Skip to main content

Pericytes in Chronic Lung Disease

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1147)

Abstract

Pericytes are supportive mesenchymal cells located on the abluminal surface of the microvasculature, with key roles in regulating microvascular homeostasis, leukocyte extravasation, and angiogenesis. A subpopulation of pericytes with progenitor cell function has recently been identified, with evidence demonstrating the capacity of tissue-resident pericytes to differentiate into the classic MSC triad, i.e., osteocytes, chondrocytes, and adipocytes. Beyond the regenerative capacity of these cells, studies have shown that pericytes play crucial roles in various pathologies in the lung, both acute (acute respiratory distress syndrome and sepsis-related pulmonary edema) and chronic (pulmonary hypertension, lung tumors, idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease). Taken together, this body of evidence suggests that, in the presence of acute and chronic pulmonary inflammation, pericytes are not associated with tissue regeneration and repair, but rather transform into scar-forming myofibroblasts, with devastating outcomes regarding lung structure and function. It is hoped that further studies into the mechanisms of pericyte-to-myofibroblast transition and migration to fibrotic foci will clarify the roles of pericytes in chronic lung disease and open up new avenues in the search for novel treatments for human pulmonary pathologies.

Keywords

  • Pericyte
  • Lung
  • Vasculature
  • Edema
  • Migration
  • Fibrosis
  • Myofibroblast
  • Acute respiratory distress syndrome
  • Tumor
  • Pulmonary hypertension
  • Idiopathic pulmonary hypertension
  • Asthma
  • Chronic obstructive pulmonary disease

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-16908-4_14
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-16908-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3

References

  • Andersson-Sjöland, A., Karlsson, J. C., & Rydell-Törmänen, K. (2016). ROS-induced endothelial stress contributes to pulmonary fibrosis through pericytes and Wnt signaling. Laboratory Investigation, 96(2), 206–217.

    CrossRef  PubMed  Google Scholar 

  • Ando, M., Miyazaki, E., Abe, T., Ehara, C., Goto, A., Masuda, T., Nishio, S., Fujisaki, H., Yamasue, M., Ishii, T., Mukai, Y., Ito, T., Nureki, S. I., Kumamoto, T., & Kadota, J. (2016). Angiopoietin-2 expression in patients with an acute exacerbation of idiopathic interstitial pneumonias. Respiratory Medicine, 117, 27–32.

    CrossRef  PubMed  Google Scholar 

  • Armulik, A., Genove, G., & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21(2), 193–215. https://doi.org/10.1016/j.devcel.2011.07.001

    CAS  CrossRef  PubMed  Google Scholar 

  • Assaad, A. M., Kawut, S. M., Arcasoy, S. M., Rosenzweig, E. B., Wilt, J. S., Sonett, J. R., & Borczuk, A. C. (2007). Platelet-derived growth factor is increased in pulmonary capillary hemangiomatosis. Chest, 131, 850–855.

    CrossRef  PubMed  Google Scholar 

  • Bagnato, G., & Harari, S. (2015). Cellular interactions in the pathogenesis of interstitial lung diseases. European Respiratory Review, 24(135), 102–114. https://doi.org/10.1183/09059180.00003214

    CrossRef  PubMed  Google Scholar 

  • Ballermann, B. J., & Obeidat, M. (2014). Tipping the balance from angiogenesis to fibrosis in CKD. Kidney International, 4(1), 45–52.

    CAS  CrossRef  Google Scholar 

  • Barnes, J. L., & Glass, W. F. (2011). Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts. Contributions to Nephrology, 169, 73–93.

    CAS  CrossRef  PubMed  Google Scholar 

  • Barron, L., Gharib, S. A., & Duffield, J. S. (2016). Lung pericytes and resident fibroblasts: Busy multitaskers. The American Journal of Pathology, 186(10), 2519–2531. https://doi.org/10.1016/j.ajpath.2016.07.004

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bichsel, C. A., Wang, L., Froment, L., Berezowska, S., Müller, S., Dorn, P., Marti, T. M., Peng, R. W., Geiser, T., Schmid, R. A., Guenat, O. T., & Hall, S. R. R. (2017). Increased PD-L1 expression and IL-6 secretion characterize human lung tumor-derived perivascular-like cells that promote vascular leakage in a perfusable microvasculature model. Scientific Reports, 7(1), 10636.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Birbrair, A., Zhang, T., Files, D. C., Mannava, S., Smith, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2014). Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Research & Therapy, 5(6), 122. https://doi.org/10.1186/scrt512

    CrossRef  Google Scholar 

  • Calabrese, C., Bocchino, V., Vatrella, A., Marzo, C., Guarino, C., Mascitti, S., Tranfa, C. M., Cazzola, M., Micheli, P., Caputi, M., & Marsico, S. A. (2006). Evidence of angiogenesis in bronchial biopsies of smokers with and without airway obstruction. Respiratory Medicine, 100, 1415–1422.

    CrossRef  PubMed  Google Scholar 

  • Campanholle, G., Ligresti, G., Gharib, S. A., & Duffield, J. S. (2013). Cellular mechanisms of tissue fibrosis. Novel mechanisms of kidney fibrosis. American Journal of Physiology. Cell Physiology, 304(7), C591–C603.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chintalgattu, V., Rees, M. L., Culver, J. C., Goel, A., Jiffar, T., Zhang, J., Dunner, K., Jr., Pati, S., Bankson, J. A., Pasqualini, R., Arap, W., Bryan, N. S., Taegtmeyer, H., Langley, R. R., Yao, H., Kupferman, M. E., Entman, M. L., Dickinson, M. E., & Khakoo, A. Y. (2013). Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Science Translational Medicine, 5, 187ra69.

    CrossRef  PubMed  Google Scholar 

  • Cho, Y. J., Ma, J. E., Yun, E. Y., Kim, Y. E., Kim, H. C., Lee, J. D., Hwang, Y. S., & Jeong, Y. Y. (2011). Serum angiopoietin-2 levels are elevated during acute exacerbations of COPD. Respirology, 16, 284–290.

    CrossRef  PubMed  Google Scholar 

  • Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., Norotte, C., Teng, P. N., Traas, J., Schugar, R., Deasy, B. M., Badylak, S., Buhring, H. J., Giacobino, J. P., Lazzari, L., Huard, J., & Péault, B. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.

    CAS  CrossRef  PubMed  Google Scholar 

  • Cheresh, P., Kim, S. J., Tulasiram, S., & Kamp, D. W. (2013). Oxidative stress and pulmonary fibrosis. Biochimica et Biophysica Acta, 1832(7), 1028–1040.

    CAS  CrossRef  PubMed  Google Scholar 

  • Crisan, M., Corselli, M., Chen, W. C., & Péault, B. (2012). Perivascular cells for regenerative medicine. Journal of Cellular and Molecular Medicine, 16(12), 2851–2860.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Damianovich, M., Hout, S. G., Barshack, I., Simansky, D. A., Kidron, D., Dar, E., Avivi, C., & Onn, A. (2013). Structural basis for hyperpermeability of tumor vessels in advanced lung adenocarcinoma complicated by pleural effusion. Clinical Lung Cancer, 14(6), 688–698.

    CAS  CrossRef  PubMed  Google Scholar 

  • Darland, D. C., Massingham, L. J., Smith, S. R., Piek, E., Saint-Geniez, M., & D’Amore, P. A. (2003). Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Developmental Biology, 264, 275–288.

    CAS  CrossRef  PubMed  Google Scholar 

  • Donoghue, L., Tyburski, J. G., Steffes, C. P., & Wilson, R. F. (2006). Vascular endothelial growth factor modulates contractile response in microvascular lung pericytes. American Journal of Surgery, 191(3), 349–352.

    CAS  CrossRef  PubMed  Google Scholar 

  • Eberhard, A., Kahlert, S., Goede, V., Hemmerlein, B., Plate, K. H., & Augustin, H. G. (2000). Heterogeneity of angiogenesis and blood vessel maturation in human tumors: Implications for antiangiogenic tumor therapies. Cancer Research, 60(5), 1388–1393.

    CAS  PubMed  Google Scholar 

  • Fuxe, J., Tabruyn, S., Colton, K., Zaid, H., Adams, A., Baluk, P., Lashnits, E., Morisada, T., Le, T., O’Brien, S., Epstein, D. M., Koh, G. Y., & McDonald, D. M. (2011). Pericyte requirement for antileak action of angiopoietin-1 and vascular remodelling in sustained inflammation. The American Journal of Pathology, 178, 2897–2909.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gaskill, C. F., Carrier, E. J., Kropski, J. A., Bloodworth, N. C., Menon, S., Foronjy, R. F., Taketo, M. M., Hong, C. C., Austin, E. D., West, J. D., Means, A. L., Loyd, J. E., Merryman, W. D., Hemnes, A. R., De Langhe, S., Blackwell, T. S., Klemm, D. J., & Majka, S. M. (2017). Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. The Journal of Clinical Investigation, 127(6), 2262–2276.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Geevarghese, A., & Herman, I. M. (2014). Pericyte-endothelial crosstalk: Implications and opportunities for advanced cellular therapies. Translational Research, 163(4), 296–306.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Greenhalgh, S. N., Iredale, J. P., & Henderson, N. C. (2013). Origins of fibrosis: pericytes take centre stage. F1000Prime Reports, 5, 37.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hammes, H. P., Lin, J., Wagner, P., Feng, Y., Vom Hagen, F., Krzizok, T., Renner, O., Breier, G., Brownlee, M., & Deutsch, U. (2004). Angiopoietin-2 causes pericyte dropout in the normal retina: Evidence for involvement in diabetic retinopathy. Diabetes, 53, 1104–1110.

    CAS  CrossRef  PubMed  Google Scholar 

  • Hung, C., Linn, G., Chow, Y. H., Kobayashi, A., Mittelsteadt, K., Altemeier, W. A., Gharib, S. A., Schnapp, L. M., & Duffield, J. S. (2013). Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 188(7), 820–830.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hung, C. F., Mittelsteadt, K. L., Brauer, R., McKinney, B. L., Hallstrand, T. S., Parks, W. C., Chen, P., Schnapp, L. M., Liles, W. C., Duffield, J. S., & Altemeier, W. A. (2017). Lung pericyte-like cells are functional interstitial immune sentinel cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 312(4), L556–L567.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Johnson, J. R., Folestad, E., Rowley, J. E., Noll, E. M., Walker, S. A., Lloyd, C. M., Rankin, S. M., Pietras, K., Eriksson, U., & Fuxe, J. (2015). Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma. American Journal of Physiology-Lung Cellular and Molecular Physiology, 308(7), L658–L671.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jones, R., Capen, D., & Jacobson, M. (2006). PDGF and microvessel wall remodeling in adult lung: Imaging PDGF-Rβ and PDGF-BB molecules in progenitor smooth muscle cells developing in pulmonary hypertension. Ultrastructural Pathology, 30, 267–281.

    CrossRef  PubMed  Google Scholar 

  • Keskin, D., Kim, J., Cooke, V. G., Wu, C. C., Sugimoto, H., Gu, C., De Palma, M., Kalluri, R., & LeBleu, V. S. (2015). Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Reports, 10(7), 1066–1081. https://doi.org/10.1016/j.celrep.2015.01.035

    CAS  CrossRef  PubMed  Google Scholar 

  • Kloc, M., Kubiak, J. Z., Li, X. C., & Ghobrial, R. M. (2015). Pericytes, microvasular dysfunction, and chronic rejection. Transplantation, 99(4), 658–667.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Konigshoff, M., Kneidinger, N., & Eickelberg, O. (2009). TGF-beta signaling in COPD: deciphering genetic and cellular susceptibilities for future therapeutic regimen. Swiss Medical Weekly, 139, 554–563.

    PubMed  Google Scholar 

  • Kramann, R., Schneider, R. K., DiRocco, D. P., Machado, F., Fleig, S., Bondzie, P. A., Henderson, J. M., Ebert, B. L., & Humphreys, B. D. (2015). Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell, 16(1), 51–66.

    CAS  CrossRef  PubMed  Google Scholar 

  • Kranenburg, A. R., de Boer, W. I., Alagappan, V. K., Sterk, P. J., & Sharma, H. S. (2005). Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease. Thorax, 60, 106–113.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Lauridsen, H. M., Pober, J. S., & Gonzalez, A. L. (2014). A composite model of the human postcapillary venule for investigation of microvascular leukocyte recruitment. The FASEB Journal, 28, 1166–1180.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Kennard, S., & Lilly, B. (2009). NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circulation Research, 104, 466–475.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Zhang, W., Kennard, S., Caldwell, R. B., & Lilly, B. (2010). Notch3 is critical for proper angiogenesis and mural cell investment. Circulation Research, 107, 860–870.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Marriott, S., Baskir, R. S., Gaskill, C., Menon, S., Carrier, E. J., Williams, J., Talati, M., Helm, K., Alford, C. E., Kropski, J. A., Loyd, J., Wheeler, L., Johnson, J., Austin, E., Nozik-Grayck, E., Meyrick, B., West, J. D., Klemm, D. J., & Majka, S. M. (2014). ABCG2pos lung mesenchymal stem cells are a novel pericyte subpopulation that contributes to fibrotic remodeling. American Journal of Physiology-Cell Physiology, 307(8), C684–C698.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • McCullagh, A., Rosenthal, M., Wanner, A., Hurtado, A., Padley, S., & Bush, A. (2010). The bronchial circulation-worth a closer look: a review of the relationship between the bronchial vasculature and airway inflammation. Pediatric Pulmonology, 45(1), 1–13.

    CrossRef  PubMed  Google Scholar 

  • Minami, Y., Sasaki, T., Bochimoto, H., Kawabe, J., Endo, S., Hira, Y., Watanabe, T., Okumura, S., Hasebe, N., & Ohsaki, Y. (2015). Prostaglandin I2 analog suppresses lung metastasis by recruiting pericytes in tumor angiogenesis. International Journal of Oncology, 46(2), 548–554. https://doi.org/10.3892/ijo.2014.2783

    CrossRef  PubMed  Google Scholar 

  • Murgai, M., Ju, W., Eason, M., Kline, J., Beury, D. W., Kaczanowska, S., Miettinen, M. M., Kruhlak, M., Lei, H., Shern, J. F., Cherepanova, O. A., Owens, G. K., & Kaplan, R. N. (2017). KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nature Medicine, 23, 1176–1190.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nishioku, T., Dohgu, S., Takata, F., Eto, T., Ishikawa, N., Kodama, K. B., Nakagawa, S., Yamauchi, A., & Kataoka, Y. (2009). Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cellular and Molecular Neurobiology, 29, 309–316.

    CAS  CrossRef  PubMed  Google Scholar 

  • Paiva, A. E., Lousado, L., Guerra, D. A. P., Azevedo, P. O., Sena, I. F. G., Andreotti, J. P., Santos, G. S. P., Goncalves, R., Mintz, A., & Birbrair, A. (2018). Pericytes in the premetastatic niche. Cancer Research, 78(11), 2779–2786.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Peinado, V. I., Pizarro, S., & Barberà, J. A. (2008). Pulmonary vascular involvement in COPD. Chest, 134, 808–814.

    CAS  CrossRef  PubMed  Google Scholar 

  • Rajapaksa, K. S., Huang, T., Sharma, N., Liu, S., Solon, M., Reyes, A., Paul, S., Yee, A., Tao, J., Chalasani, S., Bien-Ly, N., Barck, K., Carano, R. A., Wang, J., Rangell, L., Bremer, M., Danilenko, D. M., Katavolos, P., Hotzel, I., Reif, K., & Austin, C. D. (2016). Preclinical safety profile of a depleting antibody against CRTh2 for asthma: Well tolerated despite unexpected CRTh2 expression on vascular pericytes in the central nervous system and gastric mucosa. Toxicological Sciences, 152(1), 72–84.

    CAS  CrossRef  PubMed  Google Scholar 

  • Ricard, N., Tu, L., Le Hiress, M., Huertas, A., Phan, C., Thuillet, R., Sattler, C., Seferian, A., Fadel, E., Montani, D., Dorfmüller, P., Humbert, M., & Guignabert, C. (2014). Increased pericyte coverage mediated by endothelial derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation, 129, 1586–1597.

    CAS  CrossRef  PubMed  Google Scholar 

  • Rock, J. R., Barkauskas, C. E., Cronce, M. J., Xue, Y., Harris, J. R., Liang, J., Noble, P. W., & Hogan, B. L. (2011). Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 108, E1475–E1483. https://doi.org/10.1073/pnas.1117988108

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rowley, J. E., & Johnson, J. R. (2014). Pericytes in chronic lung disease. International Archives of Allergy and Immunology, 164(3), 178–188. https://doi.org/10.1159/000365051

    CAS  CrossRef  PubMed  Google Scholar 

  • Sava, P., Cook, I. O., Mahal, R. S., Gonzalez, A. L. (2015). Human microvascular pericyte basement membrane remodeling regulates neutrophil recruitment. Microcirculation, 22(1), 54–67. https://doi.org/10.1111/micc.12173

    CAS  CrossRef  PubMed  Google Scholar 

  • Sava, P., Ramanathan, A., Dobronyi, A., Peng, X., Sun, H., Ledesma-Mendoza, A., Herzog, E. L., & Gonzalez, A. L. (2017). Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung. JCI Insight, 2(24), 96352.

    CrossRef  PubMed  Google Scholar 

  • Wang, S., Voisin, M. B., Larbi, K. Y., Dangerfield, J., Scheiermann, C., Tran, M., Maxwell, P. H., Sorokin, L., & Nourshargh. (2006). Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. The Journal of Experimental Medicine, 203, 1519–1532.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Zeng, H., Xie, X. J., Tao, Y. K., He, X., Roman, R. J., Aschner, J. L., & Chen, J. X. (2016). Loss of prolyl hydroxylase domain protein 2 in vascular endothelium increases pericyte coverage and promotes pulmonary arterial remodeling. Oncotarget, 7(37), 58848–58861. https://doi.org/10.18632/oncotarget.11585

    PubMed  PubMed Central  Google Scholar 

  • Wiebe, B. M., & Laursen, H. (1995). Human lung volume, alveolar surface area, and capillary length. Microscopy Research and Technique, 32(3), 255–262.

    CAS  CrossRef  PubMed  Google Scholar 

  • Weibel, E. R. (1974). On pericytes, particularly their existence on lung capillaries. Microvascular Research, 8(2), 218–235.

    CAS  CrossRef  PubMed  Google Scholar 

  • Wong, S. P., Rowley, J. E., Redpath, A. N., Tilman, J. D., Fellous, T. G., & Johnson, J. R. (2015). Pericytes, mesenchymal stem cells and their contributions to tissue repair. Pharmacology & Therapeutics, 151, 107–120.

    CAS  CrossRef  Google Scholar 

  • Yuan, K., Orcholski, M. E., Panaroni, C., Shuffle, E. M., Huang, N. F., Jiang, X., Tian, W., Vladar, E. K., Wang, L., Nicolls, M. R., Wu, J. Y., & de Jesus Perez, V. A. (2015). Activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment during pulmonary angiogenesis. The American Journal of Pathology, 185(1), 69–84. https://doi.org/10.1016/j.ajpath.2014.09.013

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zeng, H., He, X., Tuo, Q. H., Liao, D. F., Zhang, G. Q., & Chen, J. X. (2016). LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIF-2α/Notch3 pathways. Scientific Reports, 6, 20931. https://doi.org/10.1038/srep20931

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zuo, L., Chuang, C. C., Clark, A. D., Garrison, D. E., Kuhlman, J. L., & Sypert, D. C. (2017). Reactive oxygen species in COPD-related vascular remodeling. Advances in Experimental Medicine and Biology, 967, 399–411.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill R. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Shammout, B., Johnson, J.R. (2019). Pericytes in Chronic Lung Disease. In: Birbrair, A. (eds) Pericyte Biology in Disease. Advances in Experimental Medicine and Biology, vol 1147. Springer, Cham. https://doi.org/10.1007/978-3-030-16908-4_14

Download citation