Skip to main content

On the Statistical Attractors and Attracting Cantor Sets for Piecewise Smooth Maps

  • Conference paper
  • First Online:
New Trends in One-Dimensional Dynamics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 285))

  • 459 Accesses

Abstract

We discuss some aspects of the asymptotic behavior of the forward orbits of most points for piecewise smooth maps of the interval, specially for contracting Lorenz maps. We are particularly interested in the statistical aspects of most orbits, the existence of statistical attractors and how most orbits in the basin of attraction of an attracting Cantor sets approach the attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.S. Afraimovich, V.V. Bykov, L.P. Shil’nikov, On the appearance and structure of the Lorenz attractor. Dokl. Acad. Sci. USSR 234, 336–339 (1977)

    Google Scholar 

  2. J.F. Alves, M. Soufi, Statistical stability and limit laws for Rovella maps. Nonlinearity 25(12), 3527–3552 (2012)

    Article  MathSciNet  Google Scholar 

  3. A. Arneodo, P. Coullet, C. Tresser, A possible new mechanism for the onset of turbulence. Phys. Lett. A 81(4), 197–201 (1981)

    Article  MathSciNet  Google Scholar 

  4. V.I. Arnold, V.S. Afrajmovich, Y. Ilyashenko, L.P. Shilnikov, Bifurcation Theory and Catastrophe Theory (Springer-Verlag, Berlin, Heidelberg, 1999)

    Google Scholar 

  5. V. Araujo, A. Castro, M.J. Pacifico, V. Pinheiro, Multidimensional Rovella-like attractors. J. Differ. Equations 3163–3201 (2011)

    Article  MathSciNet  Google Scholar 

  6. L. Alsedà, J. Llibre, M. Misiurewicz, C. Tresser, Periods and entropy for Lorenz-like maps. Ann. Inst. Fourier 39, 929–952 (1989)

    Article  MathSciNet  Google Scholar 

  7. A. Blokh, M. Lyubich, Measurable dynamics of \(S\)-unimodal maps of the interval. Ann. Sci. École Norm. Sup. 24, 545–573 (1991)

    Article  MathSciNet  Google Scholar 

  8. P. Brandão, On the structure of contracting Lorenz maps, to appear on Annales de l’Institut Henri Poincaré. Analyse Non Linéaire (2018). https://doi.org/10.1016/j.anihpc.2017.12.001

    Article  MathSciNet  Google Scholar 

  9. P. Brandão, J. Palis, V. Pinheiro, On the finiteness of attractors for one-dimensional maps with discontinuities (2013). arXiv:1401.0232

  10. P. Brandão, J. Palis, V. Pinheiro, On the finiteness of attractors for piecewise C\(^2\) maps of the interval. Erg. Theo. Dyn. Sys. 261, 1–21 (2017)

    MATH  Google Scholar 

  11. H. Bruin, G. Keller, T. Nowicki, S.J. van Strien, Wild Cantor attractors exist. Ann. Math. 143, 97–130 (1996)

    Article  MathSciNet  Google Scholar 

  12. E. Catsigeras, On Ilyashenko’s statistical attractors. CDSS. 29, 78–97 (2013)

    Article  MathSciNet  Google Scholar 

  13. T. Cherry, Analytic quasi-periodic curves of discontinuous type on the torus. Proc. London Math. Soc. 44, 175–215 (1938)

    Article  MathSciNet  Google Scholar 

  14. P. Collet, P. Coullet, C. Tresser, Scenarios under constraint. J. Phyique Lett. 46, 143–147 (1985)

    Article  Google Scholar 

  15. A. Denjoy, Sur les courbes definies par les équations différentielles à la surface du tore. J. de Mathématiques Pures et Appliquées 11, 333–375 (1930)

    Google Scholar 

  16. J.M. Gambaudo, C. Tresser, Dynamique réguliére ou chaotique. Applications du cercle ou de l’intervalle ayant une discontinuité. Comptes Rendus Acad. Sci. Paris, Ser I. 300, 311–313 (1985)

    Google Scholar 

  17. J. Guckenheimer, R.F. Williams, Structural stability of Lorenz attractors. Publ. Math. IHES 50, 59–72 (1979)

    Article  MathSciNet  Google Scholar 

  18. F. Hofbauer, G. Keller, Quadratic maps without asymptotic measure. Commun. Math. Phys. 127, 319–337 (1990)

    Article  MathSciNet  Google Scholar 

  19. G. Keller, M.S. Pierre, Topological and measurable dynamics of Lorenz maps, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, ed. by B. Fiedler (Springer, Berlin, Heidelberg, 2001)

    Chapter  Google Scholar 

  20. R. Labarca, C.G. Moreira, Essential dynamics for Lorenz maps on the real line and the lexicographical world. Annales de l’Institut Henri Poincaré. Analyse Non Linéaire 23, 683694 (2006)

    Google Scholar 

  21. M. Lyubich, Non-existence of wandering intervals and structure of topological attractors of one dimensional dynamical systems: Schwarzian derivative. Ergod. Theory Dyn. Syst. 9, 737–749 (1989)

    Article  Google Scholar 

  22. R. Mañé, R. Mane, Hyperbolicity, sinks and measure in one dimensional dynamics. Commun. Math. Phys. 100(4), 495–524, Commun. Math. Phys. (1987) 112, 721–724 (Erratum) (1985)

    Article  MathSciNet  Google Scholar 

  23. M. Martens, P. Mendes, W. de Melo, S. van Strien, On Cherry flows. Ergod. Theory Dyn. Syst. 10, 531–554 (1990)

    Article  MathSciNet  Google Scholar 

  24. M. Martens, W. de Melo, Universal models for Lorenz maps (pre-print version, 1996), de Melo’s homepage at IMPA. http://w3.impa.br/%7Edemelo/lorenz.ps

  25. M. Martens, W. de Melo, Universal models for Lorenz maps. Ergod. Theory Dyn. Syst. 21, 833–860 (2001)

    Article  MathSciNet  Google Scholar 

  26. R. Metzger, Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows (Annales de l’Institut Henri Poincaré, Analyse Non Linéaire, 2000)

    Google Scholar 

  27. W. de Melo, S. van Strien, A structure theorem in one dimensional dynamics. Ann. Math. 129, 519–546 (1989)

    Article  MathSciNet  Google Scholar 

  28. W.C. de Melo, S.V. Strien, One Dimensional Dynamics (Springer 1993)

    Google Scholar 

  29. B. Mestel, D. Berry, Wandering intervals for Lorenz maps with bounded nonlinearity. Bull. Lond. Math. 23, 183–189 (1991)

    Article  MathSciNet  Google Scholar 

  30. J. Milnor, On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)

    Article  MathSciNet  Google Scholar 

  31. M.J. Pacifico, M.J. Todd, Thermodynamic formalism for contracting Lorenz flows. Stat. Phys. 139(1), 159–176 (2010)

    Article  MathSciNet  Google Scholar 

  32. M. St. Pierre, Topological and measurable dynamics of Lorenz maps. Dissertationes Mathematicae,17 (1999)

    Google Scholar 

  33. I. Procaccia, S. Thomas, C. Tresser, Frist-return maps as a unifield renormalization scheme for dynamical systems. Phys. Rev. A. 35, 1–17 (1986)

    Google Scholar 

  34. A. Rovella, The dynamics of perturbations of contracting Lorenz maps. Bul. Soc. Brazil Mat. (N.S.) 24(2), 233–259 (1993)

    Google Scholar 

  35. C. Tresser, Nouveaux types de transitions vers une entropie topologique positive. Comptes Rendus Acad. Sci. Paris, Ser I. 296, 729–732 (1983)

    Google Scholar 

  36. C. Tresser, R.F. Williams, Splitting words and Lorenz braids. Phys. D 62, 15–21 (1993)

    Article  MathSciNet  Google Scholar 

  37. W. Tucker, The Lorenz attractor exists. C. R. Acad. Sci. Paris, Série I 328, 1197–1202 (1999)

    Article  MathSciNet  Google Scholar 

  38. S. van Strien, E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps. J. Am. Math. Soc. 17, 749–782 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Pinheiro .

Editor information

Editors and Affiliations

Appendix

Appendix

A homterval is an open interval \(I=(a,b)\) such that \(f^n|_I\) is a homeomorphism for \(n\ge 1\). This is equivalent to assume that \(I\cap \mathcal {O}_f^-(\mathcal {C}_f)=\emptyset \). A homterval I is called a wandering interval if \(I\cap {\mathbb B}_0(f)=\emptyset \) and \(f^j(I)\cap f^k(I)=\emptyset \) for all \(1\le j<k\), where \({\mathbb B}_0(f)\) the union of the basins of attraction of all periodic-like attractors.

Lemma 3.9

(Homterval Lemma, see [28]) Let \(I=(a,b)\) be a homterval of f. If I is not a wandering interval, then \(I\subset {\mathbb B}_0(f)\cup \mathcal {O}_f^{-}({\text {Per}}(f))\). Furthermore, if f is \(C^3\) with \(Sf<0\), and I is not a wandering interval, then the set \(I\setminus {\mathbb B}_0\) has at most one point.

Lemma 3.10

(Koebe’s Lemma [28]) For every \(\varepsilon >0\), \(\exists K>0\) such that the following holds: Let M, T be intervals in \({\mathbb R}\) with \(M\subset T\) and denote respectively by L and R the left and right components of \(T\setminus M\). If \(f:T\rightarrow f(T)\subset {\mathbb R}\) is a \(C^3\) diffeomorphism with negative Schwarzian derivative and

$$|f(L)|\ge \varepsilon |f(M)| \text { and } |f(R)|\ge \varepsilon |f(M)|,$$

then \(\frac{|Df(x)|}{|Df(y)|}\le K\) for \(x,y\in M\).

Proposition 3.11

[See Proposition 3 in [10] and Proposition 2 of [38]] Let \(\mathcal {C}_f\subset (0,1)\) be a finite set. If \(f:[0,1]\setminus \mathcal {C}_f\rightarrow [0,1]\) is a \(C^2\) non-flat local diffeomorphism, then there exists a function \(O(\varepsilon )\) with \(O(\varepsilon )\rightarrow 0\) as \(\varepsilon \searrow 0\) with the following property: Let \(J\subset T\) be an interval, R, L the connected components of \(T\setminus J\) and \(\delta :=\min \{|R|/|J|,|L|/|J|\}\). Let n be an integer and \(T_0 \supset J_0\) intervals such that \(f^n|_{T_0}\) is a diffeomorphism, \(f^n(T_0)=T\) and \(f^n(J_0)=J\). If \(\varepsilon :=\max \{|f^j(T_0)|\,;\,0\le j\le n\}\), then

  1. (1)

    \( \big |\frac{Df^n(x)}{Df^n(y)}\big |\le \big (\frac{1+\delta }{\delta }\big )^2 e^{O(\varepsilon )\sum _{i=0}^{n-1}|f^i(J_0)|}\), for all \(x,y\in J_0\);

  2. (2)

    \(\exists \delta '>0\) depending only on \(\varepsilon \) and \(\sum _{i=0}^{n-1}|f^i(J_0)|\) such that, for all \(x,y\in J_0\) and \(1\le j\le n\), we have \( \big |\frac{Df^j(x)}{Df^j(y)}\big |\le \big (\frac{1+\delta '}{\delta '}\big )^2 e^{O(\varepsilon )\sum _{i=0}^{n-1}|f^i(J_0)|}\);

  3. (3)

    \(\frac{|Df^n(x)|}{|Df^n(y)|}\le \exp \big (\frac{2}{\delta |J|}|f^n(x)-f^n(y)|+O(\varepsilon )\sum _{i=0}^{n-1}|f^i(x)-f^j(y)|\big )\) for every \(x,y\in J_0\).

Proposition 3.12

(Proposition 3.4 for maps with negative Schwarzian derivative) Let U be an open subset of an interval (a, b) and \(F:U\rightarrow (a,b)\) be a \(C^3\) local diffeomorphism with negative Schwarzian derivative and such that \(F(P)=(a,b)\) for every connected component of U. If \({\mathbb B}(F)\) denotes the union of all wandering intervals of F with the basin of attraction of all periodic-like attractors of F, then

$${\text {Leb}}\bigg (\bigcap _{n\ge 0}F^{-n}((a,b))\setminus {\mathbb B}(F)\bigg )\text { is either }0\text { or }b-a.$$

Furthermore, if \({\text {Leb}}\big (\bigcap _{n\ge 0}F^{-n}((a,b))\setminus {\mathbb B}(F)\big )=b-a\) then \({\text {Leb}}|_{(a,b)}\) is F strongly ergodic and \(\omega _F(x)=[a,b]\) for almost every \(x\in (a,b)\).   \(\square \)

Proof

Similar to the proof of Proposition 3.4. Essentially, one only need to replace Proposition 3.11 by Koebe’s Lemma (Lemma 3.10).

Proof of Proposition 2.5 As the attractor A is a cycle of intervals, we get from Theorem 1 that \(\omega _f(x)=A\) for almost every \(x\in [0,1]\). In particular, this forbids f to have wandering intervals and periodic attractors. As \(\overline{\mathcal {O}_f^+(c_-)\cup \mathcal {O}_f^+(c_+)}\) has empty interior, we can consider a connected component \(J\ne \emptyset \) of \(A\setminus ( \overline{\mathcal {O}_f^+(c_-)\cup \mathcal {O}_f^+(c_+)})\). As \(\overline{\mathcal {O}_f^+(c_-)\cup \mathcal {O}_f^+(c_+)}\ne A\), A is not a minimal set and so it cannot be a Cherry attractor. Hence, it follows from Theorem D of [8] that A is a chaotic cycle of intervals. In particular, this implies that \(\overline{{\text {Per}}(f)\cap A}=A\). Thus, choose \( q,p\in {\text {Per}}(f)\cap {\text {interior}}(J)\) with \(p<q\). Let I be any connected component of \((p,q)\setminus \overline{\mathcal {O}_f^+(c_-)\cup \mathcal {O}_f^+(c_+)}\). Note that I is a nice interval, that is, \(\mathcal {O}_f^+(\partial I)\cap I=\emptyset \). Let \(I^*=\{x\in \ I\,;\,\mathcal {O}_f^+(f(x))\cap I\ne \emptyset \}\) and \(F:I^*\rightarrow I\) the first return map, by f, to I. As \(\omega _f(x)\supset I\) for almost every \(x\in [0,1]\) and \({\text {Leb}}\circ f^{-1}\ll {\text {Leb}}\), we get that \({\text {Leb}}(I)={\text {Leb}}(I^*)={\text {Leb}}(\bigcap _{n\ge 0}F^{-1}(I^*))\). Thus, it follows from Proposition 3.12 that \({\text {Leb}}|_I\) is strongly ergodic with respect to F, in particular, F is ergodic.

The ergodicity of \({\text {Leb}}|_I\) with respect to f implies that \({\text {Leb}}\) is also ergodic with respect to f. Indeed, if \(V=f^{-1}(V)\) and \({\text {Leb}}(V)>0\) then, as \({\text {Leb}}\circ f^{-1}\ll {\text {Leb}}\) and \(\mathcal {O}_f^+(x)\cap I\ne \emptyset \) for \({\text {Leb}}\) almost all \(x\in [0,1]\), we get that \({\text {Leb}}(V\cap I)>0\). As F is the first return map to I, it follows that \(F^{-1}(V\cap I)=V\cap I\). Thus, by the ergodicity with respect to F, \({\text {Leb}}(V\cap I)={\text {Leb}}(I)\). That is, \({\text {Leb}}(I\setminus V)=0\). Using that \({\text {Leb}}\circ f^{-1}\ll {\text {Leb}}\), we get that \({\text {Leb}}([0,1]\setminus V)=0\), proving that \({\text {Leb}}\) is ergodic with respect to f.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brandão, P., Palis, J., Pinheiro, V. (2019). On the Statistical Attractors and Attracting Cantor Sets for Piecewise Smooth Maps. In: Pacifico, M., Guarino, P. (eds) New Trends in One-Dimensional Dynamics. Springer Proceedings in Mathematics & Statistics, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-030-16833-9_4

Download citation

Publish with us

Policies and ethics