Skip to main content

The Role of Pericytes in Amyotrophic Lateral Sclerosis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1147))

Abstract

In amyotrophic lateral sclerosis (ALS), motor neurons die selectively. Therefore, initial symptoms that include fasciculation, spasticity, muscle atrophy, and weakness emerge following axons retraction and consequent muscles’ denervation. Patients lose the ability to talk and swallow and rely on parenteral nutrition and assisted ventilation to survive. The degeneration caused by ALS is progressive and irreversible. In addition to the autonomous mechanism of neuronal cell death, non-autonomous mechanisms have been proved to be toxic for motor neurons, such as the activation of astrocytes and microglia. Among the cells being studied to unveil these toxic mechanisms are pericytes, cells that help keep the integrity of the blood–brain barrier and blood–spinal cord barrier. In this chapter, we aim to discuss the role of pericytes in ALS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews. Neuroscience, 7, 41–53.

    Article  CAS  Google Scholar 

  • Allt, G., & Lawrenson, J. G. (2001). Pericytes: Cell biology and pathology. Cells, Tissues, Organs, 169, 1–11.

    Article  CAS  Google Scholar 

  • Annunziata, P., & Volpi, N. (1985). High levels of C3c in the cerebrospinal fluid from amyotrophic lateral sclerosis patients. Acta Neurologica Scandinavica, 72, 61–64.

    Article  CAS  Google Scholar 

  • Apostolski, S., Nikolić, J., Bugarski-Prokopljević, C., Miletić, V., Pavlović, S., & Filipović, S. (1991). Serum and CSF immunological findings in ALS. Acta Neurologica Scandinavica, 83, 96–98.

    Article  CAS  Google Scholar 

  • Armulik, A., Genové, G., Mäe, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., et al. (2010). Pericytes regulate the blood–brain barrier. Nature, 468, 557–561.

    CAS  PubMed  Google Scholar 

  • Asahina, K., Zhou, B., Pu, W. T., & Tsukamoto, H. (2011). Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology (Baltimore, Md.), 53, 983–995.

    Article  CAS  Google Scholar 

  • Bartanusz, V., Jezova, D., Alajajian, B., & Digicaylioglu, M. (2011). The blood–spinal cord barrier: Morphology and clinical implications. Annals of Neurology, 70, 194–206.

    Article  Google Scholar 

  • Bell, R. D., Winkler, E. A., Sagare, A. P., Singh, I., LaRue, B., Deane, R., & Zlokovic, B. V. (2010). Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron, 68, 409–427.

    Article  CAS  Google Scholar 

  • Bell, R. D., Winkler, E. A., Singh, I., Sagare, A. P., Deane, R., Wu, Z., Holtzman, D. M., Betsholtz, C., Armulik, A., Sallstrom, J., et al. (2012). Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature, 485, 512–516.

    Article  CAS  Google Scholar 

  • Bensimon, G., Lacomblez, L., & Meininger, V. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. The New England Journal of Medicine, 330, 585–591.

    Article  CAS  Google Scholar 

  • Bergwerff, M., Verberne, M. E., DeRuiter, M. C., Poelmann, R. E., & Gittenberger-de-Groot, A. C. (1998). Neural crest cell contribution to the developing circulatory system: Implications for vascular morphology? Circulation Research, 82, 221–231.

    Article  CAS  Google Scholar 

  • Beuche, W., Yushchenko, M., Mäder, M., Maliszewska, M., Felgenhauer, K., & Weber, F. (2000). Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport, 11, 3419–3422.

    Article  CAS  Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z.-M., Messi, M. L., Mintz, A., & Delbono, O. (2015). Pericytes at the intersection between tissue regeneration and pathology. Clinical Science, 128, 81–93.

    Article  CAS  Google Scholar 

  • Brettschneider, J., Petzold, A., Süssmuth, S. D., Ludolph, A. C., & Tumani, H. (2006). Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology, 66, 852–856.

    Article  CAS  Google Scholar 

  • Brooks, B. R. (2000). Risk factors in the early diagnosis of ALS: North American epidemiological studies. ALS CARE Study Group. Amyotrophic Lateral Sclerosis Motor Neuron Disease: Official Publication of the World Federation of Neurology Research Group on Motor Neuron Diseases, 1(Suppl 1), S19–S26.

    Article  Google Scholar 

  • Caplan, A. I., & Hariri, R. (2015). Body management: Mesenchymal stem cells control the internal regenerator. Stem Cells Translational Medicine, 4, 695–701.

    Article  Google Scholar 

  • Choi, J. A., Chung, Y.-R., Byun, H.-R., Park, H., Koh, J.-Y., & Yoon, Y. H. (2017). The anti-ALS drug riluzole attenuates pericyte loss in the diabetic retinopathy of streptozotocin-treated mice. Toxicology and Applied Pharmacology, 315, 80–89.

    Article  CAS  Google Scholar 

  • Coatti, G. C., Frangini, M., Valadares, M. C., Gomes, J. P., Lima, N. O., Cavaçana, N., Assoni, A. F., Pelatti, M. V., Birbrair, A., de Lima, A. C. P., et al. (2017). Pericytes extend survival of ALS SOD1 mice and induce the expression of antioxidant enzymes in the murine model and in IPSCs derived neuronal cells from an ALS patient. Stem Cell Reviews, 13, 686–698.

    Article  CAS  Google Scholar 

  • Corselli, M., Chen, C.-W., Sun, B., Yap, S., Rubin, J. P., & Péault, B. (2011). The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells and Development, 21, 1299–1308.

    Article  Google Scholar 

  • DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., Rutherford, N. J., Nicholson, A. M., Finch, N. A., Flynn, H., Adamson, J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72, 245–256.

    Article  CAS  Google Scholar 

  • Dellavalle, A., Sampaolesi, M., Tonlorenzi, R., Tagliafico, E., Sacchetti, B., Perani, L., Innocenzi, A., Galvez, B. G., Messina, G., Morosetti, R., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9, 255–267.

    Article  CAS  Google Scholar 

  • Demestre, M., Parkin-Smith, G., Petzold, A., & Pullen, A. H. (2005). The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis. Journal of Neuroimmunology, 159, 146–154.

    Article  CAS  Google Scholar 

  • Dias Moura Prazeres, P. H., Sena, I. F. G., Borges, I. d. T., de Azevedo, P. O., Andreotti, J. P., de Paiva, A. E., de Almeida, V. M., de Paula Guerra, D. A., Pinheiro Dos Santos, G. S., Mintz, A., et al. (2017). Pericytes are heterogeneous in their origin within the same tissue. Developmental Biology, 427, 6–11.

    Article  Google Scholar 

  • Doble, A., & Kennel, P. (2000). Animal models of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis Motor Neuron Disease: Official Publication of the World Federation of Neurology Research Group on Motor Neuron Diseases, 1, 301–312.

    Article  CAS  Google Scholar 

  • Donnenfeld, H., Kascsak, R. J., & Bartfeld, H. (1984). Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. Journal of Neuroimmunology, 6, 51–57.

    Article  CAS  Google Scholar 

  • Engelhardt, J. I., & Appel, S. H. (1990). IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. Archives of Neurology, 47, 1210–1216.

    Article  CAS  Google Scholar 

  • Engelhardt, A., Lörler, H., & Neundörfer, B. (1993). Immunohistochemical findings in vasculitic neuropathies. Acta Neurologica Scandinavica, 87, 318–321.

    Article  CAS  Google Scholar 

  • Garbuzova-Davis, S., Saporta, S., Haller, E., Kolomey, I., Bennett, S. P., Potter, H., & Sanberg, P. R. (2007a). Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One, 2, e1205.

    Article  Google Scholar 

  • Garbuzova-Davis, S., Haller, E., Saporta, S., Kolomey, I., Nicosia, S. V., & Sanberg, P. R. (2007b). Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Research, 1157, 126–137.

    Article  CAS  Google Scholar 

  • Garbuzova-Davis, S., Rodrigues, M. C. O., Hernandez-Ontiveros, D. G., Louis, M. K., Willing, A. E., Borlongan, C. V., & Sanberg, P. R. (2011). Amyotrophic lateral sclerosis: A neurovascular disease. Brain Research, 1398, 113–125.

    Article  CAS  Google Scholar 

  • Garbuzova-Davis, S., Thomson, A., Kurien, C., Shytle, R. D., & Sanberg, P. R. (2016). Potential new complication in drug therapy development for amyotrophic lateral sclerosis. Expert Review of Neurotherapeutics, 16, 1397–1405.

    Article  CAS  Google Scholar 

  • Goodall, E. F., & Morrison, K. E. (2006). Amyotrophic lateral sclerosis (motor neuron disease): Proposed mechanisms and pathways to treatment. Expert Reviews in Molecular Medicine, 8, 1–22.

    Article  Google Scholar 

  • Henkel, J. S., Engelhardt, J. I., Siklós, L., Simpson, E. P., Kim, S. H., Pan, T., Goodman, J. C., Siddique, T., Beers, D. R., & Appel, S. H. (2004). Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Annals of Neurology, 55, 221–235.

    Article  CAS  Google Scholar 

  • Henkel, J. S., Beers, D. R., Wen, S., Bowser, R., & Appel, S. H. (2009). Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology, 72, 1614–1616.

    Article  CAS  Google Scholar 

  • Kamouchi, M., Ago, T., & Kitazono, T. (2011). Brain pericytes: Emerging concepts and functional roles in brain homeostasis. Cellular and Molecular Neurobiology, 31, 175–193.

    Article  Google Scholar 

  • Kassa, R. M., Mariotti, R., Bonaconsa, M., Bertini, G., & Bentivoglio, M. (2009). Gene, cell, and axon changes in the familial amyotrophic lateral sclerosis mouse sensorimotor cortex. Journal of Neuropathology and Experimental Neurology, 68, 59–72.

    Article  CAS  Google Scholar 

  • Kenna, K. P., van Doormaal, P. T. C., Dekker, A. M., Ticozzi, N., Kenna, B. J., Diekstra, F. P., van Rheenen, W., van Eijk, K. R., Jones, A. R., Keagle, P., et al. (2016). NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 48, 1037–1042.

    Article  CAS  Google Scholar 

  • Lim, G. P., Backstrom, J. R., Cullen, M. J., Miller, C. A., Atkinson, R. D., & Tökés, Z. A. (1996). Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients. Journal of Neurochemistry, 67, 251–259.

    Article  CAS  Google Scholar 

  • Mann, D. M. (1985). The neuropathology of Alzheimer’s disease: a review with pathogenetic, aetiological and therapeutic considerations. Mechanisms of Ageing and Development, 31, 213–255.

    Article  CAS  Google Scholar 

  • Miller, R. G., Mitchell, J. D., & Moore, D. H. (2012). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database of Systematic Reviews, 3, CD001447.

    Google Scholar 

  • Miyazaki, K., Ohta, Y., Nagai, M., Morimoto, N., Kurata, T., Takehisa, Y., Ikeda, Y., Matsuura, T., & Abe, K. (2011). Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. Journal of Neuroscience Research, 89, 718–728.

    Article  CAS  Google Scholar 

  • Muramatsu, R., Kuroda, M., Matoba, K., Lin, H., Takahashi, C., Koyama, Y., & Yamashita, T. (2015). Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. The Journal of Biological Chemistry, 290, 11515–11525.

    Article  CAS  Google Scholar 

  • Niebroj-Dobosz, I., Janik, P., Sokołowska, B., & Kwiecinski, H. (2010). Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. European Journal of Neurology, 17, 226–231.

    Article  CAS  Google Scholar 

  • Pickering, M., Cumiskey, D., & O’Connor, J. J. (2005). Actions of TNF-α on glutamatergic synaptic transmission in the central nervous system. Experimental Physiology, 90, 663–670.

    Article  CAS  Google Scholar 

  • Proctor, E. A., Fee, L., Tao, Y., Redler, R. L., Fay, J. M., Zhang, Y., Lv, Z., Mercer, I. P., Deshmukh, M., Lyubchenko, Y. L., et al. (2016). Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 113, 614–619.

    Article  CAS  Google Scholar 

  • Regan, R. F., & Guo, Y. (1998). Toxic effect of hemoglobin on spinal cord neurons in culture. Journal of Neurotrauma, 15, 645–653.

    Article  CAS  Google Scholar 

  • Robberecht, W., & Philips, T. (2013). The changing scene of amyotrophic lateral sclerosis. Nature Reviews Neuroscience, 14, 248–264.

    Article  CAS  Google Scholar 

  • Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J. P., & Deng, H. X. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62.

    Article  CAS  Google Scholar 

  • Sargsyan, S. A., Monk, P. N., & Shaw, P. J. (2005). Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia, 51, 241–253.

    Article  Google Scholar 

  • Sasaki, S. (2015). Alterations of the blood-spinal cord barrier in sporadic amyotrophic lateral sclerosis. Neuropathology, 35, 518–528.

    Article  CAS  Google Scholar 

  • Simon, C., Lickert, H., Götz, M., & Dimou, L. (2012). Sox10-iCreERT2: A mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis, 50, 506–515.

    Article  CAS  Google Scholar 

  • Talbott, E. O., Malek, A. M., & Lacomis, D. (2016). The epidemiology of amyotrophic lateral sclerosis. Handbook of Clinical Neurology, 138, 225–238.

    Article  CAS  Google Scholar 

  • Tilleux, S., & Hermans, E. (2007). Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. Journal of Neuroscience Research, 85, 2059–2070.

    Article  CAS  Google Scholar 

  • Wang, Z., Pekarskaya, O., Bencheikh, M., Chao, W., Gelbard, H. A., Ghorpade, A., Rothstein, J. D., & Volsky, D. J. (2003). Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology, 312, 60–73.

    Article  CAS  Google Scholar 

  • Winkler, E. A., Bell, R. D., & Zlokovic, B. V. (2011). Central nervous system pericytes in health and disease. Nature Neuroscience, 14, 1398.

    Article  CAS  Google Scholar 

  • Winkler, E. A., Sengillo, J. D., Sullivan, J. S., Henkel, J. S., Appel, S. H., & Zlokovic, B. (2013). Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathologica (Berlin), 125, 111–120.

    Article  CAS  Google Scholar 

  • Winkler, E. A., Sengillo, J. D., Sagare, A. P., Zhao, Z., Ma, Q., Zuniga, E., Wang, Y., Zhong, Z., Sullivan, J. S., Griffin, J. H., et al. (2014). Blood–spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proceedings of the National Academy of Sciences, 111, E1035–E1042.

    Article  CAS  Google Scholar 

  • Yamadera, M., Fujimura, H., Inoue, K., Toyooka, K., Mori, C., Hirano, H., & Sakoda, S. (2015). Microvascular disturbance with decreased pericyte coverage is prominent in the ventral horn of patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 393–401.

    Article  Google Scholar 

  • Zhong, Z., Deane, R., Ali, Z., Parisi, M., Shapovalov, Y., O’Banion, M. K., Stojanovic, K., Sagare, A., Boillee, S., Cleveland, D. W., et al. (2008). ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nature Neuroscience, 11, 420–422.

    Article  CAS  Google Scholar 

  • Zhong, Z., Ilieva, H., Hallagan, L., Bell, R., Singh, I., Paquette, N., Thiyagarajan, M., Deane, R., Fernandez, J. A., Lane, S., et al. (2009). Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. The Journal of Clinical Investigation, 119, 3437–3449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zlokovic, B. V. (2008). The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 57, 178–201.

    Article  CAS  Google Scholar 

  • Zlokovic, B. V. (2011). Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nature Reviews Neuroscience, 12, 723–738.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayana Zatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coatti, G.C., Cavaçana, N., Zatz, M. (2019). The Role of Pericytes in Amyotrophic Lateral Sclerosis. In: Birbrair, A. (eds) Pericyte Biology in Disease. Advances in Experimental Medicine and Biology, vol 1147. Springer, Cham. https://doi.org/10.1007/978-3-030-16908-4_6

Download citation

Publish with us

Policies and ethics