Skip to main content

Genetics and Epigenetics of Mesothelioma

  • Chapter
  • First Online:
Mesothelioma

Abstract

The definition of the mesothelioma genome is expected to have a great impact toward the development of new drugs and therapeutic approaches with a view to precision medicine. A few studies reported that the malignant pleural mesothelioma (MPM) genomic landscape is characterized by a much greater number of genomic losses than point mutations. Inactivating gene fusions, copy losses, and protein-truncating variants (PTVs) mostly affect tumor suppressor genes, above all BAP1, NF2, CDKN2A, and SETD2. Some of them may be exploited to design novel therapeutic strategies. Germline mutations in some of these genes represent MPM-predisposing risk factors. These mutations require a second hit, i.e., asbestos exposure, to induce carcinogenesis. The most studied of these genes is BAP1. Germline mutations in other tumor suppressor genes, mostly involved in DNA repair, have also been identified in about 10% of MPM patients. These patients are more sensitive to asbestos exposure than those who do not carry such mutations and may benefit of specific treatments. Additionally, epigenetic mechanisms, such as methylation or miRNA alterations, may modify gene expression and drive carcinogenesis. The same abnormalities may be used as disease biomarkers or therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeifer GP. Environmental exposures and mutational patterns of cancer genomes. Genome Med. 2010;2:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferrante D, Mirabelli D, Tunesi S, Terracini B, Magnani C. Pleural mesothelioma and occupational and non-occupational asbestos exposure: a case-control study with quantitative risk assessment. Occup Environ Med. 2016;73:147–53.

    Article  PubMed  Google Scholar 

  4. Hodgson JT, Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg. 2000;44:565–601.

    Article  CAS  PubMed  Google Scholar 

  5. Ugolini D, Neri M, Ceppi M, Cesario A, Dianzani I, Filiberti R, et al. Genetic susceptibility to malignant mesothelioma and exposure to asbestos: the influence of the familial factor. Mutat Res. 2008;658:162–71.

    Article  CAS  PubMed  Google Scholar 

  6. Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives. Nat Rev Cancer. 2017;17:692–704.

    Article  CAS  PubMed  Google Scholar 

  7. Matullo G, Guarrera S, Betti M, Fiorito G, Ferrante D, Voglino F, et al. Genetic variants associated with increased risk of malignant pleural mesothelioma: a genome-wide association study. PLoS One. 2013;8:e61253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cadby G, Mukherjee S, Musk AWB, Reid A, Garlepp M, Dick I, et al. A genome-wide association study for malignant mesothelioma risk. Lung Cancer. 2013;82:1–8.

    Article  PubMed  Google Scholar 

  9. Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, et al. High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol. 2015;10:565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pilarski R, Rai K, Cebulla C, Abdel-Rahman M. BAP1 tumor predisposition syndrome. Seattle: University of Washington; 2016.

    Google Scholar 

  11. Carbone M, Ferris LK, Baumann F, Napolitano A, Lum CA, Flores EG, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 2012;10:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Njauw C-NJ, Kim I, Piris A, Gabree M, Taylor M, Lane AM, et al. Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One. 2012;7:e35295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baumann F, Flores E, Napolitano A, Kanodia S, Taioli E, Pass H, et al. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis. 2015;36:76–81.

    Article  CAS  PubMed  Google Scholar 

  14. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43:1022–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haugh AM, Njauw C-N, Bubley JA, Verzì AE, Zhang B, Kudalkar E, et al. Genotypic and phenotypic features of BAP1 Cancer syndrome: a report of 8 new families and review of cases in the literature. JAMA Dermatol. 2017;153:999–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rai K, Pilarski R, Boru G, Rehman M, Saqr AH, Massengill JB, et al. Germline BAP1 alterations in familial uveal melanoma. Genes Chromosomes Cancer. 2017;56:168–74.

    Article  CAS  PubMed  Google Scholar 

  17. O’Shea SJ, Robles-Espinoza CD, McLellan L, Harrigan J, Jacq X, Hewinson J, et al. A population-based analysis of germline BAP1 mutations in melanoma. Hum Mol Genet. 2017;26:717–28.

    PubMed  PubMed Central  Google Scholar 

  18. Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011;48:856–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wadt K, Choi J, Chung J-Y, Kiilgaard J, Heegaard S, Drzewiecki KT, et al. A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell Melanoma Res. 2012;25:815–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wiesner T, Fried I, Ulz P, Stacher E, Popper H, Murali R, et al. Toward an improved definition of the tumor spectrum associated with BAP1 germline mutations. J Clin Oncol. 2012;30:e337–40.

    Article  PubMed  Google Scholar 

  21. Popova T, Hebert L, Jacquemin V, Gad S, Caux-Moncoutier V, Dubois-d’Enghien C, et al. Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet. 2013;92:974–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pilarski R, Cebulla CM, Massengill JB, Rai K, Rich T, Strong L, et al. Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases. Genes Chromosomes Cancer. 2014;53:177–82.

    Article  CAS  PubMed  Google Scholar 

  23. Betti M, Casalone E, Ferrante D, Romanelli A, Grosso F, Guarrera S, et al. Inference on germline BAP1 mutations and asbestos exposure from the analysis of familial and sporadic mesothelioma in a high-risk area. Genes Chromosomes Cancer. 2015;54:51–62.

    Article  CAS  PubMed  Google Scholar 

  24. Rai K, Pilarski R, Cebulla CM, Abdel-Rahman MH. Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin Genet. 2016;89:285–94.

    Article  CAS  PubMed  Google Scholar 

  25. Cheung M, Kadariya Y, Talarchek J, Pei J, Ohar JA, Kayaleh OR, et al. Germline BAP1 mutation in a family with high incidence of multiple primary cancers and a potential gene-environment interaction. Cancer Lett. 2015;369:261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohar JA, Cheung M, Talarchek J, Howard SE, Howard TD, Hesdorffer M, et al. Germline BAP1 mutational landscape of Asbestos-exposed malignant mesothelioma patients with family history of Cancer. Cancer Res. 2016;76:206–15.

    Article  CAS  PubMed  Google Scholar 

  27. Abdel-Rahman MH, Rai K, Pilarski R, Davidorf FH, Cebulla CM. Germline BAP1 mutations misreported as somatic based on tumor-only testing. Familial Cancer. 2016;15:327–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ribeiro C, Campelos S, Moura CS, Machado JC, Justino A, Parente B. Well-differentiated papillary mesothelioma: clustering in a Portuguese family with a germline BAP1 mutation. Ann Oncol. 2013;24:2147–50.

    Article  CAS  PubMed  Google Scholar 

  29. Cheung M, Talarchek J, Schindeler K, Saraiva E, Penney LS, Ludman M, et al. Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma. Cancer Genet. 2013;206:206–10.

    Article  CAS  PubMed  Google Scholar 

  30. Turunen JA, Markkinen S, Wilska R, Saarinen S, Raivio V, Täll M, et al. BAP1 germline mutations in finnish patients with uveal melanoma. Ophthalmology. 2016;123:1112–7.

    Article  PubMed  Google Scholar 

  31. Betti M, Aspesi A, Ferrante D, Sculco M, Righi L, Mirabelli D, et al. Sensitivity to asbestos is increased in patients with mesothelioma and pathogenic germline variants in BAP1 or other DNA repair genes. Genes Chromosomes Cancer. 2018;57(11):573–83.

    Article  CAS  PubMed  Google Scholar 

  32. Betti M, Aspesi A, Biasi A, Casalone E, Ferrante D, Ogliara P, et al. CDKN2A and BAP1 germline mutations predispose to melanoma and mesothelioma. Cancer Lett. 2016;378:120–30.

    Article  CAS  PubMed  Google Scholar 

  33. Harbour JW, Onken MD, Roberson EDO, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Höiom V, Edsgärd D, Helgadottir H, Eriksson H, All-Ericsson C, Tuominen R, et al. Hereditary uveal melanoma: a report of a germline mutation in BAP1. Genes Chromosomes Cancer. 2013;52:378–84.

    Article  PubMed  CAS  Google Scholar 

  35. Busam KJ, Wanna M, Wiesner T. Multiple epithelioid spitz nevi or tumors with loss of BAP1 expression. JAMA Dermatol. 2013;149:335.

    Article  PubMed  Google Scholar 

  36. Gupta MP, Lane AM, DeAngelis MM, Mayne K, Crabtree M, Gragoudas ES, et al. Clinical characteristics of uveal melanoma in patients with germline BAP1 mutations. JAMA Ophthalmol. 2015;133:881–7.

    Article  PubMed  Google Scholar 

  37. Gerami P, Yélamos O, Lee CY, Obregon R, Yazdan P, Sholl LM, et al. Multiple cutaneous melanomas and clinically atypical moles in a patient with a novel germline BAP1 mutation. JAMA Dermatol. 2015;151:1235–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. de la Fouchardière A, Cabaret O, Savin L, Combemale P, Schvartz H, Penet C, et al. Germline BAP1 mutations predispose also to multiple basal cell carcinomas. Clin Genet. 2015;88:273–7.

    Article  PubMed  CAS  Google Scholar 

  39. Rusch A, Ziltener G, Nackaerts K, Weder W, Stahel RA, Felley-Bosco E. Prevalence of BRCA-1 associated protein 1 germline mutation in sporadic malignant pleural mesothelioma cases. Lung Cancer. 2015;87:77–9.

    Article  PubMed  Google Scholar 

  40. Sneddon S, Leon JS, Dick IM, Cadby G, Olsen N, Brims F, et al. Absence of germline mutations in BAP1 in sporadic cases of malignant mesothelioma. Gene. 2015;563:103–5.

    Article  CAS  PubMed  Google Scholar 

  41. Wadt KAW, Aoude LG, Johansson P, Solinas A, Pritchard A, Crainic O, et al. A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma. Clin Genet. 2015;88:267–72.

    Article  CAS  PubMed  Google Scholar 

  42. Aoude LG, Wadt K, Bojesen A, Crüger D, Borg A, Trent JM, et al. A BAP1 mutation in a Danish family predisposes to uveal melanoma and other cancers. PLoS One. 2013;8:e72144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McDonnell KJ, Gallanis GT, Heller KA, Melas M, Idos GE, Culver JO, et al. A novel BAP1 mutation is associated with melanocytic neoplasms and thyroid cancer. Cancer Genet. 2016;209:75–81.

    Article  CAS  PubMed  Google Scholar 

  44. White AE, Harper JW. Cancer. Emerging anatomy of the BAP1 tumor suppressor system. Science. 2012;337:1463–4.

    Article  CAS  PubMed  Google Scholar 

  45. Daou S, Hammond-Martel I, Mashtalir N, Barbour H, Gagnon J, Iannantuono NVG, et al. The BAP1/ASXL2 histone H2A deubiquitinase complex regulates cell proliferation and is disrupted in cancer. J Biol Chem. 2015;290:28643–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A. 2014;111:285–90.

    Article  CAS  PubMed  Google Scholar 

  47. Ji Z, Mohammed H, Webber A, Ridsdale J, Han N, Carroll JS, et al. The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Res. 2014;42:6232–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bononi A, Yang H, Giorgi C, Patergnani S, Pellegrini L, Su M, et al. Germline BAP1 mutations induce a Warburg effect. Cell Death Differ. 2017;24:1694–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ismail IH, Davidson R, Gagné J-P, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res. 2014;74:4282–94.

    Article  CAS  PubMed  Google Scholar 

  50. Napolitano A, Pellegrini L, Dey A, Larson D, Tanji M, Flores EG, et al. Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma. Oncogene. 2016;35:1996–2002.

    Article  CAS  PubMed  Google Scholar 

  51. Xu J, Kadariya Y, Cheung M, Pei J, Talarchek J, Sementino E, et al. Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Res. 2014;74:4388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Betti M, Aspesi A, Sculco M, Matullo G, Magnani C, Dianzani I. Genetic predisposition for malignant mesothelioma: a concise review. Mutat Res. 2019;781:1–10.

    Article  CAS  Google Scholar 

  53. Betti M, Casalone E, Ferrante D, Aspesi A, Morleo G, Biasi A, et al. Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma. Cancer Lett. 2017;405:38–45.

    Article  CAS  PubMed  Google Scholar 

  54. Aoude LG, Wadt KAW, Pritchard AL, Hayward NK. Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res. 2015;28:148–60.

    Article  CAS  PubMed  Google Scholar 

  55. Guo G, Chmielecki J, Goparaju C, Heguy A, Dolgalev I, Carbone M, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res. 2015;75:264–9.

    Article  CAS  PubMed  Google Scholar 

  56. De Rienzo A, Archer MA, Yeap BY, Dao N, Sciaranghella D, Sideris AC, et al. Gender-specific molecular and clinical features underlie malignant pleural mesothelioma. Cancer Res. 2016;76:319–28.

    Article  PubMed  CAS  Google Scholar 

  57. Vanni I, Coco S, Bonfiglio S, Cittaro D, Genova C, Biello F, et al. Whole exome sequencing of independent lung adenocarcinoma, lung squamous cell carcinoma, and malignant peritoneal mesothelioma. Medicine (Baltimore). 2016;95:e5447.

    Article  Google Scholar 

  58. Sheffield BS, Tinker AV, Shen Y, Hwang H, Li-Chang HH, Pleasance E, et al. Personalized oncogenomics: clinical experience with malignant peritoneal mesothelioma using whole genome sequencing. PLoS One. 2015;10:e0119689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Alakus H, Yost SE, Woo B, French R, Lin GY, Jepsen K, et al. BAP1 mutation is a frequent somatic event in peritoneal malignant mesothelioma. J Transl Med. 2015;13:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Carbone M, Gaudino G, Yang H. Recent insights emerging from malignant mesothelioma genome sequencing. J Thorac Oncol. 2015;10:409–11.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-associated hereditary breast and ovarian cancer. Seattle: University of Washington; 2016.

    Google Scholar 

  62. Kraemer KH, DiGiovanna JJ. Xeroderma pigmentosum. Seattle: University of Washington; 2016.

    Google Scholar 

  63. Peltomäki P. Lynch syndrome genes. Familial Cancer. 2005;4:227–32.

    Article  PubMed  CAS  Google Scholar 

  64. Wang Y, Zhou X, Song Y, Ji X, Zhang A, Zhang G, et al. The mismatch repair gene hPMS1 (human postmeiotic segregation 1) is down regulated in oral squamous cell carcinoma. Gene. 2013;524:28–34.

    Article  CAS  PubMed  Google Scholar 

  65. Mehta PA, Tolar J. Fanconi Anemia. Seattle: University of Washington; 2018.

    Google Scholar 

  66. Ceelen WP, Van Dalen T, Van Bockstal M, Libbrecht L, Sijmons RH. Malignant peritoneal mesothelioma in a patient with Li-Fraumeni syndrome. J Clin Oncol. 2011;29:e503–5.

    Article  PubMed  Google Scholar 

  67. Baser ME, Rai H, Wallace AJ, Evans DGR. Neurofibromatosis 2 (NF2) and malignant mesothelioma in a man with a constitutional NF2 missense mutation. Familial Cancer. 2005;4:321–2.

    Article  CAS  PubMed  Google Scholar 

  68. Lo Iacono M, Monica V, Righi L, Grosso F, Libener R, Vatrano S, et al. Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study. J Thorac Oncol. 2015;10:492–9.

    Article  CAS  PubMed  Google Scholar 

  69. Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48:407–16.

    Article  CAS  PubMed  Google Scholar 

  70. Panou V, Gadiraju M, Wolin A, Weipert CM, Skarda E, Husain AN, et al. Frequency of germline mutations in cancer susceptibility genes in malignant mesothelioma. J Clin Oncol. 2018;36:2863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Robinson DR, Wu Y-M, Lonigro RJ, Vats P, Cobain E, Everett J, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548:297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell. 2017;171:1029–1041.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee WC, Testa JR. Somatic genetic alterations in human malignant mesothelioma (review). Int J Oncol. 1999;14:181–8.

    CAS  PubMed  Google Scholar 

  74. Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43:668–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Borczuk AC, Pei J, Taub RN, Levy B, Nahum O, Chen J, et al. Genome-wide analysis of abdominal and pleural malignant mesothelioma with DNA arrays reveals both common and distinct regions of copy number alteration. Cancer Biol Ther. 2016;17:328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sneddon S, Dick I, Lee YCG, Musk AWB, Patch A-M, Pearson JV, et al. Malignant cells from pleural fluids in malignant mesothelioma patients reveal novel mutations. Lung Cancer. 2018;119:64–70.

    Article  PubMed  Google Scholar 

  77. Hylebos M, Van Camp G, Vandeweyer G, Fransen E, Beyens M, Cornelissen R, et al. Large-scale copy number analysis reveals variations in genes not previously associated with malignant pleural mesothelioma. Oncotarget. 2017;8:113673–86.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ugurluer G, Chang K, Gamez ME, Arnett AL, Jayakrishnan R, Miller RC, et al. Genome-based mutational analysis by next generation sequencing in patients with malignant pleural and peritoneal mesothelioma. Anticancer Res. 2016;36:2331–8.

    CAS  PubMed  Google Scholar 

  79. Kim JE, Kim D, Hong YS, Kim K-P, Yoon YK, Lee DH, et al. Mutational profiling of malignant mesothelioma revealed potential therapeutic targets in EGFR and NRAS. Transl Oncol. 2018;11:268–74.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bueno R, De Rienzo A, Dong L, Gordon GJ, Hercus CF, Richards WG, et al. Second generation sequencing of the mesothelioma tumor genome. PLoS One. 2010;5:e10612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Tallet A, Nault J-C, Renier A, Hysi I, Galateau-Sallé F, Cazes A, et al. Overexpression and promoter mutation of the TERT gene in malignant pleural mesothelioma. Oncogene. 2014;33:3748–52.

    Article  CAS  PubMed  Google Scholar 

  82. Yoshikawa Y, Sato A, Tsujimura T, Emi M, Morinaga T, Fukuoka K, et al. Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci. 2012;103:868–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zauderer MG, Bott M, McMillan R, Sima CS, Rusch V, Krug LM, et al. Clinical characteristics of patients with malignant pleural mesothelioma harboring somatic BAP1 mutations. J Thorac Oncol. 2013;8:1430–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tranchant R, Quetel L, Tallet A, Meiller C, Renier A, de Koning L, et al. Co-occurring mutations of tumor suppressor genes, LATS2 and NF2, in malignant pleural mesothelioma. Clin Cancer Res. 2017;23:3191–202.

    Article  CAS  PubMed  Google Scholar 

  85. Kiyotani K, Park J-H, Inoue H, Husain A, Olugbile S, Zewde M, et al. Integrated analysis of somatic mutations and immune microenvironment in malignant pleural mesothelioma. Oncoimmunology. 2017;6:e1278330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Comertpay S, Pastorino S, Tanji M, Mezzapelle R, Strianese O, Napolitano A, et al. Evaluation of clonal origin of malignant mesothelioma. J Transl Med. 2014;12:301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Zhang S, Zhang Q, Sun Q, Tang J, Chen J, Ji N, et al. Genome evolution analysis of recurrent testicular malignant mesothelioma by whole-genome sequencing. Cell Physiol Biochem. 2018;45:163–74.

    Article  CAS  PubMed  Google Scholar 

  88. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 2013;3:246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149:979–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yap TA, Aerts JG, Popat S, Fennell DA. Novel insights into mesothelioma biology and implications for therapy. Nat Rev Cancer. 2017;17:475–88.

    Article  CAS  PubMed  Google Scholar 

  91. McCambridge AJ, Napolitano A, Mansfield AS, Fennell DA, Sekido Y, Nowak AK, et al. Progress in the management of malignant pleural mesothelioma in 2017. J Thorac Oncol. 2018;13:606–23.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.

    Article  CAS  PubMed  Google Scholar 

  93. Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18:75–87.

    Article  CAS  PubMed  Google Scholar 

  94. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355:1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7:20–37.

    Article  CAS  PubMed  Google Scholar 

  96. Ohmoto A, Yachida S. Current status of poly(ADP-ribose) polymerase inhibitors and future directions. Onco Targets Ther. 2017;10:5195–208.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer. 2011;2:607–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol. 2005;45:629–56.

    Article  CAS  PubMed  Google Scholar 

  101. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–68.

    Article  CAS  PubMed  Google Scholar 

  102. Macfarlane L-A, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11:537–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M. Hidalgo-Miranda A: miRNA biogenesis: biological impact in the development of cancer. Cancer Biol Ther. 2014;15:1444–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hata A, Kashima R. Dysregulation of microRNA biogenesis machinery in cancer. Crit Rev Biochem Mol Biol. 2016;51:121–34.

    Article  CAS  PubMed  Google Scholar 

  105. Melo SA, Esteller M. Disruption of microRNA nuclear transport in human cancer. Semin Cancer Biol. 2014;27:46–51.

    Article  CAS  PubMed  Google Scholar 

  106. Steer CJ, Subramanian S. Circulating microRNAs as biomarkers: a new frontier in diagnostics. Liver Transpl. 2012;18:265–9.

    Article  PubMed  Google Scholar 

  107. Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41:1897–912.

    Article  CAS  PubMed  Google Scholar 

  108. Wu W, Sun M, Zou G-M, Chen J. MicroRNA and cancer: current status and prospective. Int J Cancer. 2007;120:953–60.

    Article  CAS  PubMed  Google Scholar 

  109. Tutar L, Tutar E, Özgür A, Tutar Y. Therapeutic targeting of microRNAs in cancer: future perspectives. Drug Dev Res. 2015;76:382–8.

    Article  CAS  PubMed  Google Scholar 

  110. Casalone E, Allione A, Viberti C, Pardini B, Guarrera S, Betti M, et al. DNA methylation profiling of asbestos-treated MeT5A cell line reveals novel pathways implicated in asbestos response. Arch Toxicol. 2018;92(5):1785–95.

    Article  CAS  PubMed  Google Scholar 

  111. Christensen BC, Godleski JJ, Marsit CJ, Houseman EA, Lopez-Fagundo CY, Longacker JL, et al. Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma. Carcinogenesis. 2008;29:1555–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kobayashi N, Toyooka S, Yanai H, Soh J, Fujimoto N, Yamamoto H, et al. Frequent p16 inactivation by homozygous deletion or methylation is associated with a poor prognosis in Japanese patients with pleural mesothelioma. Lung Cancer. 2008;62:120–5.

    Article  PubMed  Google Scholar 

  113. Goto Y, Shinjo K, Kondo Y, Shen L, Toyota M, Suzuki H, et al. Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. Cancer Res. 2009;69:9073–82.

    Article  CAS  PubMed  Google Scholar 

  114. Christensen BC, Houseman EA, Godleski JJ, Marsit CJ, Longacker JL, Roelofs CR, et al. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res. 2009;69:227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kohno H, Amatya VJ, Takeshima Y, Kushitani K, Hattori N, Kohno N, et al. Aberrant promoter methylation of WIF-1 and SFRP1, 2, 4 genes in mesothelioma. Oncol Rep. 2010;24:423–31.

    CAS  PubMed  Google Scholar 

  116. Tsou JA, Galler JS, Wali A, Ye W, Siegmund KD, Groshen S, et al. DNA methylation profile of 28 potential marker loci in malignant mesothelioma. Lung Cancer. 2007;58:220–30.

    Article  PubMed  Google Scholar 

  117. Cheng YY, Kirschner MB, Cheng NC, Gattani S, Klebe S, Edelman JJB, et al. ZIC1 is silenced and has tumor suppressor function in malignant pleural mesothelioma. J Thorac Oncol. 2013;8:1317–28.

    Article  CAS  PubMed  Google Scholar 

  118. Guled M, Lahti L, Lindholm PM, Salmenkivi K, Bagwan I, Nicholson AG, et al. CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis. Genes Chromosomes Cancer. 2009;48:615–23.

    Article  CAS  PubMed  Google Scholar 

  119. Pass HI, Goparaju C, Ivanov S, Donington J, Carbone M, Hoshen M, et al. hsa-miR-29c∗ is linked to the prognosis of malignant pleural mesothelioma. Cancer Res. 2010;70:1916–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J, et al. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol. 2013;24:3128–35.

    Article  CAS  PubMed  Google Scholar 

  121. Tomasetti M, Nocchi L, Staffolani S, Manzella N, Amati M, Goodwin J, et al. MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function. Antioxid Redox Signal. 2014;21:2109–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kubo T, Toyooka S, Tsukuda K, Sakaguchi M, Fukazawa T, Soh J, et al. Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res. 2011;17:4965–74.

    Article  CAS  PubMed  Google Scholar 

  123. Tanaka N, Toyooka S, Soh J, Tsukuda K, Shien K, Furukawa M, et al. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep. 2013;29:2169–74.

    Article  PubMed  CAS  Google Scholar 

  124. Maki Y, Asano H, Toyooka S, Soh J, Kubo T, Katsui K, et al. MicroRNA miR-34b/c enhances cellular radiosensitivity of malignant pleural mesothelioma cells. Anticancer Res. 2012;32:4871–5.

    CAS  PubMed  Google Scholar 

  125. Tomasetti M, Monaco F, Manzella N, Rohlena J, Rohlenova K, Staffolani S, et al. MicroRNA-126 induces autophagy by altering cell metabolism in malignant mesothelioma. Oncotarget. 2016;7:36338–52.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Vencken S, Hassan T, McElvaney NG, Smith SGJ. Greene CM: miR-CATCH: microRNA capture affinity technology. Methods Mol Biol. 2015;1218:365–73.

    Article  CAS  PubMed  Google Scholar 

  127. Soini Y, Kinnula V, Kaarteenaho-Wiik R, Kurttila E, Linnainmaa K, Pääkkö P. Apoptosis and expression of apoptosis regulating proteins bcl-2, mcl-1, bcl-X, and bax in malignant mesothelioma. Clin Cancer Res. 1999;5:3508–15.

    CAS  PubMed  Google Scholar 

  128. Khodayari N, Mohammed KA, Lee H, Kaye F, Nasreen N. MicroRNA-302b targets Mcl-1 and inhibits cell proliferation and induces apoptosis in malignant pleural mesothelioma cells. Am J Cancer Res. 2016;6:1996–2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Williams M, Kirschner MB, Cheng YY, Hanh J, Weiss J, Mugridge N, et al. miR-193a-3p is a potential tumor suppressor in malignant pleural mesothelioma. Oncotarget. 2015;6:23480–95.

    PubMed  PubMed Central  Google Scholar 

  130. Yang X, Dai W, Kwong DL, Szeto CYY, Wong EH, Ng WT, et al. Epigenetic markers for noninvasive early detection of nasopharyngeal carcinoma by methylation-sensitive high resolution melting. Int J Cancer. 2015;136:E127–35.

    Article  CAS  PubMed  Google Scholar 

  131. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA. 2008;299:2877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5:e1000602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014;2:49.

    PubMed  PubMed Central  Google Scholar 

  134. Bell CG, Beck S. The epigenomic interface between genome and environment in common complex diseases. Brief Funct Genomics. 2010;9:477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Marsit CJ. Influence of environmental exposure on human epigenetic regulation. J Exp Biol. 2015;218:71–9.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Shivapurkar N, Gazdar AF. DNA methylation based biomarkers in non-invasive cancer screening. Curr Mol Med. 2010;10:123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dong Y, Zhao H, Li H, Li X, Yang S. DNA methylation as an early diagnostic marker of cancer (review). Biomed Rep. 2014;2:326–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vandermeers F, Neelature Sriramareddy S, Costa C, Hubaux R, Cosse J-P, Willems L. The role of epigenetics in malignant pleural mesothelioma. Lung Cancer. 2013;81:311–8.

    Article  PubMed  Google Scholar 

  139. Fischer JR, Ohnmacht U, Rieger N, Zemaitis M, Stoffregen C, Kostrzewa M, et al. Promoter methylation of RASSF1A, RARbeta and DAPK predict poor prognosis of patients with malignant mesothelioma. Lung Cancer. 2006;54:109–16.

    Article  PubMed  Google Scholar 

  140. Guarrera S, Viberti C, Cugliari G, Allione A, Casalone E, Betti M, et al. Peripheral blood DNA methylation as potential biomarker of malignant pleural mesothelioma in asbestos-exposed subjects. J Thorac Oncol. 2019;14:527–39.

    Article  PubMed  Google Scholar 

  141. Bolha L, Ravnik-Glavač M, Glavač D. Circular RNAs: biogenesis, function, and a role as possible cancer biomarkers. Int J Genomics. 2017;2017:6218353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.

    Article  PubMed  CAS  Google Scholar 

  143. Ramírez-Salazar EG, Salinas-Silva LC, Vázquez-Manríquez ME, Gayosso-Gómez LV, Negrete-Garcia MC, Ramírez-Rodriguez SL, et al. Analysis of microRNA expression signatures in malignant pleural mesothelioma, pleural inflammation, and atypical mesothelial hyperplasia reveals common predictive tumorigenesis-related targets. Exp Mol Pathol. 2014;97:375–85.

    Article  PubMed  CAS  Google Scholar 

  144. Birnie KA, Prêle CM, Thompson PJ, Badrian B, Mutsaers SE. Targeting microRNA to improve diagnostic and therapeutic approaches for malignant mesothelioma. Oncotarget. 2017;8:78193–207.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Kirschner MB, Cheng YY, Badrian B, Kao SC, Creaney J, Edelman JJB, et al. Increased circulating miR-625-3p: a potential biomarker for patients with malignant pleural mesothelioma. J Thorac Oncol. 2012;7:1184–91.

    Article  CAS  PubMed  Google Scholar 

  146. Santarelli L, Strafella E, Staffolani S, Amati M, Emanuelli M, Sartini D, et al. Association of MiR-126 with soluble mesothelin-related peptides, a marker for malignant mesothelioma. PLoS One. 2011;6:e18232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Weber DG, Casjens S, Johnen G, Bryk O, Raiko I, Pesch B, et al. Combination of MiR-103a-3p and mesothelin improves the biomarker performance of malignant mesothelioma diagnosis. PLoS One. 2014;9:e114483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Cavalleri T, Angelici L, Favero C, Dioni L, Mensi C, Bareggi C, et al. Plasmatic extracellular vesicle microRNAs in malignant pleural mesothelioma and asbestos-exposed subjects suggest a 2-miRNA signature as potential biomarker of disease. PLoS One. 2017;12:e0176680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Gee GV, Koestler DC, Christensen BC, Sugarbaker DJ, Ugolini D, Ivaldi GP, et al. Downregulated microRNAs in the differential diagnosis of malignant pleural mesothelioma. Int J Cancer. 2010;127:2859–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Benjamin H, Lebanony D, Rosenwald S, Cohen L, Gibori H, Barabash N, et al. A diagnostic assay based on microRNA expression accurately identifies malignant pleural mesothelioma. J Mol Diagn. 2010;12:771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Andersen M, Grauslund M, Ravn J, Sørensen JB, Andersen CB, Santoni-Rugiu E. Diagnostic potential of miR-126, miR-143, miR-145, and miR-652 in malignant pleural mesothelioma. J Mol Diagn. 2014;16:418–30.

    Article  CAS  PubMed  Google Scholar 

  152. Andersen M, Trapani D, Ravn J, Sørensen JB, Andersen CB, Grauslund M, et al. Methylation-associated silencing of microRNA-126 and its host gene EGFL7 in malignant pleural mesothelioma. Anticancer Res. 2015;35:6223–9.

    CAS  PubMed  Google Scholar 

  153. De Santi C, Melaiu O, Bonotti A, Cascione L, Di Leva G, Foddis R, et al. Deregulation of miRNAs in malignant pleural mesothelioma is associated with prognosis and suggests an alteration of cell metabolism. Sci Rep. 2017;7:3140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Dianzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aspesi, A. et al. (2019). Genetics and Epigenetics of Mesothelioma. In: Ceresoli, G., Bombardieri, E., D'Incalci, M. (eds) Mesothelioma. Springer, Cham. https://doi.org/10.1007/978-3-030-16884-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16884-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16883-4

  • Online ISBN: 978-3-030-16884-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics