (2013). Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nature Communications, 4, 2932.

    Article  PubMed  CAS  Google Scholar 

  • Sakuma, R., Kawahara, M., Nakano-Doi, A., Takahashi, A., Tanaka, Y., Narita, A., Kuwahara-Otani, S., Hayakawa, T., Yagi, H., Matsuyama, T., & Nakagomi, T. (2016). Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. Journal of Neuroinflammation, 13, 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salmina, A. B., Inzhutova, A. I., Malinovskaya, N. A., & Petrova, M. M. (2010). Endothelial dysfunction and repair in Alzheimer-type neurodegeneration: Neuronal and glial control. Journal of Alzheimer’s Disease, 22, 17–36.

    Article  PubMed  Google Scholar 

  • Salmina, A. B., Morgun, A. V., Kuvacheva, N. V., Lopatina, O. L., Komleva, Y. K., Malinovskaya, N. A., & Pozhilenkova, E. A. (2014). Establishment of neurogenic microenvironment in the neurovascular unit: The connexin 43 story. Reviews in the Neurosciences, 25, 97–111.

    Article  CAS  PubMed  Google Scholar 

  • Salmina, A. B., Komleva, Y. K., Szijártó, I. A., Gorina, Y. V., Lopatina, O. L., Gertsog, G. E., Filipovic, M. R., & Gollasch, M. (2015a). H(2)S- and NO-signaling pathways in Alzheimer’s amyloid vasculopathy: Synergism or antagonism? Frontiers in Physiology, 6, 361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salmina, A. B., Kuvacheva, N. V., Morgun, A. V., Komleva, Y. K., Pozhilenkova, E. A., Lopatina, O. L., Gorina, Y. V., Taranushenko, T. E., & Petrova, L. L. (2015b). Glycolysis-mediated control of blood-brain barrier development and function. The International Journal of Biochemistry & Cell Biology, 64, 174–184.

    Article  CAS  Google Scholar 

  • Simonavicius, N., Ashenden, M., van Weverwijk, A., Lax, S., Huso, D. L., Buckley, C. D., Huijbers, I. J., Yarwood, H., & Isacke, C. M. (2012). Pericytes promote selective vessel regression to regulate vascular patterning. Blood, 120, 1516–1527.

    Article  CAS  PubMed  Google Scholar 

  • Stapor, P. C., Sweat, R. S., Dashti, D. C., Betancourt, A. M., & Murfee, W. L. (2014). Pericyte dynamics during angiogenesis: New insights from new identities. Journal of Vascular Research, 51, 163–174.

    Article  PubMed  Google Scholar 

  • Stefanska, A., Eng, D., Kaverina, N., Duffield, J. S., Pippin, J. W., Rabinovitch, P., & Shankland, S. J. (2015). Interstitial pericytes decrease in aged mouse kidneys. Aging, 7, 370–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney, P. W., Walker-Samuel, S., & Shipley, R. J. (2018). Insights into cerebral haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical modelling. Scientific Reports, 8, 15.

    Article  CAS  Google Scholar 

  • Szpak, G. M., Lewandowska, E., Wierzba-Bobrowicz, T., Bertrand, E., Pasennik, E., Mendel, T., Stepień, T., Leszczyńska, A., & Rafałowska, J. (2007). Small cerebral vessel disease in familial amyloid and non-amyloid angiopathies: FAD-PS-1 (P117L) mutation and CADASIL. Immunohistochemical and ultrastructural studies. Folia Neuropathologica, 45, 192–204.

    CAS  PubMed  Google Scholar 

  • Tachibana, M., Yamazaki, Y., Liu, C. C., Bu, G., & Kanekiyo, T. (2018). Pericyte implantation in the brain enhances cerebral blood flow and reduces amyloid-beta pathology in amyloid model mice. Experimental Neurology, 300, 13–21.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., Takata, F., Matsumoto, J., Machida, T., Yamauchi, A., Dohgu, S., & Kataoka, Y. (2015). Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons. Biochemical and Biophysical Research Communications, 457, 532–537.

    Article  CAS  PubMed  Google Scholar 

  • Teichert, M., Milde, L., Holm, A., Stanicek, L., Gengenbacher, N., Savant, S., Ruckdeschel, T., Hasanov, Z., Srivastava, K., Hu, J., Hertel, S., Bartol, A., Schlereth, K., & Augustin, H. G. (2017). Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nature Communications, 8, 16106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thériault, P., ElAli, A., & Rivest, S. (2016). High fat diet exacerbates Alzheimer’s disease-related pathology in APPswe/PS1 mice. Oncotarget, 7, 67808–67827.

    PubMed  PubMed Central  Google Scholar 

  • Tian, X., Brookes, O., & Battaglia, G. (2017). Pericytes from mesenchymal stem cells as a model for the blood-brain barrier. Scientific Reports, 7, 39676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth, P., Tucsek, Z., Sosnowska, D., Gautam, T., Mitschelen, M., Tarantini, S., Deak, F., Koller, A., Sonntag, W. E., Csiszar, A., & Ungvari, Z. (2013). Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. Journal of Cerebral Blood Flow and Metabolism, 33, 1732–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trost, A., Lange, S., Schroedl, F., Bruckner, D., Motloch, K. A., Bogner, B., Kaser-Eichberger, A., Strohmaier, C., Runge, C., Aigner, L., Rivera, F. J., & Reitsamer, H. A. (2016). Brain and retinal pericytes: Origin, function and role. Frontiers in Cellular Neuroscience, 10, 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tucsek, Z., Toth, P., Tarantini, S., Sosnowska, D., Gautam, T., Warrington, J. P., Giles, C. B., Wren, J. D., Koller, A., Ballabh, P., Sonntag, W. E., Ungvari, Z., & Csiszar, A. (2014). Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69, 1339–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bernhardi, R., Cornejo, F., Parada, G. E., & Eugenín, J. (2015). Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease. Frontiers in Cellular Neuroscience, 9, 426.

    Google Scholar 

  • Vazquez-Padron, R. I., Lasko, D., Li, S., Louis, L., Pestana, I. A., Pang, M., Liotta, C., Fornoni, A., Aitouche, A., & Pham, S. M. (2004). Aging exacerbates neointimal formation, and increases proliferation and reduces susceptibility to apoptosis of vascular smooth muscle cells in mice. Journal of Vascular Surgery, 40, 1199–1207.

    Article  PubMed  Google Scholar 

  • Verbeek, M. M., Otte-Holler, I., Ruiter, D. J., & de Waal, R. M. (1999). Human brain pericytes as a model system to study the pathogenesis of cerebrovascular amyloidosis in Alzheimer’s disease. Cellular and Molecular Biology (Noisy-le-Grand, France), 45, 37–46.

    CAS  Google Scholar 

  • Wang, J. D., Khafagy el, S., Khanafer, K., Takayama, S., & ElSayed, M. E. (2016). Organization of endothelial cells, pericytes, and astrocytes into a 3D microfluidic in vitro model of the -assod-brain barrier. Molecular Pharmaceutics, 13, 895–906.

    Article  CAS  PubMed  Google Scholar 

  • Warmke, N., Griffin, K. J., Slater, C. I., Walker, A. M. N., Yuldasheva, N. Y., & Cubbon, R. M. (2017). Reduced pericyte insulin signalling causes abnormal developmental angiogenesis. Heart, 103, A127–A128.

    Article  Google Scholar 

  • Wilhelmus, M. M., Otte-Holler, I., van Triel, J. J., Veerhuis, R., Maat-Schieman, M. L., Bu, G., de Waal, R. M., & Verbeek, M. M. (2007). Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. The American Journal of Pathology, 171, 1989–1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler, E. A., Sagare, A. P., & Zlokovic, B. V. (2014). The pericyte: A forgotten cell type with important implications for Alzheimer’s disease? Brain Pathology (Zurich, Switzerland), 24, 371–386.

    Article  CAS  Google Scholar 

  • Yamada, M. (2000). Cerebral amyloid angiopathy: an overview. Neuropathology, 20(1), 8–22.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, M. (2015). Cerebral amyloid angiopathy: emerging concepts. Journal of Stroke, 17, 17–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamagishi, S., Takeuchi, M., Matsui, T., Nakamura, K., Imaizumi, T., & Inoue, H. (2005). Angiotensin II augments advanced glycation end product-induced pericyte apoptosis through RAGE overexpression. FEBS Letters, 579, 4265–4270.

    Article  CAS  PubMed  Google Scholar 

  • Yamamizu, K., Iwasaki, M., Takakubo, H., Sakamoto, T., Ikuno, T., Miyoshi, M., Kondo, T., Nakao, Y., Nakagawa, M., Inoue, H., & Yamashita, J. K. (2017). In vitro modeling of blood-brain barrier with human iPSC-derived endothelial cells, pericytes, neurons, and astrocytes via notch signaling. Stem Cell Reports, 8, 634–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanishi, S., Katsumura, K., Kobayashi, T., & Puro, D. G. (2006). Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. American Journal of Physiology. Heart and Circulatory Physiology, 290, H925–H934.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

A.B.S., Y.K.K., and O.L.L. are supported by the grant given by the President of Russian Federation for the Leading Scientific Teams (N 6240.2018.7).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salmina, A.B., Komleva, Y.K., Lopatina, O.L., Birbrair, A. (2019). Pericytes in Alzheimer’s Disease: Novel Clues to Cerebral Amyloid Angiopathy Pathogenesis. In: Birbrair, A. (eds) Pericyte Biology in Disease. Advances in Experimental Medicine and Biology, vol 1147. Springer, Cham. https://doi.org/10.1007/978-3-030-16908-4_7

Download citation

Publish with us

Policies and ethics