Skip to main content

Salvia officinalis L./Salvia haematodes Wall. (Lamiaceae/Labiatae)

(Syns.: S. chromatica Hoffmanns.; S. clusii Vilm.; S. cretica L.; S. crispa Ten.)

  • Chapter
  • First Online:
Handbook of 200 Medicinal Plants
  • 196 Accesses

Abstract

The plant is a native of Mediterranean region, but naturalized in India and many other countries. Both Salvia haematodes and S. officinalis have been described by various authors interchangeably, as they appear similar in their actions profile. S. officinalis is described to have stimulant, tonic, antiemetic, carminative and astringent properties; and used in fevers, dyspepsia, flatulence, and to check sweating and colliquative sweats of phthisis. Whereas, S. haematodes is tonic, astringent and aphrodisiac, and is one of the ingredients in compound decoctions and aphrodisiac confections; and is mainly used for seminal debility, chlorosis, anemia and amenorrhea. Its name is derived from Latin, meaning ‘to heal.’ In Mediterranean countries, S. officinalis is used as a spice and in food industry, and as a traditional medicine to treat several infectious diseases. In southern Brazil it is used as a food condiment, and as tea-beverage for the treatment of several disorders. It is one of the plants used by Jordanian patients for self-treatment of diabetes, based on friends’ recommendations, and is credited with memory improving properties in old European Medical Herbals. While it has been used as a general tonic and to treat sweating and menopausal hot flushes, and associated menopausal symptoms in traditional Swiss medicine, traditional medical uses of aqueous infusion of dried leaves (sage tea) in Austria include symptomatic treatment of mild dyspeptic complaints, inflammations in the mouth and the throat, and relief of excessive sweating and minor skin inflammations. Major phytoconstituents in aerial parts of S. officinalis are phenolic glycosides, phenolic diterpenes, terpenoids, immunomodulatory polysaccharides, flavones, and arabinogalactan. Sage tea in place of drinking water for 14-days lowered FBG in normal mice but did not affect glucose clearance in response to i.p. glucose tolerance test. In a parallel group, placebo-controlled trial of patients with mild to moderate Alzheimer’s disease, S. officinalis extract in a dose of 60 drops/day for 4-months, produced a significant improvement in cognitive functions compared to placebo. In a multicenter clinical trial, treatment of menopausal Swiss women with once-daily tablet of fresh sage leaves, completely decreased intensity and frequency of hot flashes after 8-weeks.

Salvia haematodes Wall. is a synonym of Salvia pratensis subsp. haematodes (L.) Arcang. However, Nadkarni (1954)CV has described S. haematodes as Lal Bahmana or Behman surkh . All descriptions here are for S. officinalis, unless stated otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aherne SA, Kerry JP, O’Brien NM. Effects of plant extracts on antioxidant status and oxidant-induced stress in Caco-2 cells. Br J Nutr. 2007;97:321–8.

    CAS  PubMed  Google Scholar 

  2. Akhondzadeh S, Noroozian M, Mohammadi M, et al. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther. 2003;28:53–9.

    CAS  PubMed  Google Scholar 

  3. Alarcon-Aguilar FJ, Roman-Ramos R, Flores-Saenz JL, Aguirre-Garcia F. Investigation on the hypoglycaemic effects of extracts of four Mexican medicinal plants in normal and alloxan-diabetic mice. Phytother Res. 2002;16:383–6.

    CAS  PubMed  Google Scholar 

  4. Amin A, Hamza AA. Hepatoprotective effects of Hibiscus, Rosmarinus and Salvia on azathioprine-induced toxicity in rats. Life Sci. 2005;77:266–78.

    CAS  PubMed  Google Scholar 

  5. Baj T, Ludwiczuk A, Sieniawska E, et al. GC-MS analysis of essential oils from Salvia officinalis L.: comparison of extraction methods of the volatile components. Acta Pol Pharm. 2013;70:35–40.

    Google Scholar 

  6. Bansode FW, Rajendran SM, Singh RK. Dose-dependent effects of ethanol extract of Salvia haematodes Wall. roots on reproductive function and copulatory behaviour in male rats. Andrologia. 2015;47:266–75.

    CAS  PubMed  Google Scholar 

  7. Baricevic D, Sosa S, Della Loggia R, et al. Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. J Ethnopharmacol. 2001;75:125–32.

    Google Scholar 

  8. Basílico MZ, Basílico JC. Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin A production. Lett Appl Microbiol. 1999;29:238–41.

    PubMed  Google Scholar 

  9. Bauer J, Kuehnl S, Rollinger JM, et al. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1. J Pharmacol Exp Ther. 2012;342:169–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben Farhat M, Jordán MJ, Chaouech-Hamada R, et al. Variations in essential oil, phenolic compounds, and antioxidant activity of Tunisian cultivated Salvia officinalis L. J Agric Food Chem. 2009;57:10349–56.

    CAS  PubMed  Google Scholar 

  11. Ben Khedher MR, Hammami M, Arch JRS, et al. Preventive effects of Salvia officinalis leaf extract on insulin resistance and inflammation in a model of high fat diet-induced obesity in mice that responds to rosiglitazone. PeerJ. 2018;6:e4166.

    Google Scholar 

  12. Bommer S, Klein P, Suter A. First time proof of sage’s tolerability and efficacy in menopausal women with hot flushes. Adv Ther. 2011;28:490–500.

    CAS  PubMed  Google Scholar 

  13. Bouajaj S, Benyamna A, Bouamama H, et al. Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco. Nat Prod Res. 2013;27:1673–6.

    Google Scholar 

  14. Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem. 2007;55:7879–85.

    Google Scholar 

  15. Capek P, Hríbalová V, Svandová E, et al. Characterization of immunomodulatory polysaccharides from Salvia officinalis L. Int J Biol Macromol. 2003;33:113–9.

    CAS  PubMed  Google Scholar 

  16. Capek P, Hríbalová V. Water-soluble polysaccharides from Salvia officinalis L. possessing immunomodulatory activity. Phytochemistry 2004;65:1983–92.

    Google Scholar 

  17. Capek P. An arabinogalactan containing 3-O-methyl-D-galactose residues isolated from the aerial parts of Salvia officinalis L. Carbohydr Res. 2008;343:1390–3.

    CAS  PubMed  Google Scholar 

  18. Carrasco FR, Schmidt G, Romero AL, et al. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses. J Pharm Pharmacol. 2009;61:961–7.

    Google Scholar 

  19. Celik I, Isik I. Determination of chemopreventive role of Foeniculum vulgare and Salvia officinalis infusion on trichloroacetic acid-induced increased serum marker enzymes lipid peroxidation and antioxidative defense systems in rats. Nat Prod Res. 2008;22:66–75.

    CAS  PubMed  Google Scholar 

  20. Climati E, Mastrogiovanni F, Valeri M, et al. Methyl carnosate, an antibacterial diterpene isolated from Salvia officinalis leaves. Nat Prod Commun. 2013;8:429–30.

    CAS  PubMed  Google Scholar 

  21. Craft JD, Satyal P, Setzer WN. The chemotaxonomy of common sage (Salvia officinalis) based on the volatile constituents. Medicines (Basel). 2017;4. pii: E47.

    Google Scholar 

  22. Cutillas AB, Carrasco A, Martinez-Gutierrez R, Tomas V, Tudela J. Salvia officinalis L. Essential oils from Spain: determination of composition, antioxidant capacity, antienzymatic, and antimicrobial bioactivities. Chem Biodivers. 2017;14.

    Google Scholar 

  23. Cvetkovikj I, Stefkov G, Karapandzova M, Kulevanova S, Satović Z. Essential oils and chemical diversity of southeast European populations of Salvia officinalis L. Chem Biodivers. 2015;12:1025–39.

    CAS  PubMed  Google Scholar 

  24. Cwikla C, Schmidt K, Matthias A, et al. Investigations into the antibacterial activities of phytotherapeutics against Helicobacter pylori and Campylobacter jejuni. Phytother Res. 2010;24:649–56.

    CAS  PubMed  Google Scholar 

  25. Daniela T. Salvia officinalis L. I. Botanic characteristics, composition, use and cultivation. Cesk Farm 1993;42:111–6 (Slovak).

    Google Scholar 

  26. Domaracký M, Rehák P, Juhás S, Koppel J. Effects of selected plant essential oils on the growth and development of mouse preimplantation embryos in vivo. Physiol Res. 2007;56:97–104.

    PubMed  Google Scholar 

  27. Ehrnhöfer-Ressler MM, Fricke K, Pignitter M, et al. Identification of 1,8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a Salvia officinalis L. infusion using human gingival fibroblasts. J Agric Food Chem. 2013;61:3451–9.

    Google Scholar 

  28. Eidi M, Eidi A, Bahar M. Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition. 2006;22:321–6.

    Google Scholar 

  29. Eidi M, Eidi A, Zamanizadeh H. Effect of Salvia officinalis L. leaves on serum glucose and insulin in healthy and streptozotocin-induced diabetic rats. J Ethnopharmacol. 2005;100:310–3.

    Google Scholar 

  30. European Medicines Agency, EMA/HMPC/41843/2009, London, 12 November 2009.

    Google Scholar 

  31. European Medicines Agency. Evaluation of medicines for human use. EMEA/HMPC/ 331653/2008, London, 14 January 2009.

    Google Scholar 

  32. Fischedick JT, Standiford M, Johnson DA, Johnson JA. Structure activity relationship of phenolic diterpenes from Salvia officinalis as activators of the nuclear factor E2-related factor 2 pathway. Bioorg Med Chem. 2013;21:2618–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao XS et al. Chinese Trad Herbal Drugs Commun 1980;(4):33.

    Google Scholar 

  34. Garcia CS, Menti C, Lambert AP, et al. Pharmacological perspectives from Brazilian Salvia officinalis (Lamiaceae): antioxidant, and antitumor in mammalian cells. An Acad Bras Cienc. 2016;88:281–92.

    CAS  PubMed  Google Scholar 

  35. Generalić I, Skroza D, Surjak J, et al. Seasonal variations of phenolic compounds and biological properties in sage (Salvia officinalis L.). Chem Biodivers. 2012;9:441–57.

    Google Scholar 

  36. Geuenich S, Goffinet C, Venzke S, et al. Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. Retrovirology. 2008;20:27.

    Google Scholar 

  37. Guaschino S, Benvenuti C. SOPHY Study Group: SOPHY project: an observational study of vaginal pH, lifestyle and correct intimate hygiene in women of different ages and in different physiopathological conditions. Part II. Minerva Ginecol. 2008;60:353–62.

    CAS  PubMed  Google Scholar 

  38. Halicioglu O, Astarcioglu G, Yaprak I, Aydinlioglu H. Toxicity of Salvia officinalis in a newborn and a child: an alarming report. Pediatr Neurol. 2011;45:259–60.

    PubMed  Google Scholar 

  39. Hasanein P, Teimuri Far M, Emamjomeh A. Salvia officinalis L. attenuates morphine analgesic tolerance and dependence in rats: possible analgesic and sedative mechanisms. Am J Drug Alcohol Abuse. 2015;41:405–13.

    Google Scholar 

  40. Hayouni el A, Chraief I, Abedrabba M, et al. Tunisian Salvia officinalis L. and Schinus molle L. essential oils: their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. Int J Food Microbiol. 2008;125:242–51.

    Google Scholar 

  41. Hohmann J, Zupkó I, Rédei D, et al. Protective effects of the aerial parts of Salvia officinalis, Melissa Officinalis and Lavandula angustifolia and their constituents against enzyme-dependent and enzyme-independent lipid peroxidation. Planta Med. 1999;65:576–8.

    CAS  PubMed  Google Scholar 

  42. Horiuchi K, Shiota S, Kuroda T, et al. Potentiation of antimicrobial activity of aminoglycosides by carnosol from Salvia officinalis. Biol Pharm Bull. 2007;30:287–90.

    CAS  PubMed  Google Scholar 

  43. Horváthová E, Srančíková A, Regendová-Sedláčková E, et al. Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress. Mutagenesis. 2016;31:51–9.

    PubMed  Google Scholar 

  44. Hubbert M, Sievers H, Lehnfeld R, Kehrl W. Efficacy and tolerability of a spray with Salvia officinalis in the treatment of acute pharyngitis—a randomised, double-blind, placebo-controlled study with adaptive design and interim analysis. Eur J Med Res. 2006;11:20–6.

    PubMed  Google Scholar 

  45. Imanshahidi M, Hosseinzadeh H. The pharmacological effects of Salvia species on the central nervous system. Phytother Res. 2006;20:427–37 (Review).

    Google Scholar 

  46. Iuvone T, De Filippis D, Esposito G, et al. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther. 2006;317:1143–9.

    CAS  PubMed  Google Scholar 

  47. Jiang Y, Zhang L, Rupasinghe HP. Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomed Pharmacother. 2017;85:57–67.

    Google Scholar 

  48. Juhás S, Cikos S, Czikková S, et al. Effects of borneol and thymoquinone on TNBS-induced colitis in mice. Folia Biol (Praha). 2008;54:1–7.

    Google Scholar 

  49. Kavvadias D, Monschein V, Sand P, et al. Constituents of sage (Salvia officinalis) with in vitro affinity to human brain benzodiazepine receptor. Planta Med. 2003;69:113–7.

    CAS  PubMed  Google Scholar 

  50. Kennedy DO, Pace S, Haskell C, et al. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology. 2006;31:845–52.

    CAS  PubMed  Google Scholar 

  51. Kermanshah H, Kamangar SS, Arami S, et al. The effect of hydroalcoholic extract of seven plants on cariogenic bacteria—an in vitro evaluation. Oral Health Dent Manag. 2014;13:395–401.

    PubMed  Google Scholar 

  52. Keshavarz M, Mostafaie A, Mansouri K, et al. In vitro and ex vivo antiangiogenic activity of Salvia officinalis. Phytother Res. 2010;24:1526–31.

    PubMed  Google Scholar 

  53. Khedher MRB, Khedher SB, Chaieb I, Tounsi S, Hammami M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI J. 2017;16:160–73.

    PubMed  PubMed Central  Google Scholar 

  54. Kianbakht S, Abasi B, Perham M, Hashem Dabaghian F. Antihyperlipidemic effects of Salvia officinalis L. leaf extract in patients with hyperlipidemia: a randomized double-blind placebo-controlled clinical trial. Phytother Res 2011;25:1849–53.

    Google Scholar 

  55. Kianbakht S, Dabaghian FH. Improved glycemic control and lipid profile in hyperlipidemic type 2 diabetic patients consuming Salvia officinalis L. leaf extract: a randomized placebo controlled clinical trial. Complement Ther Med 2013;21:441–6.

    Google Scholar 

  56. Kianbakht S, Nabati F, Abasi B. Salvia officinalis (Sage) leaf extract as add-on to statin therapy in hypercholesterolemic type 2 diabetic patients: a randomized clinical trial. Int J Mol Cell Med. 2016;5:141–8.

    PubMed  PubMed Central  Google Scholar 

  57. Kintzios S, Papageorgiou K, Yiakoumettis I, et al. Evaluation of the antioxidants activities of four Slovene medicinal plant species by traditional and novel biosensory assays. J Pharm Biomed Anal. 2010;53:773–6.

    CAS  PubMed  Google Scholar 

  58. Kolac UK, Ustuner MC, Tekin N, et al. The anti-inflammatory and antioxidant effects of Salvia officinalis on lipopolysaccharide-induced inflammation in rats. J Med Food. 2017;20:1193–200.

    CAS  PubMed  Google Scholar 

  59. Lachenmeier DW, Walch SG. Epileptic seizures caused by accidental ingestion of sage (Salvia officinalis L.) oil in children: a rare, exceptional case or a threat to public health? Pediatr Neurol. 2012;46:201.

    Google Scholar 

  60. Leporatti ML, Posocco E, Pavesi A. Some new therapeutic uses of several medicinal plants in the province of Terni (Umbria, Central Italy). J Ethnopharmacol. 1985;14:65–8.

    CAS  PubMed  Google Scholar 

  61. Lima CF, Andrade PB, Seabra RM, et al. The drinking of a Salvia officinalis infusion improves liver antioxidant status in mice and rats. J Ethnopharmacol. 2005;97:383–9.

    PubMed  Google Scholar 

  62. Lima CF, Azevedo MF, Araujo R, et al. Metformin-like effect of Salvia officinalis (common sage): is it useful in diabetes prevention? Br J Nutr. 2006;96:326–33.

    CAS  PubMed  Google Scholar 

  63. Lima CF, Carvalho F, Fernandes E, et al. Evaluation of toxic/protective effects of the essential oil of Salvia officinalis on freshly isolated rat hepatocytes. Toxicol In Vitro. 2004;18:457–65.

    Google Scholar 

  64. Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Drinking of Salvia officinalis tea increases CCl(4)-induced hepatotoxicity in mice. Food Chem Toxicol. 2007;45:456–64.

    CAS  PubMed  Google Scholar 

  65. Lima CF, Valentao PC, Andrade PB, et al. Water and methanolic extracts of Salvia officinalis protect HepG2 cells from t-BHP induced oxidative damage. Chem Biol Interact. 2007;167:107–15.

    CAS  PubMed  Google Scholar 

  66. Liu SS. Abstracts of Research Literature on Chinese Traditional Drugs (1820–1961). Science Press; 1975. p. 113.

    Google Scholar 

  67. Lixandru BE, Drăcea NO, Dragomirescu CC, et al. Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay. Roum Arch Microbiol Immunol. 2010;69:224–30.

    CAS  PubMed  Google Scholar 

  68. Lu Y, Foo LY. Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry. 2000;55:263–7.

    PubMed  Google Scholar 

  69. Martins N, Barros L, Santos-Buelga C, et al. Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 2015;170:378–85.

    CAS  PubMed  Google Scholar 

  70. Masterová I, Misíková E, Sirotková L, et al. Royleanones in the roots of Salvia officinalis L. of domestic provenance and their antimicrobial activity. Ceska Slov Farm 1996;45:242–5 (Slovak).

    Google Scholar 

  71. Matsingou TC, Petrakis N, Kapsokefalou M, Salifoglou A. Antioxidant activity of organic extracts from aqueous infusions of sage. J Agric Food Chem. 2003;51:6696–701.

    CAS  PubMed  Google Scholar 

  72. Mayer B, Baggio CH, Freitas CS, et al. Gastroprotective constituents of Salvia officinalis L. Fitoterapia. 2009;80:421–6.

    CAS  PubMed  Google Scholar 

  73. Mayer E, Gescheidt-Shoshany H, Weltfriend S. Allergic contact dermatitis caused by Salvia officinalis extract. Contact Dermatitis. 2011;64:237–8.

    PubMed  Google Scholar 

  74. Miura K, Kikuzaki H, Nakatani N. Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method. J Agric Food Chem. 2002;50:1845–51.

    Google Scholar 

  75. Miura K, Kikuzaki H, Nakatani N. Apianane terpenoids from Salvia officinalis. Phytochemistry. 2001;58:1171–5.

    CAS  PubMed  Google Scholar 

  76. Moss L, Rouse M, Wesnes KA, Moss M. Differential effects of the aromas of Salvia species on memory and mood. Hum Psychopharmacol. 2010;25:388–96.

    PubMed  Google Scholar 

  77. Ninomiya K, Matsuda H, Shimoda H, et al. Carnosic acid, a new class of lipid absorption inhibitor from sage. Bioorg Med Chem Lett. 2004;14:1943–6.

    CAS  PubMed  Google Scholar 

  78. Nolkemper S, Reichling J, Stintzing FC, et al. Antiviral effect of aqueous extracts from species of the Lamiaceae family against Herpes simplex virus type 1 and type 2 in vitro. Planta Med. 2006;72:1378–82.

    CAS  PubMed  Google Scholar 

  79. Oboh G, Henle T. Antioxidant and inhibitory effects of aqueous extracts of Salvia officinalis leaves on prooxidant-induced lipid peroxidation in brain and liver in vitro. J Med Food. 2009;12:77–84.

    CAS  PubMed  Google Scholar 

  80. Oniga I, Pârvu AE, Toiu A, Benedec D. Effects of Salvia officinalis L. extract on experimental acute inflammation. Rev Med Chir Soc Med Nat Iasi 2007;111:290–4.

    Google Scholar 

  81. Oniga I, Oprean R, Toiu A, Benedec D. Chemical composition of the essential oil of Salvia officinalis L. from Romania. Rev Med Chir Soc Med Nat Iasi. 2010;114:593–5.

    Google Scholar 

  82. Orhan I, Kartal M, Kan Y, Sener B. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase. Z Naturforsch. 2008;63:547–53.

    CAS  Google Scholar 

  83. Otoom SA, Al-Safi SA, Kerem ZK, Alkofahi A. The use of medicinal herbs by diabetic Jordanian patients. J Herb Pharmacother. 2006;6:31–41.

    CAS  PubMed  Google Scholar 

  84. Pedro DF, Ramos AA, Lima CF, Baltazar F, Pereira-Wilson C. Colon cancer chemoprevention by sage tea drinking: decreased DNA damage and cell proliferation. Phytother Res. 2016;30:298–305.

    CAS  PubMed  Google Scholar 

  85. Pereira RS, Sumita TC, Furlan MR, et al. Antibacterial activity of essential oils on microorganisms isolated from urinary tract infection. Rev Saude Publica. 2004;38:326–8 (Portuguese).

    Google Scholar 

  86. Perry EK, Pickering AT, Wang WW, et al. Medicinal plants and Alzheimer’s disease: integrating ethnobotanical and contemporary scientific evidence. J Altern Complement Med. 1998;4:419–28 (Review).

    Google Scholar 

  87. Perry EK, Pickering AT, Wang WW, et al. Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy. J Pharm Pharmacol. 1999;51:527–34.

    CAS  PubMed  Google Scholar 

  88. Perry N, Court G, Bidet N, Court J, Perry E. European herbs with cholinergic activities: potential in dementia therapy. Int J Geriatric Psychiatr. 1996;11:1063–9.

    Google Scholar 

  89. Poeckel D, Greiner C, Verhoff M, et al. Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress proinflammatory responses of stimulated human polymorphonuclear leukocytes. Biochem Pharmacol. 2008;76:91–7.

    CAS  PubMed  Google Scholar 

  90. Qnais EY, Abu-Dieyeh M, Abdulla FA, Abdalla SS. The antinociceptive and anti-inflammatory effects of Salvia officinalis leaf aqueous and butanol extracts. Pharm Biol. 2010;48:1149–56.

    PubMed  Google Scholar 

  91. Raal A, Orav A, Arak E. Composition of the essential oil of Salvia officinalis L. from various European countries. Nat Prod Res. 2007;21:406–11.

    Google Scholar 

  92. Radulović NS, Genčić MS, Stojanović NM, et al. Toxic essential oils. Part V: behaviour modulating and toxic properties of thujones and thujone-containing essential oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L. Food Chem Toxicol. 2017;105:355–69.

    Google Scholar 

  93. Rahte S, Evans R, Eugster PJ, et al. Salvia officinalis for hot flushes: towards determination of mechanism of activity and active principles. Planta Med. 2013;79:753–60.

    CAS  PubMed  Google Scholar 

  94. Ramos AA, Azqueta A, Pereira-Wilson C, Collins AR. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. J Agric Food Chem. 2010;58:7465–71.

    CAS  PubMed  Google Scholar 

  95. Ramos AA, Pedro D, Collins AR, Pereira-Wilson C. Protection by Salvia extracts against oxidative and alkylation damage to DNA in human HCT15 and CO115 cells. J Toxicol Environ Health A. 2012;75:765–75.

    CAS  PubMed  Google Scholar 

  96. Reuter J, Jocher A, Hornstein S, et al. Sage extract rich in phenolic diterpenes inhibits ultraviolet-induced erythema in vivo. Planta Med. 2007;73:1190–1.

    CAS  PubMed  Google Scholar 

  97. Rodrigues MR, Kanazawa LK, das Neves TL, et al. Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. J Ethnopharmacol. 2012;139:519–26.

    Google Scholar 

  98. Rota C, Carramiñana JJ, Burillo J, Herrera A. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. J Food Prot. 2004;67:1252–6.

    CAS  PubMed  Google Scholar 

  99. Russo A, Formisano C, Rigano D, et al. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem Toxicol 2013;55:42–7.

    Google Scholar 

  100. Sá CM, Ramos AA, Azevedo MF, et al. Sage tea drinking improves lipid profile and antioxidant defences in humans. Int J Mol Sci. 2009;10:3937–50.

    PubMed  PubMed Central  Google Scholar 

  101. Sallam A, Mira A, Ashour A, Shimizu K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine. 2016;23:1005–11.

    CAS  PubMed  Google Scholar 

  102. Santos-Gomes PC, Fernandes-Ferreira M. Organ- and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites. J Agric Food Chem. 2001;49:2908–16.

    Google Scholar 

  103. Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M. Phenolic antioxidant compounds produced by in vitro shoots of sage (Salvia officinalis L.). Plant Sci. 2002;162:981–7.

    Google Scholar 

  104. Savelev S, Okello E, Perry NSL, Wilkins RM, Perry EK. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol Biochem Behav. 2003;75:661–8.

    CAS  PubMed  Google Scholar 

  105. Schnitzler P, Nolkemper S, Stintzing FC, Reichling J. Comparative in vitro study on the antiherpetic effect of phytochemically characterized aqueous and ethanolic extracts of Salvia officinalis grown at two different locations. Phytomedicine. 2008;15:62–70.

    CAS  PubMed  Google Scholar 

  106. Scholey AB, Tildesley NT, Ballard CG, et al. An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology. 2008;198:127–39.

    CAS  PubMed  Google Scholar 

  107. Sertel S, Eichhorn T, Plinkert PK, Efferth T. Anticancer activity of Salvia officinalis essential oil against HNSCC cell line (UMSCC1). HNO. 2011;59:1203–8 (German).

    Google Scholar 

  108. Soković M, Glamočlija J, Marin PD, et al. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules. 2010;15:7532–46.

    PubMed  PubMed Central  Google Scholar 

  109. Sookto T, Srithavaj T, Thaweboon S, et al. In vitro effects of Salvia officinalis L. essential oil on Candida albicans. Asian Pac J Trop Biomed. 2013;3:376–80.

    Google Scholar 

  110. Stefanović OD, Stanojević DD, Comić LR. Synergistic antibacterial activity of Salvia officinalis and Cichorium intybus extracts and antibiotics. Acta Pol Pharm. 2012;69:457–63.

    PubMed  Google Scholar 

  111. Stojanović-Radić Z, Pejcić M, Stojanović N, Sharifi-Rad J, Stanković N. Potential of Ocimum basilicum L. and Salvia officinalis L. essential oils against biofilms of P. aeruginosa clinical isolates. Cell Mol Biol (Noisy-le-grand). 2016;62:27–33.

    Google Scholar 

  112. Todorov S, Philianos S, Petkov V, et al. Experimental pharmacological study of three species from genus Salvia. Acta Physiol Pharmacol Bulg. 1984;10:13–20.

    CAS  PubMed  Google Scholar 

  113. Vandecasteele K, Ost P, Oosterlinck W, et al. Evaluation of the efficacy and safety of Salvia officinalis in controlling hot flashes in prostate cancer patients treated with androgen deprivation. Phytother Res. 2012;26:208–13.

    PubMed  Google Scholar 

  114. Walch SG, Tinzoh LN, Zimmermann BF, et al. Antioxidant capacity and polyphenolic composition as quality indicators for aqueous infusions of Salvia officinalis L. (sage tea). Front Pharmacol. 2011;2:79.

    Google Scholar 

  115. Wang M, Kikuzaki H, Zhu N, et al. Isolation and structural elucidation of two new glycosides from sage (Salvia officinalis L.). J Agric Food Chem 2000;48:235–8.

    Google Scholar 

  116. Wang M, Shao Y, Li J, et al. Antioxidative phenolic glycosides from sage (Salvia officinalis). J Nat Prod. 1999;62:454–6.

    CAS  PubMed  Google Scholar 

  117. Xavier CP, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway. Nutr Cancer. 2009;61:564–71.

    CAS  PubMed  Google Scholar 

  118. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem. 2001;49:5165–70.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Akbar .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akbar, S. (2020). Salvia officinalis L./Salvia haematodes Wall. (Lamiaceae/Labiatae). In: Handbook of 200 Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-16807-0_164

Download citation

Publish with us

Policies and ethics