Skip to main content

Deep Regression Counting: Customized Datasets and Inter-Architecture Transfer Learning

  • Conference paper
  • First Online:
  • 1009 Accesses

Part of the book series: Proceedings of the International Neural Networks Society ((INNS,volume 1))

Abstract

The problem of regression counting is revisited and analyzed by generating custom data and simplified Residual Network architectures. The results provide three key insights: A deeper understanding of the inherent challenges to this problem with regards to the data characteristics; the influence of architecture depth on the regression counting performance; and ideas for a transfer learning strategy between dissimilar architectures that allow training deeper networks with knowledge gained from shallower ones. In a striking example, a network with 30 convolution layers is successfully initialized with the weights from a trained architecture containing only 7 convolutions, whereas convergence was previously unattainable with random initialization. The two datasets consist of 20,000 images containing 3 and 5 classes of shapes to be counted, respectively. The network architectures are simplified Residual Networks with varying depths. The images are made to be inexpensive computationally to train, allowing for easy future comparisons with the baseline set by this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aich, S., Stavness, I.: Object counting with small datasets of large images

    Google Scholar 

  2. Chollet, F., et al.: Keras (2015). https://keras.io

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  4. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  5. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans. Med. Imaging 26(7), 1010–1016 (2007)

    Article  Google Scholar 

  6. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Advances in Neural Information Processing Systems (2010)

    Google Scholar 

  7. Rahnemoonfar, M., Sheppard, C.: Deep count: fruit counting based on deep simulated learning. Sensors 17(4), 905 (2017)

    Article  Google Scholar 

  8. Rodriguez, A.C., Wegner, J.D.: Counting the uncountable: deep semantic density estimation from space. arXiv preprint arXiv:1809.07091 (2018)

  9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  10. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  11. Veit, A., Wilber, M.J., Belongie, S.: Residual networks behave like ensembles of relatively shallow networks. In: Advances in Neural Information Processing Systems, pp. 550–558 (2016)

    Google Scholar 

  12. Venkatalakshmi, B., Thilagavathi, K.: Automatic red blood cell counting using hough transform. In: 2013 IEEE Conference on Information & Communication Technologies (ICT), pp. 267–271. IEEE (2013)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Council of Scientific Research and Development (CNPq) for partial funding of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iam Palatnik de Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palatnik de Sousa, I., Vellasco, M.M.B.R., da Silva, E.C. (2020). Deep Regression Counting: Customized Datasets and Inter-Architecture Transfer Learning. In: Oneto, L., Navarin, N., Sperduti, A., Anguita, D. (eds) Recent Advances in Big Data and Deep Learning. INNSBDDL 2019. Proceedings of the International Neural Networks Society, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-16841-4_11

Download citation

Publish with us

Policies and ethics