Skip to main content

Models, SOC, Maximum, Time, Cell, Data, Parameters

  • Chapter
  • First Online:
Lithium-Ion Batteries
  • 110k Accesses

Abstract

Previous studies on the hazards and incidents correlated with thermal runaway in lithium-ion batteries have been studied by numerous scholars [1, 39,40,41]. The suspected processes which cause the thermal runaway in lithium-ion batteries are obscure even now and required to be researched thoroughly [1].

This book was machine-generated

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Main Document References

  1. Duh YS, Tsai MT, Kao CS (2017) J Therm Anal Calorim 129:1935. https://doi.org/10.1007/s10973-017-6356-7

  2. Kasnatscheew J, Wagner R, Winter M et al (2018) Top Curr Chem (Z) 376:16. https://doi.org/10.1007/s41061-018-0196-1

  3. Duh YS, Chen YL, Kao CS (2017) J Therm Anal Calorim 127:995. https://doi.org/10.1007/s10973-016-5794-y

  4. Das MK, Mukherjee PP, Muralidhar K (2018) Porous media applications: electrochemical systems. In: Modeling transport phenomena in porous media with applications. Mechanical engineering series. Springer, Cham. https://doi.org/10.1007/978-3-319-69866-3_4

  5. Duh YS, Tsai MT, Kao CS (2017) J Therm Anal Calorim 127:983. https://doi.org/10.1007/s10973-016-5767-1

  6. Chen M, Yuen R, Wang J (2017) J Therm Anal Calorim 129:181. https://doi.org/10.1007/s10973-017-6158-y

  7. Berkes BB, Schiele A, Sommer H et al (2016) J Solid State Electrochem 20:2961. https://doi.org/10.1007/s10008-016-3362-9

  8. Ouyang D, He Y, Chen M et al (2018) J Therm Anal Calorim 132:65. https://doi.org/10.1007/s10973-017-6888-x

  9. Kosilov VV, Potapenko AV, Kirillov SA (2017) J Solid State Electrochem 21:3269. https://doi.org/10.1007/s10008-017-3671-7

  10. Strehlau J, Weber T, Lürenbaum C et al (2017) Anal Bioanal Chem 409:6123. https://doi.org/10.1007/s00216-017-0549-6

  11. Zhu YR, Yi TF (2016) Ionics 22:1759. https://doi.org/10.1007/s11581-016-1788-9

  12. Leng F, Tan CM, Yazami R, Maher K, Wang R (2017) Quality decision for overcharged Li-Ion battery from reliability and safety perspective. In: Tan C, Goh T (eds) Theory and practice of quality and reliability engineering in Asia industry. Springer, Singapore. https://doi.org/10.1007/978-981-10-3290-5_20

  13. Lee SH, Ko IH (2018) J Fail Anal Preven 18:554. https://doi.org/10.1007/s11668-018-0440-6

  14. Cao W, Li J, Wu Z (2016) Ionics 22:1791. https://doi.org/10.1007/s11581-016-1703-4

  15. Methekar R, Anwani S (2019) Manufacturing of lithium cobalt oxide from spent lithium-ion batteries: a cathode material. In: Deb D, Balas V, Dey R (eds) Innovations in infrastructure. Advances in intelligent systems and computing, vol 757. Springer, Singapore. https://doi.org/10.1007/978-981-13-1966-2_20

  16. Liu FF, Lan FC, Chen JQ et al (2018) Chin J Mech Eng 31:53. https://doi.org/10.1186/s10033-018-0255-0

  17. Chiodo E, Lauria D, Andrenacci N et al (2016) Intell Ind Syst 2:243. https://doi.org/10.1007/s40903-016-0054-9

  18. Saxena S, Raman SR, Saritha B et al (2016) Sādhanā 41:479. https://doi.org/10.1007/s12046-016-0486-7

  19. Ma Y, Ru J, Yin M et al (2016) J Appl Electrochem 46:1119. https://doi.org/10.1007/s10800-016-0998-1

  20. Sabatier J, Guillemard F, Lavigne L, Noury A, Merveillaut M, Francico JM (2018) Fractional models of lithium-ion batteries with application to state of charge and ageing estimation. In: Madani K, Peaucelle D, Gusikhin O (eds) Informatics in control, automation and robotics. Lecture notes in electrical engineering, vol 430. Springer, Cham. https://doi.org/10.1007/978-3-319-55011-4_3

  21. Rajabloo B, Jokar A, Wakem W et al (2018) J Appl Electrochem 48:663. https://doi.org/10.1007/s10800-018-1189-z

  22. Kashkooli AG, Amirfazli A, Farhad S et al (2017) J Appl Electrochem 47:281. https://doi.org/10.1007/s10800-016-1037-y

  23. Li F, Wang Y (2018) Prognostics of lithium-ion batteries under uncertainty using multiple capacity degradation information. In: Xu J, Gen M, Hajiyev A, Cooke F (eds) Proceedings of the eleventh international conference on management science and engineering management. ICMSEM 2017. Lecture notes on multidisciplinary industrial engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-59280-0_109

  24. Tudoroiu RE, Zaheeruddin M, Tudoroiu N (2019) An adaptive observer state-of-charge estimator of hybrid electric vehicle li-ion battery—a case study. In: Świątek J, Borzemski L, Wilimowska Z (eds) Information systems architecture and technology: proceedings of 39th international conference on information systems architecture and technology—ISAT 2018. ISAT 2018. Advances in intelligent systems and Computing, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-99996-8_4

  25. Schiffer ZJ, Arnold CB (2018) Exp Mech 58:605. https://doi.org/10.1007/s11340-017-0291-1

  26. Xu J, Jia Y, Liu B et al (2018) Exp Mech 58:633. https://doi.org/10.1007/s11340-018-0380-9

  27. Rakshit S, Tripuraneni R, Nadimpalli SPV (2018) Exp Mech 58:537. https://doi.org/10.1007/s11340-017-0371-2

  28. Zhang X, Chen H, Fang D (2016) J Solid State Electrochem 20:2835. https://doi.org/10.1007/s10008-016-3292-6

  29. Liu M, Lu B, Shi DL et al (2018) Acta Mech Sin 34:359. https://doi.org/10.1007/s10409-017-0692-5

  30. Liu Z, Cai R, Chen B et al (2017) Ionics 23:617. https://doi.org/10.1007/s11581-016-1848-1

  31. Shi F, Yu H, Chen X, Cui T, Zhao H, Shi X (2019) Mechanical performance study of lithium-ion battery module under dynamic impact test. In: (SAE-China) S (eds) Proceedings of the 19th Asia Pacific automotive engineering conference & SAE-China Congress 2017: selected papers. SAE-China 2017. Lecture notes in electrical engineering, vol 486. Springer, Singapore. https://doi.org/10.1007/978-981-10-8506-2_1

  32. Krichen M, Gargouri M, Guidara K et al (2017) Ionics 23:3309. https://doi.org/10.1007/s11581-017-2161-3

  33. Srinivasan V, Higa K, Barai P, Xie Y (2018) Computational modeling of morphology evolution in metal-based battery electrodes. In: Andreoni W, Yip S (eds) Handbook of materials modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_87-1

  34. Jankowski P, Wieczorek W, Johansson P (2017) J Mol Model 23:6. https://doi.org/10.1007/s00894-016-3180-0

Other Bibliographic References

  1. Chen YT, Kang SW, Hung YH et al (2013) Feasibility study of an aluminum vapor chamber with radial grooved and sintered powders wick structures. Appl Therm Eng 51:864–870

    Article  CAS  Google Scholar 

  2. Ameli M, Agnewa B, Leung PS et al (2013) A novel method for manufacturing sintered aluminium heat pipes (SAHP). Appl Therm Eng 52:498–504

    Article  CAS  Google Scholar 

  3. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol 7:310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tu J, Yuan Y, Zhan P, Jiao H, Wang X, Zhu H, Jiao S (2014) Straightforward approach toward SiO2 Nanospheres and their superior lithium storage performance. J Phys Chem C 118:7357–7362

    Article  CAS  Google Scholar 

  5. Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113:81–100

    Article  CAS  Google Scholar 

  6. Lisbona D, Snee T (2011) A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf Environ Prot 89:434–442

    Article  CAS  Google Scholar 

  7. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224

    Article  CAS  Google Scholar 

  8. Hsieh TY, Duh YS, Kao CS (2014) Evaluation of thermal hazard for commercial 14500 lithium-ion batteries. J Therm Anal Calorim 116:1491–1495

    Article  CAS  Google Scholar 

  9. Ou WJ, Duh YS, Kao CS, Hsu JM (2014) Thermal instabilities of organic carbonates with discharged cathode materials in lithium-ion batteries. J Therm Anal Calorim 116:1111–1116

    Article  CAS  Google Scholar 

  10. Duh YS, Ou WJ, Kao CS, Hsu JM (2014) Thermal instabilities of organic carbonates with charged cathode materials in lithium-ion batteries. J Therm Anal Calorim 116:1105–1110

    Article  CAS  Google Scholar 

  11. Li YC, Duh YS, Hsu JM, Kao CS (2014) Thermal instability of organic esters and ethers with deposited lithium in lithium-ion battery. J Therm Anal Calorim 116:1219–1226

    Article  CAS  Google Scholar 

  12. Sun YY, Hsieh TY, Duh YS, Kao CS (2014) Thermal behaviors of electrolytes in lithium-ion batteries determined by differential scanning calorimeter. J Therm Anal Calorim 116:1175–1179

    Article  CAS  Google Scholar 

  13. Besenhard JO, Winter M (1998) Pure Appl Chem 70:603

    Article  CAS  Google Scholar 

  14. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Adv Mater 10:725

    Article  CAS  Google Scholar 

  15. Lux SF, Schappacher F, Balducci A, Passerini S, Winter M (2010) J Electrochem Soc 157:A320. https://doi.org/10.1149/1.3291976

  16. Qi X, Blizanac B, DuPasquier A, Oljaca M, Li J, Winter M (2013) Carbon 64:334. https://doi.org/10.1016/j.carbon.2013.07.083

  17. Qi X, Blizanac B, DuPasquier A, Meister P, Placke T, Oljaca M, Li J, Winter M (2014) Phys Chem Chem Phys 16:25306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Speer ME, Kolek M, Jassoy JJ, Heine J, Winter M, Bieker PM, Esser B (2015) Chem Commun 51:15261. https://doi.org/10.1039/c5cc04932f

  19. Bieker P, Winter M (2016) Chem Unserer Zeit 50:172. https://doi.org/10.1002/ciuz.201600745

  20. Winter M, Placke T, Rothermel S, Meister P, Bar A, von Wedel W (2017) Elektromobilität—Was uns jetzt und künftig antreibt. BINE-Themeninfo I/2017. https://www.bine.info/fileadmin/content/Publikationen/Themen-Infos/I2017/themen0117internetx.pdf

  21. Andre D, Kim S-J, Lamp P, Lux SF, Maglia F, Paschos O, Stiaszny B (2015) J Mater Chem A 3:6709. https://doi.org/10.1039/c5ta00361j

  22. Kasnatscheew J, Börner M, Streipert B, Meister P, Wagner R, Cekic Laskovic I, Winter M (2017) J Power Sources 362:278. https://doi.org/10.1016/j.jpowsour.2017.07.044

  23. Krämer E, Schedlbauer T, Hoffmann B, Terborg L, Nowak S, Gores HJ, Passerini S, Winter M (2013) J Electrochem Soc 160:A356. https://doi.org/10.1149/2.081302jes

  24. Wagner R, Preschitschek N, Passerini S, Leker J, Winter M (2013) J Appl Electrochem 43:481. https://doi.org/10.1007/s10800-013-0533-6

  25. Meister P, Qi X, Kloepsch R, Krämer E, Streipert B, Winter M, Placke T (2017) Chemsuschem 10:804. https://doi.org/10.1002/cssc.201601636

  26. Streipert B, Roser S, Kasnatscheew J, Janssen P, Cao X, Wagner R, Cekic-Laskovic I, Winter M (2017) J Electrochem Soc 164:A1474. https://doi.org/10.1149/2.0671707jes

  27. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789

    Article  CAS  Google Scholar 

  28. Goodenough JB (2007) Cathode materials: a personal perspective. J Power Sources 174:996–1000

    Article  CAS  Google Scholar 

  29. Nagaura T (1991) Development of rechargeable lithium batteries. JEC Battery Newsletter 2:17–5

    Google Scholar 

  30. Wittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  31. Koksbang R, Barker J, Shi H, Saidi MY (1996) Cathode materials for lithium rocking batteries. Solid State Ion 84:1–21

    Article  CAS  Google Scholar 

  32. Arthur TS et al (2011) Three-dimensional electrodes and battery architectures. MRS Bull 36(07):523–531

    Article  CAS  Google Scholar 

  33. Stein M, Mistry A, Mukherjee PP (2017) Mechanistic understanding of the role of evaporation in electrode processing. J Electrochem Soc 164(7):A1616–A1627

    Article  CAS  Google Scholar 

  34. Doughty D, Roth EP (2012) A general discussion of Li ion battery safety. Electrochem Soc Interface 21(2):37–44

    Article  CAS  Google Scholar 

  35. Mikolajczak C et al (2012) Lithium-ion batteries hazard and use assessment. Springer, Berlin

    Google Scholar 

  36. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5(7):7854–7863

    Article  CAS  Google Scholar 

  37. Mikolajczak C, Kahn M, White K, Long RT (2012) Lithium-ion batteries hazard and use assessment. Springer, Berlin

    Google Scholar 

  38. Webster H (2013) Lithium battery update: full scale fire tests. Washington: Federal Aviation Administration

    Google Scholar 

  39. Webster H (2010) Fire protection for the shipment of lithium batteries in aircraft cargo compartments. Washington: Federal Aviation Administration

    Google Scholar 

  40. Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G (2012) Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci 5(1):5271–5280

    Article  Google Scholar 

  41. Fu Y, Lu S, Li K, Liu C, Cheng X, Zhang H (2015) An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J Power Sources 273:216–222

    Article  CAS  Google Scholar 

  42. Chen M, Zhou D, Chen X, Zhang W, Liu J, Yuen R, Wang J (2015) Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim 122(2):755–763

    Article  CAS  Google Scholar 

  43. Ohzuku T, Brodd RJ (2007) An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 174:449–456

    Article  CAS  Google Scholar 

  44. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  45. Wang Q, Huang P, Ping P et al (2017) Combustion behavior of lithium iron phosphate battery induced by external heat radiation. J Loss Prev Process Ind 49:961–969

    Article  CAS  Google Scholar 

  46. Huang P, Wang Q, Li K et al (2015) The combustion behavior of large scale lithium titanate battery. Sci Rep 5:7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen WC, Shu CM, Wang YW (2015) Effects of thermal hazard on 18650 lithium-ion battery under different states of charge. J Therm Anal Calorim 121(1):525–531

    Article  CAS  Google Scholar 

  48. Ye J, Chen H, Wang Q et al (2016) Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions. Appl Energy 182:464–474

    Article  CAS  Google Scholar 

  49. Li HF, Gao JK, Zhang SL (2008) Effect of overdischarge on swelling and recharge performance of lithium ion cells. Chin J Chem 26:1585–1588

    Article  CAS  Google Scholar 

  50. Shu J, Shui M, Xu D, Wang D, Ren Y, Gao S (2012) A comparative study of overdischarge behaviors of cathode materials for lithium-ion batteries. J Solid State Electrochem 16:819–824

    Article  CAS  Google Scholar 

  51. Maleki H, Howard JN (2006) Effects of overdischarge on performance and thermal stability of a li-ion cell. J Power Sources 160:1395–1402

    Article  CAS  Google Scholar 

  52. Jeevarajan JA, Winchester CS (2012) Battery safety qualifications for human rating. Electrochem Soc Interface 21:51–55

    Article  Google Scholar 

  53. Rossouw MH, de Kock A, de Piciotto LA, Thackeray MM, David WIF, Ibberson RM (1990) Structural aspects of lithium-manganese-oxide electrodes for rechargeable lithium. Mater Res Bull 25:173–182

    Article  CAS  Google Scholar 

  54. Ohzuku T, Kitagawa M, Hirai T (1990) Electrochemistry of manganese dioxide in lithium nonaqueous cell. J Electrochem Soc 137:769–775

    Article  CAS  Google Scholar 

  55. Thackeray MM, Yang S, Kahaian AJ, Kepler KD, Skinner E, Vaughey JT, Hackney SA (1998) Structural fatigue in spinel electrodes in high voltage (4 V) Li/LixMn2O4 cells. Electrochem Solid-State Lett 1:7–9

    Article  CAS  Google Scholar 

  56. Cho J, Thackeray MM (1999) Structural changes of LiMn2O4 spinel electrodes during electrochemical cycling. J Electrochem Soc 146:3577–3581

    Article  CAS  Google Scholar 

  57. Kalhoff J, Eshetu GG, Bresser D, Passerini S (2015) Safer electrolytes for lithium-ion batteries: state of the art and perspectives. Chemsuschem 8:2154–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Besenhard JO, Werner K, Winter M (1996) Fluorhaltige Lösungsmittel für Lithiumbatterien mit erhöhter Sicherheit. German Patent DE196191233A1

    Google Scholar 

  59. Schmitz RW, Murmann P, Schmitz R, Müller R, Krämer L, Kasnatscheew J et al (2014) Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods. Prog Solid State Chem 42:65–84

    Article  CAS  Google Scholar 

  60. Brox S, Roeser S, Husch T, Hildebrand S, Fromm O, Korth M et al (2016) Alternative single-solvent electrolytes based on cyanoesters for safer lithium-ion batteries. Chemsuschem 13:1704–1711

    Article  CAS  Google Scholar 

  61. Möller KC, Hodal T, Appel WK, Winter M, Besenhard JO (2001) Fluorinated organic solvents in electrolytes for lithium ion cells. J Power Sources 97–98:595–597

    Article  Google Scholar 

  62. Gachot G, Grugeon S, Eshetu GG, Mathiron D, Ribière P, Armand M et al (2012) Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis. Electrochim Acta 83:402–409

    Article  CAS  Google Scholar 

  63. Terborg L, Weber S, Passerini S, Winter M, Karst U, Nowak S (2014) Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes. J Power Sources 245:836–840

    Article  CAS  Google Scholar 

  64. Grützke M, Kraft V, Hofmann B, Klamor S, Diekmann J, Kwade A et al (2015) Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle. J Power Sources 273:83–88

    Article  CAS  Google Scholar 

  65. Grützke M, Kraft V, Weber W, Wendt C, Friesen A, Klamor S et al (2014) Supercritical carbon dioxide extraction of lithium-ion battery electrolytes. J Supercrit Fluids 94:216–222

    Article  CAS  Google Scholar 

  66. Grützke M, Mönninghoff X, Horsthemke F, Kraft V, Winter M, Nowak S (2015) Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents. RSC Adv 5:43209–43217

    Article  CAS  Google Scholar 

  67. Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF5 and LiPF6 in ethylene carbonate dimethyl carbonate solutions. Electrochem Solid-State Lett 4:A42–A44

    Article  CAS  Google Scholar 

  68. Sloop SE, Kerr JB, Kinoshita K (2003) The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. J Power Sources 119–121:330–337

    Article  CAS  Google Scholar 

  69. Wu LM, Zhang Y, Jung YG, Zhang J (2015) Three-dimensional phase field based finite element study on Li intercalation-induced stress in polycrystalline LiCoO2. J Power Sources 299:57–65

    Article  CAS  Google Scholar 

  70. Kwon SN, Song JH, Mumm DR (2011) Effects of cathode fabrication conditions and cycling on the electrochemical performance of LiNiO2 synthesized by combustion and calcination. Ceram Int 37:1543–1548

    Article  CAS  Google Scholar 

  71. He Y, Li RH, Ding XK, Jiang LL, Wei MD (2010) Hydrothermal synthesis and electrochemical properties of orthorhombic LiMnO2 nanoplates. J Alloys Compd 492:601–604

    Article  CAS  Google Scholar 

  72. Zheng Z, Liao S-X, Xu B-B, Zhong B-H (2015) The roles of nickel/manganese in electrochemical cycling of lithium-rich Mn-based nickel cathode materials. Ionics 21:3295–3300

    Article  CAS  Google Scholar 

  73. Dou S (2015) Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries. Ionics 21:3001–3030

    Article  CAS  Google Scholar 

  74. Arroyo-de Dompablo ME, Armand M, Tarascon JM, Amador U (2006) On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4system (M = Fe, Mn Co, Ni). Electrochem Commun 8:1292–1298

    Article  CAS  Google Scholar 

  75. Wu SQ, Zhu ZZ, Yang Y, Hou ZF (2009) Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M = Mn, Fe Co, Ni): a GGA and GGA + U study. Comput Mater Sci 44:1243–1251

    Article  CAS  Google Scholar 

  76. Recham N, Oró-Solé J, Djellab K, Palacín MR, Masquelier C, Tarascon JM (2012) Hydrothermal synthesis, silver decoration and electrochemistry of LiMPO4 (M = Fe, Mn, and Co) single crystals. Solid State Ionics 220:47–52

    Article  CAS  Google Scholar 

  77. Zhang H, Chen Y, Zheng C, Zhang D, He C (2015) Enhancement of the electrochemical performance of LiFePO4/carbon nanotubes composite electrode for Li-ion batteries. Ionics 21:1813–1818

    Article  CAS  Google Scholar 

  78. Barpanda P, Ati M, Melot BC, Rousse G, Chotard JN, Doublet ML, Sougrati MT, Corr SA, Jumas JC, Tarascon JM (2011) A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat Mater 10:772–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ati M, Walker WT, Djellab K, Armand M, Recham N, Tarasconz JM (2010) Fluorosulfate positive electrode materials made with polymers as reacting media. Electrochem Solid-State Lett 13:A150–A153

    Article  CAS  Google Scholar 

  80. Leng F, Tan CM, Yazami R, Le MD (2014) A practical framework of electrical based online state-of-charge estimation of lithium ion batteries. J Power Sources 255:423–430

    Google Scholar 

  81. Holzapfel M, Würsig A, Scheifele W, Vetter J, Novák P (2007) J Power Sources 174:1156

    Article  CAS  Google Scholar 

  82. Zhang N, Tang H (2012) J Power Sources 218:52

    Article  CAS  Google Scholar 

  83. Goers D, Holzapfel M, Scheifele W, Lehmann E, Vontobel P, Novák P (2004) J Power Sources 130:221

    Article  CAS  Google Scholar 

  84. Zhu YM, Ruan ZW, Tang SZ, Thangadurai V (2014) Research status in preparation of FePO4: a review. Ionics 20(11):1501–1510. https://doi.org/10.1007/s11581-014-1241-x

    Article  CAS  Google Scholar 

  85. Sehrawat R, Sil A (2015) Polymer gel combustion synthesis of LiFePO4/C composite as cathode material for Li-ion battery. Ionics 21(3):673–685. https://doi.org/10.1007/s11581-014-1229-6

    Article  CAS  Google Scholar 

  86. Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D (2013) A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources 241:680–689. https://doi.org/10.1016/j.jpowsour.2013.05.040

    Article  CAS  Google Scholar 

  87. Yu F, Zhang LL, Li YC, An YX, Zhu MY, Dai B (2014) Mechanism studies of LiFePO4 cathode material: lithiation/delithiation process, electrochemical modification and synthetic reaction. RSC Adv 4(97):54576–54602. https://doi.org/10.1039/c4ra10899j

    Article  CAS  Google Scholar 

  88. Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium rechargeable batteries: status and trends. J Power Sources 232:357–369. https://doi.org/10.1016/j.jpowsour.2012.12.095

    Article  CAS  Google Scholar 

  89. Zhong K, Cui Y, Xia XD, Xue JJ, Liu P, Tong YX (2014) Study on the stability of the LiFePO4 Li-ion battery via an electrochemical method. J Power Sources 250:296–305. https://doi.org/10.1016/j.jpowsour.2013.11.019

    Article  CAS  Google Scholar 

  90. Waldmann T, Wilka M, Kasper M, Fleischhammer M, Wohlfahrt-Mehrens M (2014) Temperature dependent ageing mechanisms in lithium-ion batteries—a post-mortem study. J Power Sources 262:129–135. https://doi.org/10.1016/j.jpowsour.2014.03.112

    Article  CAS  Google Scholar 

  91. Liu P, Wang J, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2010) Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J Electrochem Soc 157(4):A499–A507. https://doi.org/10.1149/1.3294790

    Article  CAS  Google Scholar 

  92. Song H, Cao Z, Chen X, Lu H, Jia M, Zhang Z, Lai Y, Li J, Liu Y (2013) Capacity fade of LiFePO4/graphite cell at elevated temperature. J Solid State Electrochem 17(3):599–605. https://doi.org/10.1007/s10008-012-1893-2

    Article  CAS  Google Scholar 

  93. Harks PPRML, Mulder FM, Notten PHL (2015) In situ methods for Li-ion battery research: a review of recent developments. J Power Sources 288:92–105. https://doi.org/10.1016/j.jpowsour.2015.04.084

    Article  CAS  Google Scholar 

  94. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim Acta 45(1–2):67–86. https://doi.org/10.1016/S0013-4686(99)00194-2

    Article  CAS  Google Scholar 

  95. Dubarry M, Liaw BY (2009) Identify capacity fading mechanism in a commercial LiFePO4 cell. J Power Sources 194(1):541–549. https://doi.org/10.1016/j.jpowsour.2009.05.036

    Article  CAS  Google Scholar 

  96. Safari M, Delacourt C (2011) Aging of a commercial graphite/LiFePO4 cell. J Electrochem Soc 158(10):A1123–A1135. https://doi.org/10.1149/1.3614529

    Article  CAS  Google Scholar 

  97. Eddahech A, Briat O, Vinassa JM (2015) Performance comparison of four lithium-ion battery technologies under calendar aging. Energy 84:542–550. https://doi.org/10.1016/j.energy.2015.03.019

    Article  CAS  Google Scholar 

  98. Petzl M, Kasper M, Danzer MA (2015) Lithium plating in a commercial lithium-ion battery—a low-temperature aging study. J Power Sources 275:799–807. https://doi.org/10.1016/j.jpowsour.2014.11.065

    Article  CAS  Google Scholar 

  99. Ouyang MG, Chu ZY, Lu LG, Li JQ, Han XB, Feng XN, Liu GM (2015) Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles. J Power Sources 286:309–320. https://doi.org/10.1016/j.jpowsour.2015.03.178

    Article  CAS  Google Scholar 

  100. Bloom I, Jansen AN, Abraham DP, Knuth J, Jones SA, Battaglia VS, Henriksen GL (2005) Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application. J Power Sources 139(1–2):295–303. https://doi.org/10.1016/j.jpowsour.2004.07.021

    Article  CAS  Google Scholar 

  101. Bloom I, Christophersen J, Gering K (2005) Differential voltage analyses of high-power lithium-ion cells: 2. App J Power Sources 139(1–2):304–313. https://doi.org/10.1016/j.jpowsour.2004.07.022

    Article  CAS  Google Scholar 

  102. Dubarry M, Liaw BY, Chen MS, Chyan SS, Han KC, Sie WT, Wu SH (2011) Identifying battery aging mechanisms in large format Li ion cells. J Power Sources 196(7):3420–3425. https://doi.org/10.1016/j.jpowsour.2010.07.029

    Article  CAS  Google Scholar 

  103. Dubarry M, Truchot C, Liaw BY (2014) Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs. J Power Sources 258:408–419. https://doi.org/10.1016/j.jpowsour.2014.02.052

    Article  CAS  Google Scholar 

  104. Aktas S, Fray DJ, Burheim O, Fenstad J, Acma E (2006) Recovery of metallic values from spent lithium ion secondary batteries. Miner Process Ext Metal 115(2):95–100

    Article  CAS  Google Scholar 

  105. Swain B, Jeong J, Lee JC, Lee GH, Sohn JS (2007) Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J Power Sources 167:536–544

    Article  CAS  Google Scholar 

  106. Li L, Jing G, Renjie C, Feng W, Shi C, Xiaoxiao Z (2010) Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium ion batteries. Waste Mange 30:2615–2621

    Article  CAS  Google Scholar 

  107. Chen L, Tang X, Zhang Y, Li L (2011) Process for recovery of cobalt oxalate from spent lithium ion batteries. Hydrometallurgy 108:80–86

    Article  CAS  Google Scholar 

  108. Ye Y-H, Shi Y-X, Liphuat S et al (2016) Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs. Int J Heat Mass Transf 92:893–903

    Article  Google Scholar 

  109. Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley, New York

    Book  Google Scholar 

  110. Burke AF (1995) Cycle life consideration for batteries in electric and hybrid vehicles, SAE World Congress 1995, SP-1105

    Google Scholar 

  111. Schmidt P, Bitzer M, Guzzella ÁW (2010) Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries. J Power Sources 195:7634–7638

    Article  CAS  Google Scholar 

  112. Chiodo E, Lauria D, Pagano M, Pede G, Vellucci F (2013) Experimental performances and life cycle estimation of hybrid electric storage systems. In: Proceedings of IEEE international conference on clean electrical power renewable energy resources impact (ICCEP 2013), Alghero, 11–13 June 2013

    Google Scholar 

  113. Burke AF, Miller M (2013) Life cycle testing of lithium batteries for fast charging and second-use applications. In: Electric vehicle symposium & exhibition, vol 27, Barcelona, 17–20 Nov 2013

    Google Scholar 

  114. Wenzl H, Baring-Gould I, Kaiser R, Liaw BY, Lundsager P, Manwell J et al (2005) Life prediction of batteries for selecting the technically most suitable and cost effective battery. J Power Sources 144:373–384

    Article  CAS  Google Scholar 

  115. Arunachala R, Jossen A, Garche J, Makinejad K, Athlekar S (2013) Cycle life characterization of large format lithium-ion cells. In: Electric vehicle symposium & exhibition, vol 27, Barcelona, 17–20 Nov 2013

    Google Scholar 

  116. Schmalstieg J, Käbitz S, Ecker M, Sauer DU (2013) From accelerated ageing tests to a lifetime prediction model: analyzing lithium-ion batteries. In: Electric vehicle symposium & exhibition, vol 27, Barcelona, 17–20 Nov 2013

    Google Scholar 

  117. Sarasketa Zabala E, Laresgoiti I, Alava I, Rivas M, Villareal I, Blanco F (2013) Validation of the methodology for lithium-ion batteries lifetime prognosis. In: Electric vehicle symposium & exhibition, vol 27, Barcelona, 17–20 Nov 2013

    Google Scholar 

  118. Rakhmatov D, Vrudhula S, Wallach DA (2003) A model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Trans Very Large Scale Integr (VLSI) Syst 11(6):1019–1030

    Google Scholar 

  119. Rakhmatov D, Vrudhula S (2001) An analytical high-level battery model for use in energy management of portable electronic systems. In: Proceedings of international conference on computer aided design (IC-CAD01), pp 488–493

    Google Scholar 

  120. Chiodo E, Del Pizzo A, Di Noia LP, Lauria D (2013) Modeling and Bayes estimation of battery lifetime for smart grids under an inverse Gaussian model. Int Rev Electr Eng 8(4):1253–1266

    Google Scholar 

  121. Chiodo E, Lauria D, Fabrizi V, Ortenzi F, Sglavo V (2014) Battery design based upon life cycle statistics. In: Proceedings of 3rd renewable power generation conference (RPG 2014), Napoli, 24–26 Sep 2014

    Google Scholar 

  122. Wipke KB, Cuddy MR, Burch SD (1999) ADVISOR 2.1: a user-friendly advanced powertrain simulation using a combined backward/forward approach. IEEE Trans Veh Technol 48(6):1751–1761

    Google Scholar 

  123. Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140(6):1526–1533

    Article  CAS  Google Scholar 

  124. Doyle M, Newman J (1995) The use of mathematical modeling in the design of lithium/polymer battery systems. Electrochim Acta 40(13–14):2191–2196

    Article  CAS  Google Scholar 

  125. Fuller TF, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium-ion insertion cell. J Electrochem Soc 141(1):1–10

    Article  CAS  Google Scholar 

  126. Sung W, Shin C (2015) Electrochemical model of a lithium-ion battery implemented into an automotive battery management system. Comput Chem Eng 76:87–97

    Article  CAS  Google Scholar 

  127. He H, Xiong R, Fan J (2011) Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 4(4):582–598

    Article  Google Scholar 

  128. Thele M, Bohlen O, Sauer D, Karden E (2008) Development of a voltage-behavior model for NiMH batteries using an impedance-based modeling concept. J Power Sources 175(1):635–643

    Article  CAS  Google Scholar 

  129. Seaman A, Dao T, McPhee J (2014) A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J Power Sources 256:410–423

    Article  CAS  Google Scholar 

  130. Zarrin H, Farhad S, Hamdullahpur F, Chabot V, Yu A, Fowler M (2014) Effects of diffusive charge transfer and salt concentration gradient in electrolyte on li-ion battery energy and power densities. Electrochim Acta 125:117–123

    Article  CAS  Google Scholar 

  131. Tanim T, Rahn C, Wang C (2014) A reduced order electrolyte enhanced single particle lithium ion cell model for hybrid vehicle applications. In: American control conference (ACC), pp 141–146

    Google Scholar 

  132. Tatsukawa E, Tamura K (2014) Activity correction on electrochemical reaction and diffusion in lithium intercalation electrodes for discharge/charge simulation by single particle model. Electrochim Acta 115:75–85

    Article  CAS  Google Scholar 

  133. Buller S, Thele M, De Doncker RWAA, Karden E (2005) Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications. IEEE Trans Ind Appl 11(3):742–747

    Google Scholar 

  134. Singh P, Vinjamuri R, Wang X, Reisner D (2006) Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries in portable defibrillators. J Power Sources 162:829–836

    Article  CAS  Google Scholar 

  135. Kandler AS, Rahn DC, Wang C (2010) Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries. IEEE Trans Control Syst Technol 18(N 3):654–663

    Google Scholar 

  136. Kandler AS (2006) Electrochemical modeling, estimation and control of lithium-ion batteries. Pennsylvania University PhD thesis

    Google Scholar 

  137. Newman J, Thomas-Alyea KE (2004) Electrochemical systems, 3rd edn. Wiley

    Google Scholar 

  138. Sikha G, White RE, Popov BN (2005) A mathematical model for lithium-ion battery/electrochemical Capacitor hybrid System. J Electrochem Soc, A1682–A1693

    Google Scholar 

  139. Agrawal OP, Machado JAT, Sabatier J (2004) Nonlinear dynamics: introduction. Nonlinear Dyn 38(N 1–4):1–2

    Google Scholar 

  140. Podlubny I (1999) Fractional differential equations. In: Mathematics in sciences and engineering. Academic Press

    Google Scholar 

  141. Wang J, Sun X (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8(4):1110–1138

    Article  CAS  Google Scholar 

  142. Dreyer W, Jamnik J, Guhlke C, Huth R, Moškon J, Gaberšček M (2010) The thermodynamic origin of hysteresis in insertion batteries. Nat Mater 9(5):448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dreyer W, Guhlke C, Herrmann M (2011) Hysteresis and phase transition in many-particle storage systems. Continuum Mech Thermodyn 23(3):211–231

    Article  CAS  Google Scholar 

  144. Farkhondeh M, Pritzker M, Fowler M, Delacourt C (2017) Mesoscopic modeling of a LiFePO4 electrode: experimental validation under continuous and intermittent operating conditions. J Electrochem Soc 164(11):E3040–E3053

    Article  CAS  Google Scholar 

  145. Safari M, Delacourt C (2011) Modeling of a commercial graphite/LiFePO[sub 4] Cell. J Electrochem Soc 158:A562–A571

    Article  CAS  Google Scholar 

  146. Marcicki J (2012) Modeling, parametrization, and diagnostics for lithium-ion batteries with automotive applications. Dissertation, The Ohio State University

    Google Scholar 

  147. Komini Babu S, Mohamed AI, Whitacre JF, Litster S (2015) Multiple imaging mode X-ray computed tomography for distinguishing active and inactive phases in lithium-ion battery cathodes. J Power Sources 283:314–319. https://doi.org/10.1016/j.jpowsour.2015.02.086

    Article  CAS  Google Scholar 

  148. Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chemie Int Ed 47:2930–2946. https://doi.org/10.1002/anie.200702505

    Article  CAS  Google Scholar 

  149. Feng K, Ahn W, Lui G et al (2016) Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes. Nano Energy 19:187–197. https://doi.org/10.1016/j.nanoen.2015.10.025

    Article  CAS  Google Scholar 

  150. Yu S, Chung Y, Song MS et al (2012) Investigation of design parameter effects on high current performance of lithium-ion cells with LiFePO4/graphite electrodes. J Appl Electrochem 42:443–453. https://doi.org/10.1007/s10800-012-0418-0

    Article  CAS  Google Scholar 

  151. Kashkooli AG, Lui G, Farhad S et al (2016) Nano-particle size effect on the performance of Li4Ti5O12 spinel. Electrochim Acta 196:33–40. https://doi.org/10.1016/j.electacta.2016.02.153

    Article  CAS  Google Scholar 

  152. Farkhondeh M, Safari M, Pritzker M et al (2013) Full-range simulation of a commercial LiFePO4 electrode accounting for bulk and surface effects: a comparative analysis. J Electrochem Soc 161:A201–A212. https://doi.org/10.1149/2.094401jes

    Article  CAS  Google Scholar 

  153. Mastali Majdabadi M, Farhad S, Farkhondeh M et al (2015) Simplified electrochemical multi-particle model for LiFePO4 cathodes in lithium-ion batteries. J Power Sources 275:633–643. https://doi.org/10.1016/j.jpowsour.2014.11.066

    Article  CAS  Google Scholar 

  154. Jung S (2016) Computational study about the effect of electrode morphology on the performance of lithium-ion batteries. Int J Energy Res 40:1073–1084. https://doi.org/10.1002/er.3501

    Article  CAS  Google Scholar 

  155. Martin MA, Chen C-F, Mukherjee PP et al (2015) Morphological influence in lithium-ion battery 3D electrode architectures. J Electrochem Soc 162:A991–A1002. https://doi.org/10.1149/2.0631506jes

    Article  CAS  Google Scholar 

  156. Chung D-WD-WD-W, Shearing PR, Brandon NP et al (2014) Particle size polydispersity in Li-ion batteries. J Electrochem Soc 161:A422–A430. https://doi.org/10.1149/2.097403jes

    Article  CAS  Google Scholar 

  157. Liu Z, Mukherjee PP (2014) Microstructure evolution in lithium-ion battery electrode processing. J Electrochem Soc 161:E3248–E3258. https://doi.org/10.1149/2.026408jes

    Article  CAS  Google Scholar 

  158. Yan B, Lim C, Yin L, Zhu L (2012) Three dimensional simulation of galvanostatic discharge of LiCoO2 cathode based on X-ray nano-CT images. J Electrochem Soc 159:A1604–A1614. https://doi.org/10.1149/2.024210jes

    Article  CAS  Google Scholar 

  159. Yan B, Lim C, Song Z, Zhu L (2015) Analysis of polarization in realistic Li ion battery electrode microstructure using numerical simulation. Electrochim Acta 185:125–141. https://doi.org/10.1016/j.electacta.2015.10.086

    Article  CAS  Google Scholar 

  160. Guo M, Sikha G, White RE (2011) Single-particle model for a lithium-ion cell: thermal behavior. J Electrochem Soc 158:A122. https://doi.org/10.1149/1.3521314

    Article  CAS  Google Scholar 

  161. Ma Y, Ru J, Yin M et al (2016) Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries. J Appl Electrochem. https://doi.org/10.1007/s10800-016-0998-1

  162. Piller S, Perrin M, Jossen A (2001) Methods for state-of-charge determination and their applications. J Power Sources 96(1):113–120

    Article  CAS  Google Scholar 

  163. Williard N, He W, Pecht M (2012) Model based battery management system for condition based maintenance. In: Proceedings of the MFPT, vol 2012

    Google Scholar 

  164. Burgess WL (2009) Valve regulated lead acid battery float service life estimation using a kalman filter. J Power Sources 191(1):16–21

    Article  CAS  Google Scholar 

  165. Hu C, Youn BD, Chung J (2012) A multiscale framework with extended kalman filter for lithium-ion battery soc and capacity estimation. Appl Energy 92(4):694–704

    Article  Google Scholar 

  166. Plett GL (2004) Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 3. state and parameter estimation. J Power Sources 134(2):277–292

    Google Scholar 

  167. Cui H, Miao Q et al (2012) Application of unscented particle filter in remaining useful life prediction of lithium-ion batteries 2012:1–6

    Google Scholar 

  168. He W, Williard N et al (2011) Prognostics of lithium-ion batteries based on dempster-shafer theory and the bayesian monte carlo method. J Power Sources 196(23):10314–10321

    Article  CAS  Google Scholar 

  169. Liu D, Pang J et al (2013) Prognostics for state of health estimation of lithium-ion batteries based on combination gaussian process functional regression. Microelectron Reliab 53(6):832–839

    Article  CAS  Google Scholar 

  170. Jayam AP, Ferdowsi M (2008) Comparison of NiMH and Li-Ion batteries in automotive applications. In: Proceedings of the IEEE vehicle power and propulsion conference, pp 1–6. IEEE Xplore Digital Library

    Google Scholar 

  171. Tudoroiu R-E, Zaheeruddin M, Radu M-S, Tudoroiu N (2018) Real-time implementation of an extended kalman filter and a pi observer for state estimation of rechargeable li-ion batteries in hybrid electric vehicle applications—a case study. J Batteries 4(2):19. https://doi.org/10.3390/batteries4020019

  172. Farag M (2013) Lithium-Ion batteries, modeling and state of charge estimation. Master’s thesis. McMaster University of Hamilton, Hamilton, ON, Canada

    Google Scholar 

  173. Ramadesigan V, Northrop PWC, De S et al (2012) Modeling and simulation of lithium-ion batteries from a systems engineering perspective. J Electrochem Soc 159:R31. https://doi.org/10.1149/2.018203jes

    Article  CAS  Google Scholar 

  174. Cannarella J, Leng CZ, Arnold CB (2014) On the coupling between stress and voltage in lithium-ion pouch cells 9115:91150K. https://doi.org/10.1117/12.2055152

    Article  Google Scholar 

  175. Muralidharan N, Carter R, Oakes L et al (2016) Strain engineering to modify the electrochemistry of energy storage electrodes. Sci Rep 6:27542. https://doi.org/10.1038/srep27542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jacques E, Lindbergh G, Zenkert D et al (2015) Piezo-electrochemical energy harvesting with lithium-intercalating carbon fibers. ACS Appl Mater Interfaces 7:13898–13904. https://doi.org/10.1021/acsami.5b02585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sheldon BW, Soni SK, Xiao X, Qi Y (2012) Stress contributions to solution thermodynamics in li-Si alloys. Electrochem Solid-State Lett 15:A9. https://doi.org/10.1149/2.016201esl

    Article  CAS  Google Scholar 

  178. Sethuraman VA, Srinivasan V, Bower AF, Guduru PR (2010) In situ measurements of stress-potential coupling in Lithiated silicon. J Electrochem Soc 157:A1253–A1261. https://doi.org/10.1149/1.3489378

  179. Sethuraman VA, Chon MJ, Shimshak M, Srinivasan V, Guduru PR (2010) In situ measurements of stress evolution in silicon thin films during electrochemical Lithiation and Delithiation. J Power Sources 195(15):5062

    Article  CAS  Google Scholar 

  180. Massey C, McKnight G, Barvosa-Carter W, Liu P (2005) Reversible work by electrochemical intercalation of graphitic materials 5759:322–330. https://doi.org/10.1117/12.601491

    Article  CAS  Google Scholar 

  181. Cannarella J, Arnold CB (2015) Toward low-frequency mechanical energy harvesting using energy-dense Piezoelectrochemical materials. Adv Mater n/a-n/a. https://doi.org/10.1002/adma.201502974

  182. Greve L, Fehrenbach C (2012) Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells. J Power Sources 214:377–385

    Article  CAS  Google Scholar 

  183. Sahraei E, Campbell J, Wierzbicki T (2012) Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions. J Power Sources 220:360–372

    Article  CAS  Google Scholar 

  184. Sahraei E, Meier J, Wierzbicki T (2014) Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells. J Power Sources 247:503–516

    Article  CAS  Google Scholar 

  185. Lai W-J, Ali MY, Pan J (2014) Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions. J Power Sources 245:609–623

    Article  CAS  Google Scholar 

  186. Sahraei E, Hill R, Wierzbicki T (2012) Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity. J Power Sources 201:307–321

    Article  CAS  Google Scholar 

  187. Wierzbicki T, Sahraei E (2013) Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells. J Power Sources 241:467–476

    Article  CAS  Google Scholar 

  188. Cannarella J, Arnold CB (2014) State of health and charge measurements in lithium-ion batteries using mechanical stress. J Power Sources 269:7–14

    Article  CAS  Google Scholar 

  189. Cannarella J, Leng CZ, Arnold CB (2014) On the coupling between stress and voltage in lithium-ion pouch cells. Proc SPIE 9115:91150K

    Article  Google Scholar 

  190. Sethuraman VA, Chon MJ, Shimshak M, Van Winkle N, Guduru PR (2010) In situ measurement of biaxial modulus of Si anode for Li-ion batteries. Electrochem Commun 12(11):1614–1617

    Article  CAS  Google Scholar 

  191. Amanieu H-Y, Aramfard M, Rosato D, Batista L, Rabe U, Lupascu DC (2015) Mechanical properties of commercial Mn2O4 cathode under different states of charge. Acta Mater 89:153–162

    Article  CAS  Google Scholar 

  192. Tao X, Du J, Sun Y, Zhou S, Xia Y, Huang H, Gan Y, Zhang W, Li X (2013) Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte. Adv Funct Mater 23(37):4745–4751

    CAS  Google Scholar 

  193. Xu J, Liu BH, Hu DY (2016) State of charge dependent mechanical integrity behavior of 18650 Lithium-ion batteries. Sci Rep 6:11

    Article  CAS  Google Scholar 

  194. McDowell MT, Lee SW, Ryu I, Wu H, Nix WD, Choi JW, Cui Y (2011) Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. Nano Lett 11(9):4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414

    Article  CAS  Google Scholar 

  196. Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  197. Chang W-S, Park C-M, Kim J-H, Kim Y-U, Jeong G, Sohn H-J (2012) Quartz (SiO2): a new energy storage anode material for li-ion batteries. Energy Environ Sci 5:6895–6899

    Article  CAS  Google Scholar 

  198. Yan N, Wang F, Zhong H, Liu Y, Wang Y, Hu L, Chen Q (2013) Hollow porous SiO2 Nanocubes towards high-performance anodes for Lithium-ion batteries. Sci Rep 3:1568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Sun Q, Zhang B, Fu Z-W (2008) Lithium electrochemisty of SiO2 thin film electrode for lithium-ion batteries. Appl Surf Sci 254:3774–3779

    Article  CAS  Google Scholar 

  200. Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M (2005) Analysis of SiO anodes for lithium-ion batteries. J Electrochem Soc 152(10):A2089–A2091

    Article  CAS  Google Scholar 

  201. Favors Z, Wang W, Bay HH, George A, Ozkan M, Ozkan CS (2014) Stable cycling of SiO2 nanotubes as high-performance anodes for Lithium-ion batteries. Sci Rep 4:4605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L (2008) Electrochemical reduction of Nano-SiO2 in hard carbon as anode material for Lithium ion batteries. Electrochem Commun 10:1876–1878

    Article  CAS  Google Scholar 

  203. Nadimpalli SPV, Tripuraneni R, Sethuraman VA (2015) Real-time stress measurements in germanium thin film electrodes during electrochemical Lithiation/Delithiation cycling. J Electrochem Soc 162(4):A2840–A2846

    Article  CAS  Google Scholar 

  204. Zhao K, Wang WL, Gregoire J, Pharr M, Suo Z, Vlassak JJ, Kaxiras E (2011) Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. Nano Lett 11(7):2962

    Article  CAS  PubMed  Google Scholar 

  205. Al-Obeidi A, Kramer D, Thompson CV, Monig R (2015) Mechanical stresses and morphology evolution in germanium thin film electrodes during Lithiation and Delithiation. J Power Sources 297:472–480

    Article  CAS  Google Scholar 

  206. Boles ST, Sedlmayr A, Kraft O, Monig R (2012) In situ cycling and mechanical testing of silicon nanowire anodes for Lithium-ion battery applications. Appl Phys Lett 100:243901

    Article  CAS  Google Scholar 

  207. Sheth J, Karan NK, Abraham DP, Nguyen CC, Lucht BL, Sheldon BW, Guduru PR (2016) In situ stress evolution in Li1+xMn2O4 thin films during electrochemical cycling in li-ion cells. J Electrochem Soc 163(13):A2524–A2530

    Article  CAS  Google Scholar 

  208. Mukhopadhyay A, Sheldon BW (2014) Prog Mater Sci 63:58–116

    Article  CAS  Google Scholar 

  209. Bhandakkar TK, Gao H (2010) Int J Solids Struct 47:1424–1434

    Article  CAS  Google Scholar 

  210. Bhandakkar TK, Gao H (2011) Int J Solids Struct 48:2304–2309

    Article  CAS  Google Scholar 

  211. Haftbaradaran H, Xiao XC, Gao HJ (2013) Model Simul Mater Sci Eng 21:9

    Article  Google Scholar 

  212. Zhao K, Pharr M, Hartle L, Vlassak JJ, Suo Z (2012) J Power Sources 218:6–14

    Article  CAS  Google Scholar 

  213. Cheng Y, Verbrugge MW (2009) J Power Sources 190:453–460

    Article  CAS  Google Scholar 

  214. Cheng Y, Verbrugge MW (2008) J Appl Phys 104:083521

    Article  CAS  Google Scholar 

  215. Christensen J, Newman J (2006) J Solid State Electrochem 10:293–319

    Article  CAS  Google Scholar 

  216. ChiuHuang C, Huang HS (2015) J Solid State Electrochem 19:2245–2253

    Article  CAS  Google Scholar 

  217. Tungyand C (1993) Mech Mater 14:257–268

    Article  Google Scholar 

  218. Maranchi JP, Hepp AF, Evans AG et al (2006) Interfacial properties of the a-Si/Cu: active-inactive thin-film anode system for lithium-ion batteries. J Electrochem Soc 153:A1246–A1253

    Article  CAS  Google Scholar 

  219. Xiao X, Liu P, Verbrugge MW, Haftbaradaran H, Gao H (2011) Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J Power Sources 196:1409–1416

    Article  CAS  Google Scholar 

  220. Maranchi JP, Hepp AF, Kumta PN (2003) High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem Solid State 6:A198–A201

    Article  CAS  Google Scholar 

  221. Haftbaradaran H, Xiao X, Verbrugge MW et al (2012) Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands. J Power Sources 206:357–366

    Article  CAS  Google Scholar 

  222. Pal S, Damle SS, Patel SH et al (2014) Modeling the delamination of amorphous-silicon thin film anode for lithium-ion battery. J Power Sources 246:149–159

    Article  CAS  Google Scholar 

  223. Birchenall CE (1984) Topics in metallurgical thermodynamics-Devereux. Am Sci 72:412–413

    Google Scholar 

  224. Baggetto L, Niessen RAH, Roozeboom F, Notten PHL (2008) High energy density all-solid-state batteries: a challenging concept towards 3D integration. Adv Funct Mater 18:1057–1066

    Article  CAS  Google Scholar 

  225. Aifantis KE, Hackney SA, Kumar RV (2010) High energy density lithium batteries: materials, engineering, applications. John 2010:53–80

    Google Scholar 

  226. Yao Y, Mcdowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11:2949–2954

    Article  CAS  PubMed  Google Scholar 

  227. Liu Y, Duan H (2016) Stress analysis of electrode particles in lithium-ion batteries, alkali-ion batteries

    Google Scholar 

  228. Liu Y, Lv P, Ma J, Bai R, Duan HL (2014) Stress fields in hollow core-shell spherical electrodes of lithium ion batteries. Proc R Soc A 470

    Google Scholar 

  229. Liu Z, Zhou J, Chen B, Zhu J (2015) Interaction between dislocation mechanics on diffusion induced stress and electrochemical reaction in a spherical lithium ion battery electrode. RSC Adv 5:74835–74843

    Article  CAS  Google Scholar 

  230. Zhang T, Guo Z, Wang Y, Zhu J (2014) Effect of reversible electrochemical reaction on Li diffusion and stresses in cylindrical Li-ion battery electrodes. J Appl Phys 115:083504–083512

    Article  CAS  Google Scholar 

  231. Xia Y, Wierzbicki T, Sahraei E, Zhang X (2014) Damage of cells and battery packs due to ground impact. J Power Sources 267:78–97

    Article  CAS  Google Scholar 

  232. Choi HY, Lee I, Lee JS, Kim YM, Kim H (2013) A study on mechanical characteristics of lithium-polymer pouch cell battery for electric vehicle. In: Paper No. 13-0115, Proceedings of 23rd international technical conference on the enhanced safety of vehicles (ESV 2013)

    Google Scholar 

  233. Rasiman MSA, Badrudin W, Kudin TIT, Yaakob MK, Taib MFM, Yahya MZA, Hassan OH (2014) Determination of Electronic Structure and Band Gap of Li2MnP2O7 via First-Principle Study. Integr Ferroelectr 155:71–79

    Article  CAS  Google Scholar 

  234. Barpanda P, Ye T, Lu J, Yamada Y, Chung SC, Nishimura S, Okubo M, Zhou H, Yamad A (2013) Splash combustion synthesis and exploration of alkali metal pyrophosphate (A2MP2O7, A = Li, Na) cathodes. ECS Trans 50:71–77

    Article  CAS  Google Scholar 

  235. Lapshin AE, Petrova MA (2012) Mixed alkali-zinc diphosphates: synthesis, structure, and properties. Glas Phys Chem 38:491–503

    Article  CAS  Google Scholar 

  236. Baitahe R, Yakorn NV (2016) Dielectric properties and characterizations of binary Cu(2-x) MgxP2O7 pyrophosphates. Ferroelectrics 490:174–183

    Article  CAS  Google Scholar 

  237. Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025

    Article  CAS  Google Scholar 

  238. Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2(1):196–223

    Article  CAS  Google Scholar 

  239. Xu W, Wang JL, Ding F, Chen XL, Nasybutin E, Zhang YH, Zhang JG (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537

    Article  CAS  Google Scholar 

  240. Lin DC, Liu YY, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206

    Article  CAS  PubMed  Google Scholar 

  241. Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473

    Article  CAS  PubMed  Google Scholar 

  242. Haregewoin AM, Wotangoa AS, Hwang BJ (2016) Energy Environ Sci 9:1955–1988

    Article  CAS  Google Scholar 

  243. Leung K (2013) Chem Phys Lett 568–569:1–8

    Article  CAS  Google Scholar 

  244. Endo E, Ata M, Tanaka K, Sekai K (1998) J Electrochem Soc 145:3757–3764

    Article  CAS  Google Scholar 

  245. Li T, Balbuena PB (2000) Chem Phys Lett 317:421–429

    Article  CAS  Google Scholar 

  246. Wang Y, Balbuena PB (2002) J Phys Chem B 106:4486–4495

    Article  CAS  Google Scholar 

  247. Wang Y, Nakamura S, Ue M, Balbuena PB (2001) J Am Chem Soc 123:11708–11718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Han YK, Lee SU (2004) Theor Chem Acc 112:106–112

    Article  CAS  Google Scholar 

  249. Wang Y, Nakamura S, Tasaki K, Balbuena PB (2002) J Am Chem Soc 124:4408–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Vollmer JM, Curtiss LA, Vissers DR, Amine K (2004) J Electrochem Soc 151:A178–A183

    Article  CAS  Google Scholar 

  251. Park MH, Lee YS, Lee H, Han YK (2011) J Power Sources 196:5109–5114

    Article  CAS  Google Scholar 

  252. Cammann K (2001) Instrumentelle analytische chemie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  253. Luo H, Jiang X, Xia Y, Zhou Q (2015) Fracture mode analysis of lithium-ion battery under mechanical loading. In: Proceedings of the ASME 2015 international mechanical engineering congress and exposition (IMECE 2015)

    Google Scholar 

  254. Xu J, Wang L, Guan J, Yin S (2016) Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries. Mater Des 95:319–328

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Writer, B. (2019). Models, SOC, Maximum, Time, Cell, Data, Parameters. In: Lithium-Ion Batteries. Springer, Cham. https://doi.org/10.1007/978-3-030-16800-1_4

Download citation

Publish with us

Policies and ethics