Skip to main content

Pericytes in Type 2 Diabetes

  • Chapter
  • First Online:
Pericyte Biology in Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1147))

Abstract

Pericytes are mural cells that are found ubiquitously throughout the microvasculature. Their main physiological roles are to support endothelial cells, regulate microvascular blood flow, and respond to perturbations in their microenvironment. Pericytes are sensitive to the metabolic abnormalities that are characteristic of type 2 diabetes mellitus, including dyslipidemia, hyperglycemia, and hyperinsulinemia. As a consequence of these abnormalities, advanced glycation end products, reactive oxygen species, polyol pathway activation, and protein kinase C isoform activation cause pericyte dysfunction and contribute to the pathogenesis of many common complications of type 2 diabetes. Pericyte dysfunction is known to be a contributing factor to the pathogenesis of retinopathy, nephropathy, neuropathy, beta cell dysfunction, and peripheral artery disease in people with type 2 diabetes. Therapies should target pericytes to treat these common diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almaca, J., Weitz, J., Rodriguez-Diaz, R., Pereira, E., & Caicedo, A. (2018). The pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metabolism, 27, 630–644 e4.

    Article  CAS  Google Scholar 

  • Armulik, A., Genove, G., & Betsholtz, C. (2011). Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Developmental Cell, 21, 193–215.

    Article  CAS  Google Scholar 

  • Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. (2014). Type-2 pericytes participate in normal and tumoral angiogenesis. American Journal of Physiology. Cell Physiology, 307, C25–C38.

    Article  CAS  Google Scholar 

  • Brownlee, M. (2005). The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 54, 1615–1625.

    Article  CAS  Google Scholar 

  • Cacicedo, J. M., Benjachareowong, S., Chou, E., Ruderman, N. B., & Ido, Y. (2005). Palmitate-induced apoptosis in cultured bovine retinal pericytes: Roles of NAD(P)H oxidase, oxidant stress, and ceramide. Diabetes, 54, 1838–1845.

    Article  CAS  Google Scholar 

  • Caporali, A., Meloni, M., Vollenkle, C., Bonci, D., Sala-Newby, G. B., Addis, R., Spinetti, G., Losa, S., Masson, R., Baker, A. H., Agami, R., Le Sage, C., Condorelli, G., Madeddu, P., Martelli, F., & Emanueli, C. (2011). Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 123, 282–291.

    Article  CAS  Google Scholar 

  • Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., Da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281.

    Article  CAS  Google Scholar 

  • Cogan, D. G., Toussaint, D., & Kuwabara, T. (1961). Retinal vascular patterns. IV. Diabetic retinopathy. Archives of Ophthalmology, 66, 366–378.

    Article  CAS  Google Scholar 

  • Crawford, C., Kennedy-Lydon, T., Sprott, C., Desai, T., Sawbridge, L., Munday, J., Unwin, R. J., Wildman, S. S., & Peppiatt-Wildman, C. M. (2012). An intact kidney slice model to investigate vasa recta properties and function in situ. Nephron. Physiology, 120, p17–p31.

    Article  CAS  Google Scholar 

  • Dar, A., Domev, H., Ben-Yosef, O., Tzukerman, M., Zeevi-Levin, N., Novak, A., Germanguz, I., Amit, M., & Itskovitz-Eldor, J. (2012). Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation, 125, 87–99.

    Article  Google Scholar 

  • Defronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F. B., Kahn, C. R., Raz, I., Shulman, G. I., Simonson, D. C., Testa, M. A., & Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews. Disease Primers, 1, 15019.

    Article  Google Scholar 

  • Ding, L., Cheng, R., Hu, Y., Takahashi, Y., Jenkins, A. J., Keech, A. C., Humphries, K. M., Gu, X., Elliott, M. H., Xia, X., & Ma, J. X. (2014). Peroxisome proliferator-activated receptor alpha protects capillary pericytes in the retina. The American Journal of Pathology, 184, 2709–2720.

    Article  CAS  Google Scholar 

  • Efimenko, A. Y., Kochegura, T. N., Akopyan, Z. A., & Parfyonova, Y. V. (2015). Autologous stem cell therapy: How aging and chronic diseases affect stem and progenitor cells. Bioresearch Open Access, 4, 26–38.

    Article  CAS  Google Scholar 

  • Engerman, R. L. (1989). Pathogenesis of diabetic retinopathy. Diabetes, 38, 1203–1206.

    Article  CAS  Google Scholar 

  • Fernandez Fernandez, B., Elewa, U., Sanchez-Nino, M. D., Rojas-Rivera, J. E., Martin-Cleary, C., Egido, J., & Ortiz, A. (2012). 2012 update on diabetic kidney disease: The expanding spectrum, novel pathogenic insights and recent clinical trials. Minerva Medica, 103, 219–234.

    CAS  PubMed  Google Scholar 

  • Folli, F., Corradi, D., Fanti, P., Davalli, A., Paez, A., Giaccari, A., Perego, C., & Muscogiuri, G. (2011). The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: Avenues for a mechanistic-based therapeutic approach. Current Diabetes Reviews, 7, 313–324.

    Article  CAS  Google Scholar 

  • Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., Ferris, F. L., 3rd, Klein, R., & American Diabetes, A. (2003). Diabetic retinopathy. Diabetes Care, 26, 226–229.

    Article  Google Scholar 

  • Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107, 1058–1070.

    Article  CAS  Google Scholar 

  • Giannini, C., & Dyck, P. J. (1995). Basement membrane reduplication and pericyte degeneration precede development of diabetic polyneuropathy and are associated with its severity. Annals of Neurology, 37, 498–504.

    Article  CAS  Google Scholar 

  • Gubernator, M., Slater, S. C., Spencer, H. L., Spiteri, I., Sottoriva, A., Riu, F., Rowlinson, J., Avolio, E., Katare, R., Mangialardi, G., Oikawa, A., Reni, C., Campagnolo, P., Spinetti, G., Touloumis, A., Tavare, S., Prandi, F., Pesce, M., Hofner, M., Klemens, V., Emanueli, C., Angelini, G., & Madeddu, P. (2015). Epigenetic profile of human adventitial progenitor cells correlates with therapeutic outcomes in a mouse model of limb ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 675–688.

    Article  CAS  Google Scholar 

  • Hammes, H. P., Lin, J., Renner, O., Shani, M., Lundqvist, A., Betsholtz, C., Brownlee, M., & Deutsch, U. (2002). Pericytes and the pathogenesis of diabetic retinopathy. Diabetes, 51, 3107–3112.

    Article  CAS  Google Scholar 

  • Haneda, M., Araki, S., Togawa, M., Sugimoto, T., Isono, M., & Kikkawa, R. (1997). Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes, 46, 847–853.

    Article  CAS  Google Scholar 

  • Hayden, M. R., Yang, Y., Habibi, J., Bagree, S. V., & Sowers, J. R. (2010). Pericytopathy: Oxidative stress and impaired cellular longevity in the pancreas and skeletal muscle in metabolic syndrome and type 2 diabetes. Oxidative Medicine and Cellular Longevity, 3, 290–303.

    Article  Google Scholar 

  • Hayes, K. L., Messina, L. M., Schwartz, L. M., Yan, J., Burnside, A. S., & Witkowski, S. (2018). Type 2 diabetes impairs the ability of skeletal muscle pericytes to augment postischemic neovascularization in db/db mice. American Journal of Physiology Cell Physiology, 314, C534–C544.

    Article  CAS  Google Scholar 

  • Houtz, J., Borden, P., Ceasrine, A., Minichiello, L., & Kuruvilla, R. (2016). Neurotrophin signaling is required for glucose-induced insulin secretion. Developmental Cell, 39, 329–345.

    Article  CAS  Google Scholar 

  • Hu, Y., Chen, Y., Ding, L., He, X., Takahashi, Y., Gao, Y., Shen, W., Cheng, R., Chen, Q., Qi, X., Boulton, M. E., & Ma, J. X. (2013). Pathogenic role of diabetes-induced PPAR-alpha down-regulation in microvascular dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 110, 15401–15406.

    Article  CAS  Google Scholar 

  • Inoguchi, T., Sonta, T., Tsubouchi, H., Etoh, T., Kakimoto, M., Sonoda, N., Sato, N., Sekiguchi, N., Kobayashi, K., Sumimoto, H., Utsumi, H., & Nawata, H. (2003). Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD(P)H oxidase. Journal of American Society of Nephrology, 14, S227–S232.

    Article  CAS  Google Scholar 

  • Isono, M., Chen, S., Hong, S. W., Iglesias-De La Cruz, M. C., & Ziyadeh, F. N. (2002). Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochemical and Biophysical Research Communications, 296, 1356–1365.

    Article  CAS  Google Scholar 

  • Kennedy-Lydon, T. M., Crawford, C., Wildman, S. S., & Peppiatt-Wildman, C. M. (2013). Renal pericytes: Regulators of medullary blood flow. Acta Physiologica (Oxford, England), 207, 212–225.

    Article  CAS  Google Scholar 

  • Kim, J. H., Kim, J. H., Yu, Y. S., Kim, D. H., & Kim, K. W. (2009). Recruitment of pericytes and astrocytes is closely related to the formation of tight junction in developing retinal vessels. Journal of Neuroscience Research, 87, 653–659.

    Article  CAS  Google Scholar 

  • Koya, D., Haneda, M., Nakagawa, H., Isshiki, K., Sato, H., Maeda, S., Sugimoto, T., Yasuda, H., Kashiwagi, A., Ways, D. K., King, G. L., & Kikkawa, R. (2000). Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. The FASEB Journal, 14, 439–447.

    Article  CAS  Google Scholar 

  • Kramann, R., & Humphreys, B. D. (2014). Kidney pericytes: Roles in regeneration and fibrosis. Seminars in Nephrology, 34, 374–383.

    Article  CAS  Google Scholar 

  • Lenoir, O., Jasiek, M., Henique, C., Guyonnet, L., Hartleben, B., Bork, T., Chipont, A., Flosseau, K., Bensaada, I., Schmitt, A., Masse, J. M., Souyri, M., Huber, T. B., & Tharaux, P. L. (2015). Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy, 11, 1130–1145.

    Article  CAS  Google Scholar 

  • Metea, M. R., & Newman, E. A. (2007). Signalling within the neurovascular unit in the mammalian retina. Experimental Physiology, 92, 635–640.

    Article  Google Scholar 

  • Miyoshi, T., Kennedy, W. R., & Yoon, K. S. (1979). Morphometric comparison of capillaries in muscle spindles, nerve, and muscle. Archives of Neurology, 36, 547–552.

    Article  CAS  Google Scholar 

  • Mizutani, M., Kern, T. S., & Lorenzi, M. (1996). Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. The Journal of Clinical Investigation, 97, 2883–2890.

    Article  CAS  Google Scholar 

  • Pallone, T. L. (1994). Vasoconstriction of outer medullary vasa recta by angiotensin II is modulated by prostaglandin E2. The American Journal of Physiology, 266, F850–F857.

    CAS  PubMed  Google Scholar 

  • Pallone, T. L., & Silldorff, E. P. (2001). Pericyte regulation of renal medullary blood flow. Experimental Nephrology, 9, 165–170.

    Article  CAS  Google Scholar 

  • Park, F., Mattson, D. L., Roberts, L. A., & Cowley, A. W., Jr. (1997). Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla. The American Journal of Physiology, 273, R1742–R1748.

    CAS  PubMed  Google Scholar 

  • Park, S. W., Yun, J. H., Kim, J. H., Kim, K. W., Cho, C. H., & Kim, J. H. (2014). Angiopoietin 2 induces pericyte apoptosis via alpha3beta1 integrin signaling in diabetic retinopathy. Diabetes, 63, 3057–3068.

    Article  Google Scholar 

  • Remuzzi, G., Schieppati, A., & Ruggenenti, P. (2002). Clinical practice. Nephropathy in patients with type 2 diabetes. The New England Journal of Medicine, 346, 1145–1151.

    Article  Google Scholar 

  • Ritz, E., & Orth, S. R. (1999). Nephropathy in patients with type 2 diabetes mellitus. The New England Journal of Medicine, 341, 1127–1133.

    Article  CAS  Google Scholar 

  • Sakhneny, L., Rachi, E., Epshtein, A., Guez, H. C., Wald-Altman, S., Lisnyansky, M., Khalifa-Malka, L., Hazan, A., Baer, D., Priel, A., Weil, M., & Landsman, L. (2018). Pancreatic pericytes support beta-cell function in a Tcf7l2-dependent manner. Diabetes, 67, 437–447.

    Article  CAS  Google Scholar 

  • Sasson, A., Rachi, E., Sakhneny, L., Baer, D., Lisnyansky, M., Epshtein, A., & Landsman, L. (2016). Islet pericytes are required for beta-cell maturity. Diabetes, 65, 3008–3014.

    Article  CAS  Google Scholar 

  • Shimizu, F., Sano, Y., Abe, M. A., Maeda, T., Ohtsuki, S., Terasaki, T., & Kanda, T. (2011a). Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. Journal of Cellular Physiology, 226, 255–266.

    Article  CAS  Google Scholar 

  • Shimizu, F., Sano, Y., Haruki, H., & Kanda, T. (2011b). Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-beta and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia, 54, 1517–1526.

    Article  CAS  Google Scholar 

  • Shimizu, F., Sano, Y., Maeda, T., Abe, M. A., Nakayama, H., Takahashi, R., Ueda, M., Ohtsuki, S., Terasaki, T., Obinata, M., & Kanda, T. (2008). Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. Journal of Cellular Physiology, 217, 388–399.

    Article  CAS  Google Scholar 

  • Stitt, A. W., Li, Y. M., Gardiner, T. A., Bucala, R., Archer, D. B., & Vlassara, H. (1997). Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. The American Journal of Pathology, 150, 523–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stratton, I. M., Adler, A. I., Neil, H. A., Matthews, D. R., Manley, S. E., Cull, C. A., Hadden, D., Turner, R. C., & Holman, R. R. (2000). Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ, 321, 405–412.

    Article  CAS  Google Scholar 

  • Tilton, R. G., Faller, A. M., Burkhardt, J. K., Hoffmann, P. L., Kilo, C., & Williamson, J. R. (1985). Pericyte degeneration and acellular capillaries are increased in the feet of human diabetic patients. Diabetologia, 28, 895–900.

    Article  CAS  Google Scholar 

  • Tilton, R. G., Hoffmann, P. L., Kilo, C., & Williamson, J. R. (1981). Pericyte degeneration and basement membrane thickening in skeletal muscle capillaries of human diabetics. Diabetes, 30, 326–334.

    Article  CAS  Google Scholar 

  • Trost, A., Lange, S., Schroedl, F., Bruckner, D., Motloch, K. A., Bogner, B., Kaser-Eichberger, A., Strohmaier, C., Runge, C., Aigner, L., Rivera, F. J., & Reitsamer, H. A. (2016). Brain and retinal pericytes: Origin, function and role. Frontiers in Cellular Neuroscience, 10, 20.

    Article  Google Scholar 

  • Valdez, C. N., Arboleda-Velasquez, J. F., Amarnani, D. S., Kim, L. A., & D’amore, P. A. (2014). Retinal microangiopathy in a mouse model of inducible mural cell loss. The American Journal of Pathology, 184, 2618–2626.

    Article  CAS  Google Scholar 

  • Vono, R., Fuoco, C., Testa, S., Pirro, S., Maselli, D., Ferland Mccollough, D., Sangalli, E., Pintus, G., Giordo, R., Finzi, G., Sessa, F., Cardani, R., Gotti, A., Losa, S., Cesareni, G., Rizzi, R., Bearzi, C., Cannata, S., Spinetti, G., Gargioli, C., & Madeddu, P. (2016). Activation of the pro-oxidant PKCbetaII-p66Shc signaling pathway contributes to pericyte dysfunction in skeletal muscles of patients with diabetes with critical limb ischemia. Diabetes, 65, 3691–3704.

    Article  CAS  Google Scholar 

  • Wada, R., & Yagihashi, S. (2005). Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Annals of the New York Academy of Sciences, 1043, 598–604.

    Article  CAS  Google Scholar 

  • Yan, J., Tie, G., Wang, S., Messina, K. E., Didato, S., Guo, S., & Messina, L. M. (2012). Type 2 diabetes restricts multipotency of mesenchymal stem cells and impairs their capacity to augment postischemic neovascularization in db/db mice. Journal of the American Heart Association, 1, e002238.

    PubMed  PubMed Central  Google Scholar 

  • Yan, J., Tie, G., Xu, T. Y., Cecchini, K., & Messina, L. M. (2013). Mesenchymal stem cells as a treatment for peripheral arterial disease: Current status and potential impact of type II diabetes on their therapeutic efficacy. Stem Cell Reviews, 9, 360–372.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine L. Hayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayes, K.L. (2019). Pericytes in Type 2 Diabetes. In: Birbrair, A. (eds) Pericyte Biology in Disease. Advances in Experimental Medicine and Biology, vol 1147. Springer, Cham. https://doi.org/10.1007/978-3-030-16908-4_12

Download citation

Publish with us

Policies and ethics