Skip to main content

Measuring Malignant Pleural Mesothelioma

  • Chapter
  • First Online:
Mesothelioma

Abstract

Measurement of malignant pleural mesothelioma poses significant challenges, but tumor measurement is important for clinical trials and patient prognostication. While anatomical T staging of mesothelioma currently incorporates only the extent of tumor invasion into adjacent structures, tumor burden is emerging as potentially important in this context and is the subject of current research. Assessment of the rate of change, or growth, of mesothelioma is not commonly used in clinical research, but this parameter is often informally considered in clinical practice; future research may reveal rate of tumor growth as a potentially informative prognostic indicator. Finally, the most common role for the measurement of mesothelioma is the assessment of treatment response, either in routine clinical practice or in clinical trials. Modified RECIST (mRECIST) for mesothelioma developed a process for measuring mesothelioma that is more appropriate for the unique growth pattern of this tumor, involving measurement of tumor thickness perpendicular to the chest wall or mediastinum. This process has recently been updated as mRECIST 1.1 to incorporate results of new research and to align with RECIST 1.1; mRECIST 1.1 should be used for the next generation of clinical trials in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ball D, et al. Effect of tumor size on prognosis in patients treated with radical radiotherapy or chemoradiotherapy for non-small cell lung cancer. An analysis of the staging project database of the International Association for the Study of Lung Cancer. J Thorac Oncol. 2013;8(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  2. Edge SB, Byrd DR, editors. AJCC cancer staging handbook. 7th ed. New York: Springer; 2010.

    Google Scholar 

  3. Rusch VW. A proposed new international TNM staging system for malignant pleural mesothelioma from the International Mesothelioma Interest Group. Lung Cancer. 1996;14(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  4. Rusch VW, Giroux D. Do we need a revised staging system for malignant pleural mesothelioma? Analysis of the IASLC database. Ann Cardiothorac Surg. 2012;1(4):438–48.

    PubMed  PubMed Central  Google Scholar 

  5. Pass HI, et al. Preoperative tumor volume is associated with outcome in malignant pleural mesothelioma. J Thorac Cardiovasc Surg. 1998;115(2):310–7; discussion 317-8.

    Article  CAS  PubMed  Google Scholar 

  6. Olt G, Berchuck A, Bast RC Jr. The role of tumor markers in gynecologic oncology. Obstet Gynecol Surv. 1990;45(9):570–7.

    Article  CAS  PubMed  Google Scholar 

  7. Gill RR, et al. Epithelial malignant pleural mesothelioma after extrapleural pneumonectomy: stratification of survival with CT-derived tumor volume. AJR Am J Roentgenol. 2012;198(2):359–63.

    Article  PubMed  Google Scholar 

  8. Nowak AK, et al. A novel prognostic model for malignant mesothelioma incorporating quantitative FDG-PET imaging with clinical parameters. Clin Cancer Res. 2010;16(8):2409–17.

    Article  CAS  PubMed  Google Scholar 

  9. Klabatsa A, et al. The association of 18F-FDG PET/CT parameters with survival in malignant pleural mesothelioma. Eur J Nucl Med Mol Imaging. 2014;41(2):276–82.

    Article  CAS  PubMed  Google Scholar 

  10. Nowak AK, et al. The IASLC mesothelioma staging project: proposals for revisions of the T descriptors in the forthcoming eighth edition of the TNM classification for pleural mesothelioma. J Thorac Oncol. 2016;11(12):2089–99.

    Article  PubMed  Google Scholar 

  11. de Perrot M, et al. Impact of tumour thickness on survival after radical radiation and surgery in malignant pleural mesothelioma. Eur Respir J. 2017;49(3):1601428.

    Article  PubMed  Google Scholar 

  12. Miller A, et al. Reporting results of cancer treatment. Cancer. 1981;47:207–14.

    Article  CAS  PubMed  Google Scholar 

  13. Therasse P, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205–16.

    Article  CAS  PubMed  Google Scholar 

  14. James K, et al. Measuring response in solid tumors: unidimensional versus bidimensional measurement. J Natl Cancer Inst. 1999;91(6):523–8.

    Article  CAS  PubMed  Google Scholar 

  15. Mazumdar M, Smith A, Schwartz LH. A statistical simulation study finds discordance between WHO criteria and RECIST guideline. J Clin Epidemiol. 2004;57(4):358–65.

    Article  PubMed  Google Scholar 

  16. van Klaveren RJ, et al. Inadequacy of the RECIST criteria for response evaluation in patients with malignant pleural mesothelioma. Lung Cancer. 2004;43(1):63–9.

    Article  PubMed  Google Scholar 

  17. Hillerdal G. Staging and evaluating responses in malignant pleural mesothelioma. Lung Cancer. 2004;43(1):75–6.

    Article  PubMed  Google Scholar 

  18. Monetti F, et al. Inadequacy of the new Response Evaluation Criteria in Solid Tumors (RECIST) in patients with malignant pleural mesothelioma: report of four cases. Lung Cancer. 2004;43(1):71–4.

    Article  CAS  PubMed  Google Scholar 

  19. Nowak AK, et al. A multicentre phase II study of cisplatin and gemcitabine for malignant mesothelioma. Br J Cancer. 2002;87(5):491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Byrne MJ, et al. Cisplatin and gemcitabine treatment for malignant mesothelioma: a phase II study. J Clin Oncol. 1999;17(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  21. Vogelzang NJ, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21(14):2636–44.

    Article  CAS  PubMed  Google Scholar 

  22. Byrne MJ, Nowak AK. Modified RECIST criteria for assessment of response in malignant pleural mesothelioma. Ann Oncol. 2004;15(2):257–60.

    Article  CAS  PubMed  Google Scholar 

  23. Maio M, et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017;18(9):1261–73.

    Article  CAS  PubMed  Google Scholar 

  24. Zalcman G, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet. 2016;387:1405–14.

    Article  CAS  PubMed  Google Scholar 

  25. Kindler HL, et al. Multicenter, double-blind, placebo-controlled, randomized phase II trial of gemcitabine/cisplatin plus bevacizumab or placebo in patients with malignant mesothelioma. J Clin Oncol. 2012;30(20):2509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krug LM, et al. VANTAGE 014: vorinostat (V) in patients with advanced malignant pleural mesothelioma (MPM) who have failed prior pemetrexed and either cisplatin or carboplatin therapy: a phase III, randomized, doubleblind, placebo-controlled trial. Eur J Cancer. 2011;47:2–3.

    Article  Google Scholar 

  27. Nowak AK, et al. A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma. Ann Oncol. 2015;26(12):2483–90.

    CAS  PubMed  Google Scholar 

  28. Nowak AK, et al. A phase II clinical trial of the vascular disrupting agent BNC105P as second line chemotherapy for advanced malignant pleural mesothelioma. Lung Cancer. 2013;81(3):422–7.

    Article  PubMed  Google Scholar 

  29. Nowak AK, et al. A phase II study of intermittent sunitinib malate as second-line therapy in progressive malignant pleural mesothelioma. J Thorac Oncol. 2012;7(9):1449–56.

    Article  CAS  PubMed  Google Scholar 

  30. Labby ZE, et al. Optimization of response classification criteria for patients with malignant pleural mesothelioma. J Thorac Oncol. 2012;7(11):1728–34.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  32. Bogaerts J, et al. Individual patient data analysis to assess modifications to the RECIST criteria. Eur J Cancer. 2009;45(2):248–60.

    Article  PubMed  Google Scholar 

  33. Schwartz LH, et al. Evaluation of lymph nodes with RECIST 1.1. Eur J Cancer. 2009;45(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  34. Ford R, et al. Lessons learned from independent central review. Eur J Cancer. 2009;45(2):268–74.

    Article  CAS  PubMed  Google Scholar 

  35. Dancey JE, et al. Recommendations for the assessment of progression in randomised cancer treatment trials. Eur J Cancer. 2009;45(2):281–9.

    Article  CAS  PubMed  Google Scholar 

  36. Moskowitz CS, et al. A simulation study to evaluate the impact of the number of lesions measured on response assessment. Eur J Cancer. 2009;45(2):300–10.

    Article  PubMed  Google Scholar 

  37. Verweij J, et al. Cancer clinical trial outcomes: any progress in tumour-size assessment? Eur J Cancer. 2009;45(2):225–7.

    Article  PubMed  Google Scholar 

  38. Sargent DJ, et al. Validation of novel imaging methodologies for use as cancer clinical trial end-points. Eur J Cancer. 2009;45(2):290–9.

    Article  CAS  PubMed  Google Scholar 

  39. Armato SG 3rd, Nowak AK. Revised modified response evaluation criteria in solid tumors for assessment of response in malignant pleural mesothelioma (version 1.1). J Thorac Oncol. 2018;13(7):1012–21.

    Article  PubMed  Google Scholar 

  40. Armato SG 3rd, et al. Measurement of mesothelioma on thoracic CT scans: a comparison of manual and computer-assisted techniques. Med Phys. 2004;31(5):1105–15.

    Article  PubMed  Google Scholar 

  41. Armato SG 3rd, et al. Evaluation of semiautomated measurements of mesothelioma tumor thickness on CT scans. Acad Radiol. 2005;12(10):1301–9.

    Article  PubMed  Google Scholar 

  42. Oxnard GR, et al. Variability of lung tumor measurements on repeat computed tomography scans taken within 15 minutes. J Clin Oncol. 2011;29(23):3114–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Armato SG 3rd, et al. Observer variability in mesothelioma tumor thickness measurements: defining minimally measurable lesions. J Thorac Oncol. 2014;9(8):1187–94.

    Article  CAS  PubMed  Google Scholar 

  44. Oxnard GR, Armato SG 3rd, Kindler HL. Modeling of mesothelioma growth demonstrates weaknesses of current response criteria. Lung Cancer. 2006;52(2):141–8.

    Article  PubMed  Google Scholar 

  45. Seymour L, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–52.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Veit-Haibach P, et al. Combined FDG-PET/CT in response evaluation of malignant pleural mesothelioma. Lung Cancer. 2010;67:311. Epub ahead of print May 30.

    Article  PubMed  Google Scholar 

  47. Schaefer NG, et al. Response evaluation by CT and FDG-PET/CT in malignant pleural mesothelioma. J Clin Oncol. 2008;26(18S):11098.

    Article  Google Scholar 

  48. Ceresoli GL, et al. Early response evaluation in malignant pleural mesothelioma (MPM) by total glycolytic volume (TGV) analysis of serial FDG-PET scans. 2008.

    Google Scholar 

  49. Francis RJ, et al. Early prediction of response to chemotherapy and survival in malignant pleural mesothelioma using a novel semiautomated 3-dimensional volume-based analysis of serial 18F-FDG PET scans. J Nucl Med. 2007;48(9):1449–58.

    Article  PubMed  Google Scholar 

  50. Kwek BH, Aquino SL, Fischman AJ. Fluorodeoxyglucose positron emission tomography and CT after talc pleurodesis. Chest. 2004;125(6):2356–60.

    Article  PubMed  Google Scholar 

  51. Genestreti G, et al. FDG PET/CT response evaluation in malignant pleural mesothelioma patients treated with talc pleurodesis and chemotherapy. J Cancer. 2012;3:241–5.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Segard T, et al. FLT PET for response assessment in malignant pleural mesothelioma (MPM) using a semi-automated volume-based region growing algorithm. Eur J Nucl Med Mol Imaging. 2012;39:S457.

    Google Scholar 

  53. Frauenfelder T, et al. Volumetry: an alternative to assess therapy response for malignant pleural mesothelioma? Eur Respir J. 2011;38(1):162–8.

    Article  CAS  PubMed  Google Scholar 

  54. Gill RR, et al. North American multicenter volumetric CT study for clinical staging of malignant pleural mesothelioma: feasibility and logistics of setting up a quantitative imaging study. J Thorac Oncol. 2016;11(8):1335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gill RR, Richards WG, Yeap BY, Matsuoka S, Wolf AS, Gerbaudo VH, Bueno R, Sugarbaker DJ, Hatabu H. Epithelial malignant pleural mesothelioma after extrapleural pneumonectomy: stratification of survival with CT-derived tumor volume. Am J Roentgenol. 2012;198(2):359–63.

    Article  Google Scholar 

  56. Pass HI, Kranda K, Temeck BK, Feuerstein I, Steinberg SM. Surgically debulked malignant pleural mesothelioma: results and prognostic factors. Ann Surg Oncol. 1997;4(3):215–22.

    Article  CAS  PubMed  Google Scholar 

  57. Armato SG 3rd, et al. Imaging in pleural mesothelioma: a review of the 12th International Conference of the International Mesothelioma Interest Group. Lung Cancer. 2015;90(2):148–54.

    Article  PubMed  Google Scholar 

  58. Sullivan DC, et al. Metrology standards for quantitative imaging biomarkers. Radiology. 2015;277(3):813–25.

    Article  PubMed  Google Scholar 

  59. Corson N, et al. Characterization of mesothelioma and tissues present in contrast-enhanced thoracic CT scans. Med Phys. 2011;38(2):942–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Armato SG 3rd, et al. Radiologic-pathologic correlation of mesothelioma tumor volume. Lung Cancer. 2015;87(3):278–82.

    Article  PubMed  Google Scholar 

  61. Plathow C, et al. Therapy response in malignant pleural mesothelioma-role of MRI using RECIST, modified RECIST and volumetric approaches in comparison with CT. Eur Radiol. 2008;18(8):1635–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna K. Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nowak, A.K., Armato, S.G. (2019). Measuring Malignant Pleural Mesothelioma. In: Ceresoli, G., Bombardieri, E., D'Incalci, M. (eds) Mesothelioma. Springer, Cham. https://doi.org/10.1007/978-3-030-16884-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16884-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16883-4

  • Online ISBN: 978-3-030-16884-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics