Abstract
Nowadays large scale Knowledge Bases (KBs) represent very important resources when it comes to develop expert systems. However, despite their huge sizes, KBs often suffer from incompleteness. Recently, much effort has been devoted in developing learning models to reduce the aforementioned issue.
In this work, we show how relational learning tasks, such as link prediction, can be cast into a preference learning tasks. In particular, we propose a preference learning method, called REC-PLM, for learning low-dimensional representations of entities and relations in a KB. Being highly parallelizable, REC-PLM is a powerful resource to deal with high-dimensional modern KBs. Experiments against state-of-the-art methods on a large scale KB show the potential of the proposed approach.
Keywords
- Preference learning
- Embeddings
- Knowledge base
- Relational data
- Relational learning
This is a preview of subscription content, access via your institution.
Buying options




References
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 1247–1250 (2008)
Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2), 167–195 (2015)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS 2013, pp. 3111–3119 (2013)
Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS 2013, pp. 2787–2795 (2013)
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2014, pp. 1112–1119 (2014)
Fan, M., Zhou, Q., Chang, E., Zheng, T.F.: Transition-based knowledge graph embedding with relational mapping properties. In: PACLIC (2014)
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 2181–2187 (2015)
Nguyen, D.Q., Sirts, K., Qu, L., Johnson, M.: STransE: a novel embedding model of entities and relationships in knowledge bases. In: HLT-NAACL (2016)
Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML 2011, pp. 809–816 (2011)
Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)
Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1, NIPS 2013, pp. 926–934 (2013)
Lauriola, I., Polato, M., Lavelli, A., Rinaldi, F., Aiolli, F.: Learning preferences for large scale multi-label problems. In: International Conference on Artificial Neural Networks, pp. 546–555. Springer (2018)
Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, pp. 301–306 (2011)
Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the International Conference on Learning Representations (2015)
Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 1955–1961 (2016)
Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. Mach. Learn. 37(3), 277–296 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lauriola, I., Polato, M., Faggioli, G., Aiolli, F. (2020). A Preference-Learning Framework for Modeling Relational Data. In: Oneto, L., Navarin, N., Sperduti, A., Anguita, D. (eds) Recent Advances in Big Data and Deep Learning. INNSBDDL 2019. Proceedings of the International Neural Networks Society, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-16841-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-16841-4_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16840-7
Online ISBN: 978-3-030-16841-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)