Skip to main content

Cathode Materials, Samples, Pristine, Layered, Doping, Discharge Capacity

  • Chapter
  • First Online:
Lithium-Ion Batteries
  • 111k Accesses

Abstract

LiCoO2 has been commonly used in Li-ion batteries (Li-ion batteries) designed for portable electronics as one of the earliest-emerged cathode materials. The inherent shortcomings with toxicity, low capacity of LiCoO2, and high cost, severely deter its widespread application in lithium-ion batteries (Li-ion batteries).

This book was machine-generated

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Main Document References

  1. Xiao Y, Xiang W, Zhang J et al (2016) Ionics 22:1361. https://doi.org/10.1007/s11581-016-1659-4

    Article  CAS  Google Scholar 

  2. Xiao Y, Zhu Y, Gao T et al (2017) Ionics 23:27. https://doi.org/10.1007/s11581-016-1804-0

    Article  CAS  Google Scholar 

  3. Iqbal A, Iqbal Y, Khan AM et al (2017) Ionics 23:1995. https://doi.org/10.1007/s11581-017-2062-5

    Article  CAS  Google Scholar 

  4. Guo J, Qin X, Zong B et al (2018) Ionics 24:2241. https://doi.org/10.1007/s11581-017-2374-5

    Article  CAS  Google Scholar 

  5. Zhou L, Liu J, Huang L et al (2017) J Solid State Electrochem 21:3467. https://doi.org/10.1007/s10008-017-3688-y

    Article  CAS  Google Scholar 

  6. Ma Y, Wang L, Zuo X et al (2018) J Solid State Electrochem 22:1963. https://doi.org/10.1007/s10008-018-3884-4

    Article  CAS  Google Scholar 

  7. Xiang M, Tao W, Wu J et al (2016) Ionics 22:1003. https://doi.org/10.1007/s11581-016-1639-8

    Article  CAS  Google Scholar 

  8. Qu L, Li M, Bian L et al (2017) J Solid State Electrochem 21:3659. https://doi.org/10.1007/s10008-017-3706-0

    Article  CAS  Google Scholar 

  9. Sun CF, Amruthnath N, Yu JS et al (2016) Ionics 22:1501. https://doi.org/10.1007/s11581-016-1751-9

    Article  CAS  Google Scholar 

  10. Li JLS, Xu S, Huang S, Zhu J (2017) Nanoscale Res Lett 12:414. https://doi.org/10.1186/s11671-017-2172-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu S, Lu L, Jiang X et al (2016) J Appl Electrochem 46:279. https://doi.org/10.1007/s10800-016-0929-1

    Article  CAS  Google Scholar 

  12. Ross N, Iwuoha E (2018) Nano transition metal alloy functionalized lithium manganese oxide cathodes-system for enhanced lithium-ion battery power densities. In: Ramasami P, Gupta Bhowon M, Jhaumeer Laulloo S, Li Kam Wah H (eds) Emerging trends in chemical sciences. ICPAC 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-60408-4_13

  13. Zhang G, Han E, Zhu L et al (2017) Ionics 23:2259. https://doi.org/10.1007/s11581-017-2069-y

    Article  CAS  Google Scholar 

  14. Li S, Lei D, Xue Y et al (2017) Ionics 23:1979. https://doi.org/10.1007/s11581-017-2060-7

    Article  CAS  Google Scholar 

  15. Wang M, Chen Y, Luo M et al (2016) J Appl Electrochem 46:907. https://doi.org/10.1007/s10800-016-0964-y

    Article  CAS  Google Scholar 

  16. Jiao C, Meng T, Lu H et al (2017) J Solid State Electrochem 21:495. https://doi.org/10.1007/s10008-016-3393-2

    Article  CAS  Google Scholar 

  17. Zhang Y, Zhu T, Lin L et al (2017) J Nanopart Res 19:373. https://doi.org/10.1007/s11051-017-4033-1

    Article  CAS  Google Scholar 

  18. Han E, Lu M, Zhu L et al (2016) Ionics 22:2299. https://doi.org/10.1007/s11581-016-1786-y

    Article  CAS  Google Scholar 

  19. Deng MM, Zou BK, Shao Y et al (2017) J Solid State Electrochem 21:1733. https://doi.org/10.1007/s10008-017-3545-z

    Article  CAS  Google Scholar 

  20. Zhang Y, Liang Q, Huang C et al (2018) J Solid State Electrochem 22:1995. https://doi.org/10.1007/s10008-018-3905-3

    Article  CAS  Google Scholar 

  21. Liu Y, Liu D, Zhang Z et al (2018) Ionics 24:2251. https://doi.org/10.1007/s11581-017-2352-y

    Article  CAS  Google Scholar 

  22. Fan G, Wen Y, Liu B et al (2018) J Nanopart Res 20:43. https://doi.org/10.1007/s11051-018-4147-0

    Article  CAS  Google Scholar 

  23. Li S, Yang Y, Xie M et al (2017) Rare Met 36:277. https://doi.org/10.1007/s12598-016-0859-4

    Article  CAS  Google Scholar 

  24. Li S, Liu X, Liu G et al (2017) Ionics 23:19. https://doi.org/10.1007/s11581-016-1818-7

    Article  CAS  Google Scholar 

  25. Van Le T, Nguyen TA, Thi Nguyen NM et al (2016) Bull Mater Sci 39:1177. https://doi.org/10.1007/s12034-016-1264-1

  26. Kazda T, Čudek P, Vondrák J et al (2018) J Solid State Electrochem 22:537. https://doi.org/10.1007/s10008-017-3791-0

    Article  CAS  Google Scholar 

  27. Huynh LTN, Tran TTD, Nguyen HHA et al (2018) J Solid State Electrochem 22:2247. https://doi.org/10.1007/s10008-018-3934-y

    Article  CAS  Google Scholar 

  28. Zhu X, Lin T, Manning E et al (2018) J Nanopart Res 20:160. https://doi.org/10.1007/s11051-018-4235-1

    Article  CAS  Google Scholar 

  29. Mou J, Wu H, Deng Y et al (2017) J Solid State Electrochem 21:2849. https://doi.org/10.1007/s10008-017-3608-1

    Article  CAS  Google Scholar 

  30. Kong JZ, Ren C, Jiang YX et al (2016) J Solid State Electrochem 20:1435. https://doi.org/10.1007/s10008-016-3150-6

    Article  CAS  Google Scholar 

  31. Vu DL, Lee J (2018) J Solid State Electrochem 22:1165. https://doi.org/10.1007/s10008-017-3863-1

    Article  CAS  Google Scholar 

  32. Li QL, Xu WQ, Bai HL et al (2016) Ionics 22:1343. https://doi.org/10.1007/s11581-016-1655-8

    Article  CAS  Google Scholar 

  33. Zhu W, Zhuang Z, Lin Z et al (2016) Ionics 22:1533. https://doi.org/10.1007/s11581-016-1681-6

    Article  CAS  Google Scholar 

  34. Li Y, Chang X, Xu Q et al (2018) J Nanopart Res 20:22. https://doi.org/10.1007/s11051-017-4114-1

    Article  CAS  Google Scholar 

  35. Peng Z, Wang G, Cao Y et al (2016) J Solid State Electrochem 20:2865. https://doi.org/10.1007/s10008-016-3289-1

    Article  CAS  Google Scholar 

  36. Xu X, Deng S, Wang H et al (2017) Nano-Micro Lett 9:22. https://doi.org/10.1007/s40820-016-0123-3

    Article  CAS  Google Scholar 

  37. Li F, Yang G, Jia G et al (2017) J Appl Electrochem 47:1189. https://doi.org/10.1007/s10800-017-1118-6

    Article  CAS  Google Scholar 

  38. Mezaal MA, Qu L, Li G et al (2017) J Solid State Electrochem 21:2219. https://doi.org/10.1007/s10008-017-3564-9

    Article  CAS  Google Scholar 

  39. Luo M, Zhang R, Gong Y et al (2018) Ionics 24:967. https://doi.org/10.1007/s11581-017-2269-5

    Article  CAS  Google Scholar 

  40. Krishna Kumar S, Ghosh S, Martha SK (2017) Ionics 23:1655. https://doi.org/10.1007/s11581-017-2018-9

    Article  CAS  Google Scholar 

  41. Sivlin D, Keles O (2018) Effect of sonication power on Al2O3 coated LiNi0.5Mn0.3Co0.2O2 cathode material for LIB. In: Sun Z et al (eds) Energy technology 2018. TMS 2018. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-319-72362-4_48

  42. Shen B, Zuo P, Fan P et al (2017) J Solid State Electrochem 21:1195. https://doi.org/10.1007/s10008-016-3475-1

    Article  CAS  Google Scholar 

  43. Qiu Z, Zhang Y, Dong P et al (2017) J Solid State Electrochem 21:3037. https://doi.org/10.1007/s10008-017-3643-y

    Article  CAS  Google Scholar 

  44. Mezaal MA, Qu L, Li G et al (2017) J Solid State Electrochem 21:145. https://doi.org/10.1007/s10008-016-3345-x

    Article  CAS  Google Scholar 

  45. Xiang Y, Wu X (2018) Ionics 24:83. https://doi.org/10.1007/s11581-017-2189-4

    Article  CAS  Google Scholar 

  46. Yang XQ, Tang ZF, Wang HY et al (2016) Ionics 22:2235. https://doi.org/10.1007/s11581-016-1792-0

    Article  CAS  Google Scholar 

  47. Xiao Z, Hu C, Song L et al (2018) Ionics 24:91. https://doi.org/10.1007/s11581-017-2178-7

    Article  CAS  Google Scholar 

  48. Pineda-Aguilar N, Gallegos-Sánchez VJ, Sánchez EM et al (2017) J Sol-Gel Sci Technol 83:405. https://doi.org/10.1007/s10971-017-4398-8

    Article  CAS  Google Scholar 

  49. Zhou F, Xu L, Kong J (2018) J Solid State Electrochem 22:943. https://doi.org/10.1007/s10008-017-3837-3

    Article  CAS  Google Scholar 

  50. Yoon S (2016) J Appl Electrochem 46:479. https://doi.org/10.1007/s10800-016-0919-3

    Article  CAS  Google Scholar 

  51. Notake K, Gunji T, Kokubun H et al (2016) J Appl Electrochem 46:267. https://doi.org/10.1007/s10800-016-0930-8

    Article  CAS  Google Scholar 

  52. Rajammal K, Sivakumar D, Duraisamy N et al (2017) Bull Mater Sci 40:171. https://doi.org/10.1007/s12034-017-1365-5

    Article  CAS  Google Scholar 

  53. Sa Q, Gratz E, Heelan JA et al (2016) J Sustain Metall 2:248. https://doi.org/10.1007/s40831-016-0052-x

    Article  Google Scholar 

Other Bibliographic References

  1. Zhang X, Cheng F, Yang J, Chen J (2013) LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett 13:2822–2825

    Article  CAS  PubMed  Google Scholar 

  2. Wu WW, Xiang HF, Zhong GB, Su W, Tang W, Zhang Y, Yu Y, Chen CH (2014) Ordered LiNi0.5Mn1.5O4 hollow microspheres as high-rate 5 V cathode materials for lithium ion batteries. Electrochim Acta 119:206–213

    Article  CAS  Google Scholar 

  3. Wen W, Wang X, Chen S, Shu H, Yang X (2015) Design and preparation of spherical high voltage LiNi0.5Mn1.5O4 with a novel concentration-gradient shell for lithium ion batteries. J Power Sources 281:85–93

    Article  CAS  Google Scholar 

  4. Li J, Xiong S, Liu Y, Ju Z, Qian Y (2013) Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Ener 2:1249–1260

    Article  CAS  Google Scholar 

  5. Zhang J, Wu Z, Hua W, Liu H, Zhong B (2015) High-performance porous spherical cathode materials based on CaCO3-template synthesis of LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries. Ionics 21:3151–3158

    Article  CAS  Google Scholar 

  6. Luo H, Nie P, Shen L, Li H, Deng H, Zhu Y, Zhang X (2015) Synthesis of LiNi0.5Mn1.5O4 hollow microspheres and their lithium-storage properties. Chem Electro Chem 2:127–133

    CAS  Google Scholar 

  7. Luo D, Li G, Guan X, Yu C, Zheng J, Zhang X, Li L (2013) Novel synthesis of Li1.2Mn0.4Co0.4O2 with an excellent electrochemical performance from −10.4 to 45.4 ℃. J Mater Chem A 1:1220–1227

    Article  CAS  Google Scholar 

  8. Sun Y, Yang Y, Zhao X, Shao H (2011) Synthesis and electrochemical characterization of LiNi0.5Mn1.5O4 by one-step precipitation method with ammonium carbonate as precipitating agent. Electrochim Acta 56:5934–5939

    Article  CAS  Google Scholar 

  9. Wen W, Chen S, Fu Y, Wang X, Shu H (2015) A core–shell structure spinel cathode material with a concentration-gradient shell for high performance lithium-ion batteries. J Power Sources 274:219–228

    Article  CAS  Google Scholar 

  10. Pan J, Deng J, Yao Q, Zou Y, Wang Z, Zhou H, Sun L, Rao G (2015) Novel LiNi0.5Mn1.5O4 porous microellipsoids as high-performance cathode materials for lithium ion batteries. J Power Sources 288:353–358

    Article  CAS  Google Scholar 

  11. Xue L, Liao Y, Yang L, Li X, Li W (2014) Improved rate performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery by carbon coating. Ionics 21:1269–1275

    Article  CAS  Google Scholar 

  12. Boesenberg U, Falk M, Ryan CG, Kirkham R, Menzel M, Janek J, Fröba M, Falkenberg G, Fittschen UEA (2015) Correlation between chemical and morphological heterogeneities in LiNi0.5Mn1.5O4 spinel composite electrodes for lithium-ion batteries determined by micro-X-ray fluorescence analysis. Chem Mater 27:2525–2531

    Article  CAS  Google Scholar 

  13. Deng S, Mao D, Wang H, Wang B, Liu J, Ma Y, Yan H (2016) Preparation and electrochemical properties of double-shell LiNi0.5Mn1.5O4 hollow microspheres as cathode materials for Li-ion batteries. RSC Adv 6:45369–45375

    Article  CAS  Google Scholar 

  14. Zhou L, Zhao D, Lou X (2012) LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem Int Ed 124:243–245

    Article  Google Scholar 

  15. Zhou L, Zhao D, Lou X (2012) Double-shelled CoMn2O4 hollow Microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater 24:745–748

    Article  CAS  PubMed  Google Scholar 

  16. Luo H, Nie P, Shen L, Li H, Deng H, Zhu Y, Zhang X (2015) Synthesis of LiNi0.5Mn1.5O4 hollow microspheres and their lithium-storage properties. ChemElectroChem 2:127–133

    Article  CAS  Google Scholar 

  17. Wang Z, Zhou L, Lou X (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24:1903–1911

    Article  CAS  PubMed  Google Scholar 

  18. Hwang BJ, Santhanam R, Hu SG (2002) Synthesis and characterization of multidoped lithium manganese oxide spinel, Li1.02Co0.1Ni0.1Mn1.8O4, for rechargeable lithium batteries. J Power Sources 108:250–255. https://doi.org/10.1016/S0378-7753(02)00023-X

    Article  CAS  Google Scholar 

  19. Göktepe H, Şahan H, Patat Ş, Ülgen A (2009) Enhanced cyclability of triple-metal-doped LiMn2O4 spinel as the cathode material for rechargeable lithium batteries. Ionics (Kiel) 15:233–239. https://doi.org/10.1007/s11581-008-0265-5

    Article  CAS  Google Scholar 

  20. Iqbal A, Iqbal Y, Chang L, Ahmed S, Tang Z, Gao Y (2012) Enhanced electrochemical performance of La- and Zn-co-doped LiMn2O4 spinel as the cathode material for lithium-ion batteries. J Nanopart Res 14:1206. https://doi.org/10.1007/s11051-012-1206-9

    Article  CAS  Google Scholar 

  21. Hernan L, Morales J, Sanchez L, Castellon ER, Aranda MAG (2002) Synthesis, characterization and comparative study of the electrochemical properties of doped lithium manganese spinels as cathodes for high voltage lithium batteries. J Mater Chem 12:734–741

    Article  CAS  Google Scholar 

  22. Jayaprakash N, Kalaiselvi N, Gangulibabu Bhuvaneswari D (2011) Effect of mono- (Cr) and bication (Cr, V) substitution on LiMn2O4 spinel cathodes. J Solid State Electrochem 15:1243–1251. https://doi.org/10.1007/s10008-010-1194-6

    Article  CAS  Google Scholar 

  23. Xu Y, Wan L, Liu J, Zeng L, Yang Z (2017) γ-butyrolactone and glutaronitrile as 5 V electrolyte additive and its electrochemical performance for LiNi0.5Mn1.5O4. J Alloys Compd 698:207–214. https://doi.org/10.1016/j.jallcom.2016.11.381

    Article  CAS  Google Scholar 

  24. Haridasa AK, Sharma CS, Rao TN (2016) Caterpillar-like sub-micron LiNi0.5Mn1.5O4 structures with site disorder and excess Mn3+ as high performance cathode material for lithium ion batteries. Electrochim Acta 212:500–509. https://doi.org/10.1016/j.electacta.2016.07.039

    Article  CAS  Google Scholar 

  25. Yi T-F, Mei J, Zhu Y-R (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sources 316:85–105. https://doi.org/10.1016/j.jpowsour.2016.03.070

    Article  CAS  Google Scholar 

  26. Qian Y, Deng Y, Wan L, Xu H, Qin X, Chen G (2014) Investigation of the effect of extra lithium addition and post-annealing on the electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. J Phys Chem C 118(29):15581–15589. https://doi.org/10.1021/jp503584k

    Article  CAS  Google Scholar 

  27. Deng Y-F, Zhao S-X, Zhai P-Y, Cao G, Nan C-W (2015) Impact of lithium excess on the structural and electrochemical properties of LiNi0.5Mn1.5O4 high-voltage cathode material. J Mater Chem A 3(40):20103–20107. https://doi.org/10.1039/C5TA06339F

    Article  CAS  Google Scholar 

  28. Liu X, Huang T, Yu A (2015) Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochim Acta 163:82–92

    Article  CAS  Google Scholar 

  29. Lu C, Wu H, Zhang Y, Liu H, Chen B, Wu N, Wang S (2014) Cerium fluoride coated layered oxide Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J Power Sources 267:682–691

    Article  CAS  Google Scholar 

  30. Kang SH, Johnson CS, Vaughey JT, Amine K, Thackeray MM (2006) The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3·0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J Electrochem Soc 153:A1186–A1192

    Article  CAS  Google Scholar 

  31. Kang SH, Thackeray MM (2008) Stabilization of xLi2MnO3 (1−x)LiMO2 electrode surfaces (M = Mn, Ni, Co) with mildly acidic fluorinated solutions. J Electrochem Soc 155:A269–A275

    Article  CAS  Google Scholar 

  32. He W, Yuan D, Qian J, Ai X, Yang H, Cao Y (2013) Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. J. Mater Chem A 1:11397–11403

    Article  CAS  Google Scholar 

  33. Liu X, Liu J, Huang T, Yu A (2013) CaF2-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode materials for Li-ion batteries. Electrochim Acta 109:52–58

    Article  CAS  Google Scholar 

  34. Li Q, Li G, Fu C, Luo D, Fan J, Li L (2014) K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Interfaces 6:10330–10341

    Article  CAS  PubMed  Google Scholar 

  35. Wang D, Belharouak I, Ortega LH, Zhang X, Xu R, Zhou D, Zhou G, Amine K (2015) Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation. J Power Sources 274:451–457

    Article  CAS  Google Scholar 

  36. Fu F, Deng YP, Shen CH, Xu GL, Peng XX, Wang Q, Xu YF, Fang JC, Huang L, Sun SG (2014) A hierarchical micro/nanostructured 0.5Li2MnO3·0.5LiMn0.4Ni0.3Co0.3O2 material synthesized by solvothermal route as high rate cathode of lithium ion battery. Electrochem Commun 44:54–58

    Article  CAS  Google Scholar 

  37. Wang D, Huang Y, Huo Z, Chen L (2013) Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim Acta 107:461–466

    Article  CAS  Google Scholar 

  38. Zhao J, Wang Z, Guo H, Li X, He Z, Li T (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41(9):11396–11401

    Article  CAS  Google Scholar 

  39. Zhang WH, He W, Pei F, Wu FY, Mao RJ, Ai XP, Yang HX, Cao YL (2013) Improved electrochemical properties of Al3+-doped 0.5Li2MnO3-0.5LiCo1/3Ni1/3Mn1/3O2 cathode for lithium ion batteries. J Inorg Mater 28:1261–1264

    Article  CAS  Google Scholar 

  40. Jiao LF, Zhang M, Yuan HT, Zhao M, Guo J, Wang W, Zhou XD, Wang YM (2007) Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2–x/2Mn0.6–x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 167:178–184

    Article  CAS  Google Scholar 

  41. Song B, Lai MO, Lu L (2012) Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochim Acta 80:187–195

    Article  CAS  Google Scholar 

  42. Jin X, Xu Q, Liu H, Yuan X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26

    Article  CAS  Google Scholar 

  43. He ZJ, Wang ZX, Chen H, Huang ZM (2015) Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J Power Sources 299:334–341

    Article  CAS  Google Scholar 

  44. Zhao Y, Xia M, Hu X, Zhao Z, Wang Y, Lv Z (2015) Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials. Electrochim Acta 174:1167–1174

    Article  CAS  Google Scholar 

  45. Liu J, Manthiram A (2009) Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem Mater 21(8):1695–1707. https://doi.org/10.1021/cm9000043

    Article  CAS  Google Scholar 

  46. Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8(4):320–324. https://doi.org/10.1038/nmat2418

    Article  CAS  PubMed  Google Scholar 

  47. Sun YK, Chen ZH, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11(11):942–947. https://doi.org/10.1038/nmat3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang DH, Choi DW, Li J, Yang ZG, Nie ZM, Kou R, Hu DH, Wang CM, Saraf LV, Zhang JG (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced li-ion insertion. ACS Nano 3(4):907–914. https://doi.org/10.1021/nn900150y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang X, Jan SS, Qian YY, Xia H, Ni JF, Savilov SV, Aldoshin SM (2014) Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries. Sci Rep 11958(5):1–10

    Google Scholar 

  50. Ito S, Fujiki S, Yamada T, Aihara Y, Park Y, Kim TY, Baek S-W, Lee J-M, Doo S, Machida N (2014) A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J Power Sources 248:943–950

    Article  CAS  Google Scholar 

  51. Park B-C, Kim H-B, Bang HJ, Prakash J, Sun Y-K (2008) Improvement of electrochemical performance of Li[Ni0.8Co0.15Al0.05]O2 cathode materials by AlF3 coating at various temperatures. Ind Eng Chem Res 47:3876–3882

    Article  CAS  Google Scholar 

  52. Cao D, Wu L, Sun Y (2008) Electrochemical behavior of Mg–Li, Mg–Li–Al and Mg–Li–Al–Ce in sodium chloride solution. J Power Sources 177:624–630

    Article  CAS  Google Scholar 

  53. Park TJ, Lim JB, Son JT (2014) Effect of calcination temperature of size controlled microstructure of LiNi0.8Co0.15Al0.05O2 cathode for rechargeable lithium battery. Bull Kor Chem Soc 35:357–364

    Article  CAS  Google Scholar 

  54. Kim J, Amine K (2001) The effect of tetravalent titanium ubstitution in LiNi1–xTixO2 (0.025 ≤ x ≤ 0.2) system. Electrochem Commun 3:52–55

    Article  CAS  Google Scholar 

  55. Kim J, Amine K (2002) A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi1–xMxO2 (M = Cu2+ , Al3+ and Ti4+). J Power Sources 104:33–39

    Article  CAS  Google Scholar 

  56. Myung ST, Komaba S, Hosoya K, Hirosaki N, Miura Y, Kumagai N (2005) Synthesis of LiNi0.5Mn0.5–xTixO2 by an emulsion drying method and effect of Ti on structure and electrochemical properties. Chem Mater 17:2427–2435

    Article  CAS  Google Scholar 

  57. Huang H, Yin S-C, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett 4:A170–A172

    Article  CAS  Google Scholar 

  58. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229

    Article  CAS  Google Scholar 

  59. Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160

    Article  CAS  Google Scholar 

  60. Gong ZL, Li YX, He GN, Li J, Yang Y (2008) Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process. Electrochem Solid-State Lett 11:A60–A63

    Article  CAS  Google Scholar 

  61. Muraliganth T, Stroukoff KR, Manthiram A (2010) Microwave-solvothermal synthesis of sanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22:5754–5761

    Article  CAS  Google Scholar 

  62. Zhang S, Deng C, Fu BL, Yang SY, Ma L (2010) Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries. J Electroanal Chem 644:150–154

    Article  CAS  Google Scholar 

  63. Hao H, Wang J, Liu J, Huang T, Yu A (2012) Synthesis, characterization and electrochemical performance of Li2FeSiO4/C cathode materials doped by vanadium at Fe/Si sites for lithium ion batteries. J Power Sources 210:397–401

    Article  CAS  Google Scholar 

  64. Zhang LL, Sun H-B, Yang XL, Wen YW, Huang YH, Li M, Peng G, Tao HC, Ni SB, Liang G (2015) Study on electrochemical performance and mechanism of V-doped Li2FeSiO4 cathode material for Li-ion batteries. Electrochim Acta 152:496–504

    Article  CAS  Google Scholar 

  65. Zhang S, Deng C, Fu BL, Yang SY, Ma L (2010) Effects of Cr doping on the electrochemical properties of Li2FeSiO4 cathode material for lithium-ion batteries. Electrochim Acta 55:8482–8489

    Article  CAS  Google Scholar 

  66. Zhang L-L, Duan S, Yang X-L, Liang G, Huang Y-H, Cao X-Z, Yang J, Li M, Croft MC, Lewis C (2015) Insight into cobalt-doping in Li2FeSiO4 cathode material for lithium-ion battery. J Power Sources 274:194–202

    Article  CAS  Google Scholar 

  67. Deng C, Zhang S, Yang SY, Fu BL, Ma L (2011) Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M = Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries. J Power Sources 196:386–392

    Article  CAS  Google Scholar 

  68. Luo W, Li X, Dahn JR (2010) Synthesis, characterization, and thermal stability of Li[Ni1/3Mn1/3Co1/3–z (MnMg) z/2]O2. Chem Mater 22(17):5065–5073. https://doi.org/10.1021/cm1017163

    Article  CAS  Google Scholar 

  69. Kiziltas-Yavuz N, Bhaskar A, Dixon D, Yavuz M, Nikolowski K, Lu L, Eichel R-A, Ehrenberg H (2014) Improving the rate capability of high voltage lithium-ion battery cathode material LiNi0.5Mn1.5O4 by ruthenium doping. J Power Sources 267:533–541. https://doi.org/10.1016/j.jpowsour.2014.05.110

    Article  CAS  Google Scholar 

  70. Wang H, Tan TA, Yang P, Lai MO, Lu L (2011) High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: effects of doping and particle size. J Phys Chem C 115(13):6102–6110. https://doi.org/10.1021/jp110746w

    Article  CAS  Google Scholar 

  71. Wang Y, Yang Y, Hu X, Yang Y, Shao H (2009) Electrochemical performance of Ru-doped LiFePO4/C cathode material for lithium-ion batteries. J Alloys Compd 481(1–2):590–594. https://doi.org/10.1016/j.jallcom.2009.03.033

    Article  CAS  Google Scholar 

  72. Seyyedhosseinzadeh H, Mahboubi F, Azadmehr A (2013) Diffusion mechanism of lithium ions in LiNi0.5Mn1.5O4. Electrochim Acta 108:867–875

    Article  CAS  Google Scholar 

  73. Liu YZ, Zhang MH, Xia YG, Qiu B, Liu ZP, Li X (2014) One-step hydrothermal method synthesis of core-shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. J Power Sources 256:66–71

    Article  CAS  Google Scholar 

  74. Chong J, Xun SD, Song XY, Liu G, Battaglia VS (2013) Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long cycle life for lithiumion batteries. Nano Energy 2:283–293

    Article  CAS  Google Scholar 

  75. Tang X, Jan SS, Qian YY, Xia H, Ni JF, Savilov SV, Aldoshin SM (2015) Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries. Sci Rep 5:11958

    Article  PubMed  PubMed Central  Google Scholar 

  76. Leitner KW, Wolf H, Garsuch A, Chesneau F, Schulz-Dobrick M (2013) Electroactive separator for high voltage graphite/LiNi0.5Mn1.5O4 lithium ion batteries. J Power Sources 244:548–551

    Article  CAS  Google Scholar 

  77. Wang W, Liu H, Wang Y, Zhang J (2013) Effects of chromium doping on performance of LiNi0.5Mn1.5O4 cathode material. T Nonferr Metal Soc 23:2066–2070

    Article  CAS  Google Scholar 

  78. Xia H, Tang SB, Lu L, Meng YS, Ceder G (2007) The influence of preparation conditions on electrochemical properties of LiNi0.5Mn1.5O4 thin film electrodes by PLD. Electrochim Acta 52:2822–2828

    Article  CAS  Google Scholar 

  79. Wu F, Wang F, Wu C, Bai Y (2012) J Alloys Compd 513:236–241

    Article  CAS  Google Scholar 

  80. Xia A, Huang JF, Tang GQ, Ren HJ (2014) Ceram Int 40:14845–14850

    Article  CAS  Google Scholar 

  81. Liu S, Li S, Huang K, Chen Z (2007) Acta Phys Chim Sin 23:537–542

    Article  CAS  Google Scholar 

  82. Sato M, Ohkawa H, Yoshida K, Saito M, Uematsu K, Toda K (2000) Solid State Ionics 135:137–142

    Article  CAS  Google Scholar 

  83. Ren M, Zhou Z, Li Y, Gao XP, Yan J (2006) J Power Sources 162:1357–1362

    Article  CAS  Google Scholar 

  84. Cho AR, Son JN, Aravindan V, Kim H, Kang KS, Yoon WS, Kim WS, Lee YS (2012) J Mater Chem 22:6556–6560

    Article  CAS  Google Scholar 

  85. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  86. Barker J, Gover RKB, Burns P, Bryan A (2007) J Electrochem Soc 154:A307–A313

    Article  CAS  Google Scholar 

  87. Liu HD, Gao P, Fang JH, Yang G (2011) Chem Commun 47:9110–9112

    Article  CAS  Google Scholar 

  88. Chen Y, Zhao Y, An X, Liu J, Dong Y, Chen L (2009) Electrochim Acta 54:5844–5850

    Article  CAS  Google Scholar 

  89. Mateyshina YG, Uvarov NF (2011) J Power Sources 196:1494–1497

    Article  CAS  Google Scholar 

  90. Zhong S, Liu L, Jiang J, Li Y, Wang J, Liu J, Li Y (2009) J Rare Earths 27:134–137

    Article  Google Scholar 

  91. Zhai T, Zhao M, Wang D (2011) Trans Nonferrous Met Soc China 21:523–528

    Article  CAS  Google Scholar 

  92. Huang JS, Yang L, Liu KY, Tang YF (2010) J Power Sources 195:5013–5018

    Article  CAS  Google Scholar 

  93. Dai C, Chen Z, Jin H, Hu X (2010) J Power Sources 195:5775–5779

    Article  CAS  Google Scholar 

  94. Kuang Q, Zhao Y, An X, Liu J, Dong Y, Chen L (2010) Electrochim Acta 55:1575–1581

    Article  CAS  Google Scholar 

  95. Stevenson KJ (2012) The origin, development, and future of the lithium-ion battery. J Solid State Electrochem 16:2017–2018

    Article  CAS  Google Scholar 

  96. Tavassol H, Jones EMC, Sottos NR, Gewirth AA (2016) Electrochemical stiffness in lithium-ion batteries. Nat Mater 15:1182–1187

    Article  CAS  PubMed  Google Scholar 

  97. Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative issues of cathode materials for Li-ion batteries. Inorganics 2:132–154

    Article  CAS  Google Scholar 

  98. Nitta N, Wu F, Tae Lee J, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  99. Arico AS, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li X, Cheng F, Guo B, Chen J (2005) Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J Phys Chem B 109:14017–14024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Meng X, Han B, Wang Y, Nan J (2016) Effects of samarium doping on the electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries. Ceram Int 42:2599–2604

    Article  CAS  Google Scholar 

  102. Dahn JR, Sacken U, Michal CA (1990) Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics 44:87–97

    Article  CAS  Google Scholar 

  103. Kim JM, Chung HT (2004) Role of transition metals in layered Li[Ni Co, Mn]O2 under electrochemical operation. Electrochim Acta 49:3573–3580

    Article  CAS  Google Scholar 

  104. Tsai YW, Lee JF, Liu DG, Hwang BJ (2004) In-situ X-ray absorption spectroscopy investigations of a layered LiNi0.65Co0.25Mn0.1O2 cathode material for rechargeable lithium batteries. J Mater Chem 14:958–965

    Article  CAS  Google Scholar 

  105. Lee SW, Kim H, Kim MS et al (2016) Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J Power Sources 315:261–268

    Article  CAS  Google Scholar 

  106. Ruan Z, Zhu Y, Teng X (2016) Effect of pre-thermal treatment on the lithium storage performance of LiNi0.8Co0.15Al0.05O2. J Mater Sci 51:1400–1408

    Article  CAS  Google Scholar 

  107. Liu XH, Kou LQ, Shi T, Liu K, Chen L (2014) Excellent high rate capability and high voltage cycling stability of Y2O3-coated LiNi0.5Co0.2Mn0.3O2. J Power Sources 267:874–880

    Article  CAS  Google Scholar 

  108. Kang S, Qin H, Fang Y, Li X, Wang Y (2014) Preparation and electrochemical performance of yttrium-doped Li[Li0.20Mn0.534Ni0.133Co0.133]O2 as cathode material for lithium-ion batteries. Electrochim Acta 144:22–30

    Article  CAS  Google Scholar 

  109. Valanarasu S, Chandramohan R, Somasundaram RM, Srikumar RS (2011) Structural and electrochemical properties of Eu-doped LiCoO2. J Mater Sci Mater Electron 22:151–157

    Article  CAS  Google Scholar 

  110. Zhou F, Qiu K, Peng G, Li X (2015) Silver/carbon nanotube hybrids: a novel conductive network for high-rate lithium ion batteries. Electrochim Acta 151:16–20

    Article  CAS  Google Scholar 

  111. Liu T, Zhao SX, Wang K, Nan CW (2012) CuO-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material with improved cycling performance at high rates. Electrochim Acta 85:605–611

    Article  CAS  Google Scholar 

  112. Park CW, Kim SH, Nahm KS, Chung HT, Lee YS, Lee JH, Boo S, Kim J (2008) Structural and electrochemical study of Li[CrxLi(1–x)/3Mn2(1–x)/3]O2 (0 ≤ x ≤ 0.328) cathode materials. J Alloy Compd 449:343–348

    Article  CAS  Google Scholar 

  113. Woo SW, Myung ST, Bang H, Kim DW, Sun YK (2009) Improvement of electro chemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal(Al, Mg) substitution. Electrochim Acta 54:3851–3856

    Article  CAS  Google Scholar 

  114. Huang YH, Chou HL, Wang FM et al (2013) Synergy between experiment and simulation in describing the electrochemical performance of Mg-dopedLiNixCoyMnzO2 cathode material of lithium ion battery. J Electrochem Sci 8:8005–8009

    CAS  Google Scholar 

  115. Zhu X, Doan TNL, Yu Y, Tian Y, Sun KEK, Zhao H et al (2015) Ionics 22:1–6

    Google Scholar 

  116. Lee MJ, Lee S, Oh P, Kim Y, Cho J (2014) Nano Lett 14:993–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ragavendran KR, Xia H, Yang G, Vasudevan D, Emmanuel B, Sherwood D et al (2014) Phys Chem Chem Phys 16:2553–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV. Nat Mater

    Google Scholar 

  119. Jiang J, Liu Q, Xu L, Xu J, Du J, He X et al (2016) J Nanosci Nanotechnol 16:12640–12643

    Article  CAS  Google Scholar 

  120. Bruck AM, Cama CA, Gannett CN, Marschilok AC, Takeuchi ES, Takeuchi KJ (2015) ChemInform 47:26–40

    Google Scholar 

  121. Thirunakaran R, Kim T, Yoon WS (2015) J Sol-Gel Sci Technol 73:62–71

    Article  CAS  Google Scholar 

  122. Jiang Q, Wang X, Zhang H (2016) J Electron Mater 45:4350–4356

    Article  CAS  Google Scholar 

  123. Jiang Q, Xu L, Ma Z, Zhang H (2015) Appl Phys A 119:1069–1074

    Article  CAS  Google Scholar 

  124. Christiansen TL, Bojesen E, Søndergaard M, Birgisson S, Becker-Christensen J, Bo BI (2016) CrystEngComm 18:1996–2004

    Article  CAS  Google Scholar 

  125. Yu W, Cao C, Zhang J, Lin W, Ma X, Xu X (2016) ACS Appl Mater Interfaces 8

    Google Scholar 

  126. Luo W, Wang X, Meyers C, Wannenmacher N, Sirisaksoontorn W, Lerner MM, Ji X (2013) Sci Rep

    Google Scholar 

  127. Huang Y, Li J, Jia D (2013) J Nanopart Res 6:533–538

    Article  Google Scholar 

  128. Caballero A, Cruz M, Hernán L, Melero M, Morales J, Castellón ER (2005) J Power Sources 150:192–201

    Article  CAS  Google Scholar 

  129. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  130. Jo YN, Prasanna K, Park SJ, Lee CW (2013) Characterization of Li-rich xLi2MnO3·(1–x)Li[MnyNizCo1−y−z]O2 as cathode active materials for Li-ion batteries. Electrochim Acta 108:32–38

    Article  CAS  Google Scholar 

  131. Koyama Y, Tanaka I, Nagao M, Kanno R (2009) First-principles study on lithium removal form Li2MnO3. J Power Sources 189:798–801

    Article  CAS  Google Scholar 

  132. Tabuchi M, Nabeshima Y, Takeuchi T, Tatsumi K, Imaizumi J, Nitta Y (2010) Fe content effects on electrochemical properties of Fe-substituted Li2MnO3 positive electrode material. J Power Sources 195:834–844

    Article  CAS  Google Scholar 

  133. Wu Y, Manthiram A (2008) Structural stability of chemically delithiated layered (1−z)Li[Li1/3Mn2/3]O2–zLi[Mn0.5–yNi0.5–yCo2y]O2 solid solution cathodes. J Power Sources 183:749–754

    Article  CAS  Google Scholar 

  134. Lee CW, Sun YK, Prakash J (2004) A novel layered Li[Li0.12Ni2Mg0.32–zMn0.56]O2 cathode material for lithium-ion batteries. Electrochim Acta 49:4425–4432

    Article  CAS  Google Scholar 

  135. Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y (2010) Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources 195:567–573

    Article  CAS  Google Scholar 

  136. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) J Mater Chem 15:2257–2267

    Article  CAS  Google Scholar 

  137. Liu YJ, Li SB (2013) Effect of cooling method on the electrochemical performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathodes. Ionics 19:477–481

    Article  CAS  Google Scholar 

  138. Lin J, Mu DB, Jin Y, Wu B, Ma Y, Wu F (2013) Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources 230:76–80

    Article  CAS  Google Scholar 

  139. Xiang XD, Li XQ, Li WS (2013) Preparation and characterization of size-uniform Li[Li0.131Ni0.304Mn0.565]O2 particles as cathode materials for high energy lithium ion battery. J Power Sources 230:89–95

    Article  CAS  Google Scholar 

  140. Johnson CS, Li N, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3·(1–x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C. Electrochem Commun 9:787–795

    Article  CAS  Google Scholar 

  141. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112–3125

    Article  CAS  Google Scholar 

  142. Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1–x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106

    Article  CAS  Google Scholar 

  143. Li L, Zhang X, Chen R, Zhao T, Lu J, Wu F, Amine K (2014) Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries. J Power Sources 249:28–34

    Article  CAS  Google Scholar 

  144. Ryu WH, Lim SJ, Kim WK, Kwon H (2014) 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries. J Power Sources 257:186–191

    Article  CAS  Google Scholar 

  145. Zhang L, Borong W, Ning L, Feng W (2014) Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries. Electrochim Acta 118:67–74

    Article  CAS  Google Scholar 

  146. Ohzuku T, Takeda S, Iwanaga M (1999) Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J Power Sources 81–82:90–94

    Article  Google Scholar 

  147. Liu D, Zhu W, Trottier J, Gagnon C, Barray F, Guerfi A, Mauger A, Groult H, Julien CM, Goodenoughd JB, Zaghib K (2014) Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv 4:154–167

    Article  CAS  Google Scholar 

  148. Julien CM, Mauger A (2013) Review of 5 V electrodes for Li-ion batteries: status and trends. Ionics 19:951–988

    Article  CAS  Google Scholar 

  149. Cao A, Manthiram A (2012) Shape-controlled synthesis of high tap density cathode oxides for lithium ion batteries. Phys Chem Chem Phys 14:6724–6728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhu HL, Chen ZY, Ji S, Linkov V (2008) Influence of different morphologies on electrochemical performance of spinel LiMn2O4. Solid State Ionics 179:1788–1793

    Article  CAS  Google Scholar 

  151. Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv Funct Mater 19:1497–1514

    Article  CAS  Google Scholar 

  152. Song MK, Park SJ, Alamgir FM, Cho J, Liu M (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mat Sci Eng R 72:203–252

    Article  CAS  Google Scholar 

  153. Huang B, Zheng XD, Jia DM, Lu M (2010) Design and synthesis of high-rate micron-sized, spherical LiFePO4/C composites containing clusters of nano/microspheres. Electrochim Acta 55:1227–1231

    Article  CAS  Google Scholar 

  154. Park SH, Oh SW, Myung ST, Kang YC, Sun YK (2005) Effects of synthesis condition on LiNi1/2Mn3/2O4 cathode material prepared by ultrasonic spray pyrolysis method. Solid State Ionics 176:481–486

    Article  CAS  Google Scholar 

  155. Cao SS, Huang JF, Ouyang HB, Cao LY, Li JY, Wu JP (2014) A simple method to prepare NH4V3O8 nanorods as cathode material for Li-ion batteries. Mater Lett 126:20–23

    Article  CAS  Google Scholar 

  156. Xia L, Wang H, Lu Z, Yang S, Ma R, Deng J, Chung CY (2012) Facile synthesis of porous LiMn2O4 spheres as positive electrode for high-power lithium ion batteries. J Power Sources 198:251–257

    Article  CAS  Google Scholar 

  157. Habtom DA, Matthew RR, Tai CW, Reza Y, Mario V (2014) Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance. Nanoscale 6:8804–8813

    Article  Google Scholar 

  158. Yang K, Su J, Zhang L, Long Y, Lv X, Wen Y (2012) Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries. Particuology 10:765–770

    Article  CAS  Google Scholar 

  159. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Boulineau A, Simonin L, Colin JF, Bourbon C, Patoux P (2013) First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett 13:3857–3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xu B, Fell CR, Chi MF, Meng YS (2011) Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci 4:2223–2233

    Article  CAS  Google Scholar 

  162. Guo YG, JS H, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  163. Li S, Ma G, Guo B, Yang ZH, Fan XM, Chen ZX, Zhang WX (2016) Kinetically controlled synthesis of LiNi0.5Mn1.5O4Micro- and nanostructured hollow spheres as high-rate cathode materials for lithium ion batteries. Ind Eng Chem Res 55:9352–9361

    Article  CAS  Google Scholar 

  164. Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F, Zhang N, Zou YF (2016) Hierarchical mesoporous lithium-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl Mater Interfaces 8:18832–18840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wu F, Wang Z, Yf S, Guan YB, Jin Y, Yan N, Tian J, Bao LY, Chen S (2014) Synthesis and characterization of hollow spherical cathode Li1.2Mn0.54Ni0.13Co0.13O2 assembled with nanostructured particles via homogeneous precipitation-hydrothermal synthesis. J Power Sources 267:337–346

    Article  CAS  Google Scholar 

  166. Lin B, Li QF, Liu BD, Zhang S, Deng C (2016) Biochemistry-directed hollow porous microspheres: bottom-up self-assembled polyanion-based cathodes for sodium ion batteries. NANO 8:8178–8188

    CAS  Google Scholar 

  167. He X, Wang J, Kloepsch R, Krueger S, Jia HP, Liu HD, Vortmann B, Li J (2013) Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res 7:110–118

    Article  CAS  Google Scholar 

  168. Abdelaal HM, Harbrecht B (2015) Fabrication of hollow spheres of metal oxide using fructose-derived carbonaceous spheres as sacrificial templates. CR Chim 18:379–384

    Article  CAS  Google Scholar 

  169. Makimura Y, Ohzuku T (2003) Crystal and electronic structures of superstructural Li1–x[Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1). J Power Sources 156:119–123

    Google Scholar 

  170. Ohzuku T, Makimura Y (2001) Chem Lett 7:642–643

    Article  Google Scholar 

  171. Li H, Chen G, Zhang B, Xu J (2008) Advanced electrochemical performance of Li[Ni(1/3–x)FexCo1/3Mn1/3]O2 as cathode materials for lithium-ion battery. Solid State Commun 146:115–120

    Article  CAS  Google Scholar 

  172. Zhao T, Li L, Chen S, Amine K (2014) The effect of chromium substitution on improving electrochemical performance of low-cost Fe-Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. J Power Sources 245:898–907

    Article  CAS  Google Scholar 

  173. Hwang BJ, Tsai YW, Carlier D, Ceder G (2003) A combined computational/ experimental study on LiNi1/3Co1/3Mn1/3O2. Chem Mater 15(19):3676–3682

    Article  CAS  Google Scholar 

  174. Tang T, Zhang HL (2016) Synthesis and electrochemical performance of lithium-rich cathode material Li[Li0.2Ni0.15Mn0.55Co0.1–xAlx]O2. Electrochim Acta 191:263–269

    Article  CAS  Google Scholar 

  175. Samarasingha PB, Wijayasinghe A, Behm M, Dissanayake L, Lindbergh G (2014) Development of cathode materials for lithium ion rechargeable batteries based on the system Li(Ni1/3Mn1/3Co(1/3–x)Mx)O2, (M = Mg, Fe, Al and x = 0.00 to 0.33). Solid State Ionics 268:226–230

    Article  CAS  Google Scholar 

  176. Wu Q, Liu Y, Johnson CS (2014) Insight into the structural evolution of a high-voltage spinel for lithium-ion batteries. Chem Mater 26(16):4750–4756

    Article  CAS  Google Scholar 

  177. Lin M, Ben L, Sun Y (2015) Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle. Chem Mater 27(1):292–303

    Article  CAS  Google Scholar 

  178. Moorhead-Rosenberg Z, Huq A (2015) Electronic and electrochemical properties of Li1–xMn1.5Ni0.5O4 spinel cathodes as a function of lithium content and cation ordering. Chem Mater 27(20):6934–6945

    Article  CAS  Google Scholar 

  179. Ma J, Hu P, Cui GL, Chen LQ (2016) Surface and interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem Mater 28:3578–3606. https://doi.org/10.1021/acs.chemmater.6b00948

    Article  CAS  Google Scholar 

  180. Deng YF, Zhao SX, Xu YH, Gao K, Nan C-W (2015) Impact of P‑doped in spinel LiNi0.5Mn1.5O4 on degree of disorder, grain morphology, and electrochemical performance. Chem Mater 27(22):7734–7742

    Article  CAS  Google Scholar 

  181. Zhu YR, Yi TF, Zhu RS, Zhou AN (2013) Increased cycling stability of Li4Ti5O12 -coated LiMn1.5Ni0.5O4 as cathode material for lithium-ion batteries. Ceram Int 39(3):3087–3094

    Article  CAS  Google Scholar 

  182. Konishi H, Suzuki K, Taminato S, Kim K, Zheng Y, Kim S, Lim J, Hirayama M, Son J-Y, Cui Y, Kanno R (2014) Effect of surface Li3PO4 coating on LiNi0.5Mn1.5O4 epitaxial thin film electrodes synthesized by pulsed laser deposition. J Power Sources 269:293–298

    Article  CAS  Google Scholar 

  183. Huang B, Li X, Wang Z, Guo H, Xiong X, Wang J (2014) A novel carbamide-assistant hydrothermal process for coating Al2O3 onto LiMn1.5Ni0.5O4 particles used for cathode material of lithium-ion batteries. J Alloys Comp 583:313–319

    Article  CAS  Google Scholar 

  184. Niketic S, Couillard M, MacNeil D, Abu-Lebdeh Y (2014) Improving the performance of high voltage LiMn1.5Ni0.5O4 cathode material by carbon coating. J Power Sources 271:285–290

    Article  CAS  Google Scholar 

  185. Wang H, Shi Z, Li J, Yang S, Ren R, Cui J, Xiao J, Zhang B (2015) Direct carbon coating at high temperature on LiNi0.5Mn1.5O4 cathode: unexpected influence on crystal structure and electrochemical performances. J Power Sources 288:206–213

    Article  CAS  Google Scholar 

  186. Fang X, Shen C, Ge M, Rong J, Liu Y, Zhang A, Wei F, Zhou C (2015) High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4/carbon nanotube film. Nano Energy 12:43–51

    Article  CAS  Google Scholar 

  187. Arrebola JC, Caballero A, Hernán L, Morales J (2010) Re-examining the effect of ZnO on nanosized 5 V LiNi0.5Mn1.5O4 spinel: an effective procedure for enhancing its rate capability at room and high temperatures. J Power Sources 195(13):4278–4284

    Article  CAS  Google Scholar 

  188. Zhong GB, Wang YY, Zhang ZC, Chen CH (2011) Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochim Acta 56(18):6554–6561

    Article  CAS  Google Scholar 

  189. Zhong GB, Wang YY, Yu YQ, Chen CH (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe Co, Cr) 5 V cathode materials for lithium ion batteries. J Power Sources 205:385–393

    Article  CAS  Google Scholar 

  190. Fedotov SS, Khasanova NR, Samarin AS, Drozhzhin OA, Batuk D, Karakulina OM, Hadermann J, Abakumov AM, Antipov EV (2016) AVPO4F (A = Li, K): a 4 V cathode material for high-power rechargeable batteries. Chem Mater 28:411–415

    Article  CAS  Google Scholar 

  191. Barker J, Saidi MY, Swoyer JL (2005) Lithium metal fluorophosphate materials and preparation thereof. US Pat 7:462–855

    Google Scholar 

  192. Khasanova NR, Drozhzhin OA, Storozhilova DA, Delmas C, Antipov EV (2012) New form of Li2FePO4F as cathode material for Li-ion batteries. Chem Mater 24(22):4271–4273. https://doi.org/10.1021/cm302724a

    Article  CAS  Google Scholar 

  193. Ramesh T, Lee KT, Ellis B, Nazar L (2010) Tavorite lithium iron fluorophosphate cathode materials: phase transition and electrochemistry of LiFePO4F-Li2FePO4F. Electrochem Solid-State Lett 13:43–47

    Article  CAS  Google Scholar 

  194. Yang Y, Zhang Y, Hua Z, Wang X, Peng H, Bakenov Z (2016) Effect of VO43− substitution for PO43− on electrochemical properties of the Li3Fe2(PO4)3 cathode materials. Electrochim Acta 219:547–552. https://doi.org/10.1016/j.electacta.2016.10.044

    Article  CAS  Google Scholar 

  195. Wang C, Wang S, Tang L, He YB, Gan L, Du J, Li H, Li B, Lin Z, Kang F (2016) A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy 21:133–144. https://doi.org/10.1016/j.nanoen.2016.01.005

  196. Huang B, Liu S, Li H, Zhuang S, Fang D (2012) Comparative study and electrochemical properties of LiFePO4F synthesized by different routes. Bull Kor Chem Soc 33(7):2315–2319. https://doi.org/10.5012/bkcs.2012.33.7.2315

    Article  CAS  Google Scholar 

  197. Recham N, Chotard JN, Jumas JC, Laffont L, Armand M, Tarascon JM (2010) Ionothermal synthesis of Li-based fluorophosphates electrodes. Chem Mater 22(3):1142–1148. https://doi.org/10.1021/cm9021497

    Article  CAS  Google Scholar 

  198. Ellis BL, Ramesh TN, Rowan-Weetaluktuk WN, Ryan DH, Nazar LF (2012) Solvothermal synthesis of electroactive lithium iron tavorites and structure of Li2FePO4F. J Mater Chem 22(11):4759–4766. https://doi.org/10.1039/c2jm15273h

    Article  CAS  Google Scholar 

  199. Devaraju M, Honma I (2013) One-pot synthesis of Li2FePO4F nanoparticles via a supercritical fluid process and characterization for application in lithium-ion batteries. RSC Adv 3(43):19849–19852. https://doi.org/10.1039/c3ra42686f

    Article  CAS  Google Scholar 

  200. Asl HY, Choudhury A (2014) Phosphorous acid route synthesis of iron tavorite phases, LiFePO4(OH)xF1–x [0 ≤ x ≤ 1] and comparative study of their electrochemical activities. RSC Adv 4:37691–37700

    Article  CAS  Google Scholar 

  201. Choi M, Ham G, Jin BS (2014) Ultra-thin Al2O3, coating on the acid-treated 0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2, electrode for Li-ion batteries. J Alloys Compd 608:110–117

    Article  CAS  Google Scholar 

  202. Numata K, Yamanaka S (1997) Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries. Chem Lett 8:725–726

    Article  Google Scholar 

  203. Kim DH, Kang SH, Balasubramanian M (2010) High-energy and high-power Li-rich nickel manganese oxide electrode materials. Electrochem Commun 12(8):1618–1621

    Article  CAS  Google Scholar 

  204. Croy JR, Kang SH, Balasubramanian M, Thackeray MM (2011) Li2MnO3-based composite cathodes for lithium batteries: a novel synthesis approach and new structures. Electrochem Commun 13:1063–1066

    Article  CAS  Google Scholar 

  205. Gallagher KG, Kang SH, Park SU (2011) xLi2MnO3·(1–x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability. J Power Sources 196:9702–9707

    Article  CAS  Google Scholar 

  206. West WC, Staniewicz RJ, Ma C (2011) Implications of the first cycle irreversible capacity on cell balancing for Li2MnO3-LiMO2 (M = Ni, Mn, Co) Li-ion cathodes. J Power Sources 196:9696–9701

    Article  CAS  Google Scholar 

  207. Kang YJ, Kim JH, Lee SW (2005) The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery. Electrochim Acta 50(24):4784–4791

    Article  CAS  Google Scholar 

  208. Yan Z, Hu Q, Yan G et al (2017) Co3O4/Co nanoparticles enclosed graphitic carbon as anode material for high performance Li-ion batteries. Chem Eng J 321:495–501

    Article  CAS  Google Scholar 

  209. Wu Y, Murugan VA, Manthiram A (2008) Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by AlPO4. J Electrochem Soc 155(9):635–641

    Article  CAS  Google Scholar 

  210. Wang WD, Qiu WH, Ding QQ (2015) Nickel cobalt manganese based cathode materials for Li-ion batteries technology production and application. Chemical Industry Press, M. Beijing, pp 030–035

    Google Scholar 

  211. Lee E, Park JS, Wu T (2015) Role of Cr3+/Cr6+ redox in chromium-substituted Li2MnO3·LiNi1/2Mn1/2O2 layered composite cathodes: electrochemistry and voltage fade. J Mater Chem A 3(18):9915–9924

    Article  CAS  Google Scholar 

  212. Lu C, Yang SQ, Wu H, Zhang Y (2016) Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping. Electrochim Acta 209:448–455

    Article  CAS  Google Scholar 

  213. Huang ZM, Li XH, Liang YH, He ZJ (2015) Structural and electrochemical characterization of Mg-doped Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion batteries. Solid State Ionics 282:88–94

    Article  CAS  Google Scholar 

  214. Dianat A, Seriani N, Bobeth M, Cuniberti G (2013) Effects of Al-doping on the properties of Li–Mn–Ni–O cathode materials for Li-ion batteries: an ab initio study. J Mater Chem A 1:9273–9280

    Article  CAS  Google Scholar 

  215. Wang D, Liu MH, Wang XY, Yu RZ (2016) Facile synthesis and performance of Na-doped porous lithium-rich cathodes for lithium ion batteries. RSC Adv 6:57310–57319

    Article  CAS  Google Scholar 

  216. Song BH, Zhou CF, Wang HL (2014) Advances in sustain stable voltage of Cr-Doped Li-rich layered cathodes for lithium ion batteries. J Electrochem Soc 161(10):A1723–A1730

    Article  CAS  Google Scholar 

  217. Song BH, Day SJ, Sui T (2016) Mitigated phase transition during first cycle of a Li-rich layered cathode studied by in operan do synchrotron X-ray powder diffraction. Phys Chem Chem Phys 18(6):4745–4752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Singh G, Thomas R, Kumar A, Katiyar RS (2012) Electrochemical behavior of Cr-doped composite Li2MnO3-LiMn0.5Ni0.5O2 cathode materials. J Electrochem Soc 159:A410–A420

    Article  CAS  Google Scholar 

  219. Zhu WX, Li XH, Wang ZX (2013) Synthesis and modification of Li-rich cathode Li[Li0.2Ni0.2Mn0.6]O2 for Li-ion batteries. Chin J Nonferrous Metals 23(4):1047–1052

    CAS  Google Scholar 

  220. Ding Y, Mu D, Wu B, Wang R, Zhao Z, Wu F (2017) Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl Energy 195:586–599. https://doi.org/10.1016/j.apenergy.2017.03.074

    Article  CAS  Google Scholar 

  221. Pampal ES, Stojanovska E, Simon B, Kilic A (2015) A review of nanofibrous structures in lithium ion batteries. J Power Sources 300:199–215. https://doi.org/10.1016/j.jpowsour.2015.09.059

    Article  CAS  Google Scholar 

  222. Kuriyama H, Saruwatari H, Satake H, Shima A, Uesugi F, Tanaka H, Ushirogouchi T (2015) Observation of anisotropic microstructural changes during cycling in LiNi0.5Co0.2Mn0.3O2 cathode material. J Power Sources 275:99–105. https://doi.org/10.1016/j.jpowsour.2014.10.197

    Article  CAS  Google Scholar 

  223. Yuan J, Wen J, Zhang J, Chen D, Zhang D (2017) Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries. Electrochim Acta 230:116–122

    Article  CAS  Google Scholar 

  224. Waje SB, Hashim M, Yusoff WDW, Abbas Z (2010) X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering. Appl Surf Sci 256(10):3122–3127. https://doi.org/10.1016/j.apsusc.2009.11.084

    Article  CAS  Google Scholar 

  225. Pukazhselvan D (2012) Effect of crystallite size of Al on the reversible hydrogenstorage of NaAlH4 and few aspects of catalysts and catalysis. Int J Hydrog Energy 37(12):9696–9705. https://doi.org/10.1016/j.ijhydene.2012.03.098

    Article  CAS  Google Scholar 

  226. Mguni LL, Mukenga M, Jalama K, Meijboom R (2013) Effect of calcination temperature and MgO crystallite size on MgO/TiO2 catalyst system for soybean oil transesterification. Catal Commun 34:52–57. https://doi.org/10.1016/j.catcom.2013.01.009

    Article  CAS  Google Scholar 

  227. Iqbal MJ, Yaqub N, Sepiol B, Ismail B (2011) A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4. Mater Res Bull 46(11):1837–1842. https://doi.org/10.1016/j.materresbull.2011.07.036

    Article  CAS  Google Scholar 

  228. Upadhyay S, Parekh K, Pandey B (2016) Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. J Alloys Compd 678:478–485

    Article  CAS  Google Scholar 

  229. Zhao S, Ka O, Xian XC, Sun LM, Wang J (2016) Effect of primary crystallite size on the high-rate performance of Li4Ti5O12 microspheres. Electrochim Acta 206:17–25

    Article  CAS  Google Scholar 

  230. Tlili R, Bejar M, Dhahri E, Zaoui A, Hlil EK, Bessais L (2017) Influence of crystallite size reduction on the magnetic and magnetocaloric properties of La0.6Sr0.35Ca0.05CoO3 nanoparticles. Polyhedron 121:19–24. https://doi.org/10.1016/j.poly.2016.09.044

    Article  CAS  Google Scholar 

  231. Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117(1–2):75–90. https://doi.org/10.1016/j.micromeso.2008.06.010

    Article  CAS  Google Scholar 

  232. Uvarov V, Popov I (2007) Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater Charact 58(10):883–889. https://doi.org/10.1016/j.matchar.2006.09.002

    Article  CAS  Google Scholar 

  233. Uvarov V, Popov I (2013) Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater Charact 85:111–123. https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  234. Yashpal V, Sharma BV, Kumar M (2015) Issues in determining size of nano-crystalline ceramic particles by X-ray diffraction. Mater Today 2(4–5):3534–3538. https://doi.org/10.1016/j.matpr.2015.07.330

  235. Sikora MS, Rosario AV, Pereira EC, Paiva-Aantos CO (2011) Influence of the morphology and microstructure on the photocatalytic properties of titanium oxide films obtained by sparking anodization in H3PO4. Electrochim Acta 56(9):3122–3127. https://doi.org/10.1016/j.electacta.2011.01.068

    Article  CAS  Google Scholar 

  236. Kong J-Z, Zhai H-F, Ren C, Gao M-Y, Zhang X, Li H, Li J-X, Tang Z, Zhou F (2013) Synthesis and electrochemical performance of macroporous LiNi0.5Co0.2Mn0.3O2 by a modified sol–gel method. J Alloys Compd 577:507–510. https://doi.org/10.1016/j.jallcom.2013.07.007

    Article  CAS  Google Scholar 

  237. Kong J-Z, Zhou F, Wang C-B, Yang X-Y, Zhai H-F, Hui L, Li J-X, Tang Z, Zhang S-Q (2013) Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials. J Alloys Compd 554:216–221. https://doi.org/10.1016/j.jallcom.2012.11.090

    Article  CAS  Google Scholar 

  238. Hu M, Pang XL, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242. https://doi.org/10.1016/j.jpowsour.2013.03.024

    Article  CAS  Google Scholar 

  239. Yun FL, Tang L, Li WC, Jin WR, Pang J, Lu SG (2016) Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery. Rare Met 35(4):309

    Article  CAS  Google Scholar 

  240. Ren L, Li XE, Wang FF, Han Y (2015) Spindle LiFePO4 particles as cathode of lithium-ion batteries synthesized by solvothermal method with glucose as auxiliary reductant. Rare Met 34(10):731

    Article  CAS  Google Scholar 

  241. Liu DL, Du LC, Liu YF, Chen YB (2014) Effects of Mn-precursor on performances of LiMn2O4 cathode material for lithium ion battery. Rare Met Mater Eng 43(11):2584

    Article  Google Scholar 

  242. Hu M, Tian Y, Su LW, Wei JP, Zhou Z (2013) Preparation and Ni-doping effect of nanosized truncated octahedral LiCoMnO4 as cathode materials for 5 V Li-ion batteries. ACS Appl Mater Interfaces 5(22):12185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wang HL, Xia H, Lai MO, Lu L (2009) Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-dopping. Electrochem Commun 11(7):1539

    Article  CAS  Google Scholar 

  244. Wu P, Zheng XL, Zhou C, Gu GF, Tong DG (2013) Improved electrochemical performance of LiNi0.5–x RhxMn1.5O4 cathode materials for 5 V lithium ion batteries via Rh-doping. Mater Chem Phys 138(2–3):716

    Article  CAS  Google Scholar 

  245. Yang Z, Jiang Y, Kim JH, Wu Y, Li GL, Huang YH (2014) The LiZnxNi0.5–xMn1.5O4 spinel with improved high voltage stability for Li-ion batteries. Electrochim Acta. 117(4):76

    Google Scholar 

  246. Hu M, Tian Y, Wei JP, Wang DG, Zhou Z (2014) Porous hollow LiCoMnO4 microspheres as cathode materials for 5 V lithium ion batteries. J Power Sources 247(2):794

    Article  CAS  Google Scholar 

  247. Zhan GC, Tang XC, Wang ZM (2012) Preparation of LiCo1/3Ni1/3Mn1/3O2 cathode material by improved co-precipitation method. J Cent South Univ 43(10):3780

    Google Scholar 

  248. Yang Y, Xu SM, Weng YQ, Huang GY, Li LY. (2013) Preparation and characterization of xLi2MnO3·(1−x) Li(Ni1/3Co1/3Mn1/3)O2 (x = 0.2, 0.4, 0.6) cathode materials synthesized by hydroxide co-precipitation method. J Funct Mater. 44(19):2878

    Google Scholar 

  249. Jeon HJ, Monim SA, Kang CS, Son JT. (2013) Synthesis of Lix[Ni0.225Co0.125Mn0.65]O2 as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide co-precipitation method. J Phys Chem Solids 74(9):1185

    Google Scholar 

  250. Lou X-M, Zhang Y-X (2011) Synthesis of LiFePO4/C cathode materials with both high-rate capacity and high tap density for lithium-ion batteries. J Mater Chem 21:4156–4160

    Article  CAS  Google Scholar 

  251. Fan J-M, Chen J-J, Chen Y-X, Huang H-H, Wei Z-K, Zheng M-S, Dong Q-F (2014) Hierarchical structure LiFePO4@C synthesized by doleylamine-mediated method for low temperature applications. J Mater Chem A 2:4870–4873

    Article  CAS  Google Scholar 

  252. Wu X-L, Guo Y-G, Su J, Xiong J-W, Zhang Y-L, Wan L-J (2013) Carbon-nanotube-decorated nano-LiFePO4@C cathode materials with superior high-rate and low-temperature performance for lithium-ion batteries. Adv Energy Mater 3:1155–1160

    Article  CAS  Google Scholar 

  253. Li S-M, Liu XC, Mi R, Liu H, Li YC, Lau W-M, Mei J (2014) A facile route to modify ferrous phosphate and its use as an iron-containing resource for LiFePO4 via a polyol process. ACS Appl Mater Interfaces 6:9449–9457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Andrews R, Jacques D, Qian D, Rantell T (2002) Acc Chem Res 35:1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Li G, Shrotriya V, Huang J, Yao Y, Moriarity T, Emery K, Yang Y (2005) Nat Mater 4:864

    Article  CAS  Google Scholar 

  257. McCullough RD (1998) Adv Mater 10:93

    Article  CAS  Google Scholar 

  258. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  259. Shao QG, Chen WM, Wang ZH, Qie L, Yuan LX, Zhang WX et al (2011) Electrochem Commun 13:1431

    Article  CAS  Google Scholar 

  260. Zhao Y, Li J, Wang N, Wu C, Dong G, Guan L (2012) J Phys Chem C 116:18612

    Article  CAS  Google Scholar 

  261. Kim J, Lee D, Jung H, Sun Y, Hassoun J, Scrosati B (2013) An advanced lithium-sulfur battery. Adv Funct Mater 23:1076–1080

    Article  CAS  Google Scholar 

  262. Yoo H, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17:110–121

    Article  CAS  Google Scholar 

  263. Brodd R (2013) Batteries for sustainability: selected entries from the encyclopedia of sustainability science and technology. Springer New York, New York

    Book  Google Scholar 

  264. Fedorková A, Oriňáková R, Čech O, Sedlaříková M (2013) New composite cathode materials for Li/S batteries: a review. Int J Electrochem Sci 8

    Google Scholar 

  265. Fedorková A, Nacher-Alejos A, Gómez-Romero P, Oriňáková R, Kaniansky D (2010) Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries. Electrochim Acta 55:943–947

    Article  CAS  Google Scholar 

  266. Assary R, Curtiss L, Moore J (2014) Toward a molecular understanding of energetics in Li–S batteries using nonaqueous electrolytes: a high-level quantum chemical study. J Phys Chem 118:11545–11558

    CAS  Google Scholar 

  267. Choi Y, Kim K, Ahn H, Ahn J (2008) Improvement of cycle property of sulfur electrode for lithium/sulfur battery. J Alloys Compd 449:313–316

    Article  CAS  Google Scholar 

  268. Cao Z, Ma C, Jia Y, Sun Z, Yue H, Yin Y, Yang S (2015) Activated clay of nest structure encapsulated sulfur cathodes for lithium–sulfur batteries. RSC Adv 36:28349–28353

    Article  CAS  Google Scholar 

  269. Zhao X, Tu J, Lu Y, Cai J, Zhang Y, Wang X, Gu C (2013) Graphene-coated mesoporous carbon/sulfur cathode with enhanced cycling stability. Electrochim Acta 113:256–262

    Article  CAS  Google Scholar 

  270. Wang X, Zhang Z, Yan X, Qu Y, Lai Y, Li J (2015) Interface polymerization synthesis of conductive polymer/graphite oxide@sulfur composites for high-rate lithium-sulfur batteries. Electrochim Acta 155:54–60

    Article  CAS  Google Scholar 

  271. Cheng H, Wang S (2014) Recent progress in polymer/sulphur composites as cathodes for rechargeable lithium–sulphur batteries. J Mater Chem A 2:13783

    Article  CAS  Google Scholar 

  272. Babu G, Ababtain K, Ng K, Arava L (2015) Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Sci Rep 5:8763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. He J, Chen Y, Li P, Fu F, Wang Z, Zhang W (2015) Three-dimensional CNT/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries. J Mater Chem A 3:18605–18610

    Article  CAS  Google Scholar 

  274. Zhou G, Paek E, Hwang G, Manthiram A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760–7771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Alves A, Bergman CP, Berutti FA (2013) Novel synthesis and characterization of nanostructured materials, engineering materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41275-2-1

  276. Li Z, Zhang D, Yang F (2009) Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J Mater Sci 44(10):2435–2443

    Article  CAS  Google Scholar 

  277. Chang H-H, Chang C-C, Wu H-C, Guo ZZ, Yang MH, Chiang YP, Sheu HS, Wu NL (2006) Kinetic study on low-temperature synthesis of LiFePO4 via solid-state reaction. J Power Sources 158(1):550–556

    Article  CAS  Google Scholar 

  278. Amin R, Maier J, Balaya P, Chen DP, Lin CT (2008) Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics 179(27–32):1683–1687

    Article  CAS  Google Scholar 

  279. Lung-Hao HuB, Wu F-Y, Lin C-T, Khlobystov AN, Li LJ (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1687

    Article  CAS  Google Scholar 

  280. Zhou X, Wang F, Zhu Y, Liu Z (2011) Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J Mater Chem 21(10):3353–3358

    Article  CAS  Google Scholar 

  281. Yang J, Wang J, Tang Y, Wang D, Li X, Hu Y, Li R, Liang G, Sham TK, Sun X (2013) LiFePO4–graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy Environ Sci 6(5):1521–1528

    Article  CAS  Google Scholar 

  282. Rui X, Zhao X, Lu Z, Tan H, Sim D, Hng HH, Yazami R, Lim TM, Yan Q (2013) Olivine-type nanosheets for lithium ion battery cathodes. ACS Nano 7(6):5637–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29. https://doi.org/10.1038/nchem.2085

  284. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energ Environ Sci 5:7854–7863. https://doi.org/10.1039/C2EE21892E

  285. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901. https://doi.org/10.1039/c2ee02781j

  286. Santhanam R, Rambabu B (2010) J Power Sources 195:5442–5451

    Article  CAS  Google Scholar 

  287. Eftekhari A (2004) J Power Sources 132:240–243

    Article  CAS  Google Scholar 

  288. Lu DS, Xu MQ, Zhou L, Garsuch A, Lucht BL (2013) J Electrochem Soc 160:A3138–A3143

    Article  CAS  Google Scholar 

  289. Yang L, Ravdel B, Lucht BL (2010) Electrochem Solid-State Lett 13:A95–A97

    Article  CAS  Google Scholar 

  290. Wu HM, Belharouak I, Abouimrane A, Sun Y-K, Amine K (2010) J Power Sources 195:2909–2913

    Article  CAS  Google Scholar 

  291. Liu D, Trottier J, Charest P, Fréchette J, Guerfi A, Mauger A, Julien CM, Zaghib K (2012) J Power Sources 204:127–132

    Article  CAS  Google Scholar 

  292. Sun Y-K, Lee Y-S, Yoshio M, Amine K (2003) J Electrochem Soc 150:L11–L11

    Article  CAS  Google Scholar 

  293. Liu J, Manthiram A (2009) Kinetics study of the 5 V spinel cathode LiMn1.5Ni0.5O4 before and after surface modifications. J Electrochem Soc 156:A833–A838

    Article  CAS  Google Scholar 

  294. Liu D, Bai Y, Zhao S, Zhang W (2012) J Power Sources 219:333–338

    Article  CAS  Google Scholar 

  295. Li J, Zhang Y, Li J, Wang L, He X, Gao J (2011) Ionics 17:671–675

    Article  CAS  Google Scholar 

  296. Kraytsberg A, Drezner H, Auinat M, Shapira A, Solomatin N, Axmann P, Margret W-M, Yair E-E (2015) ChemNanoMat 1:577–585

    Article  CAS  Google Scholar 

  297. Lee K-S, Myung S-T, Amine K, Yashiro H, Sun Y-K (2009) J Mater Chem 19:1995–2005

    Article  CAS  Google Scholar 

  298. Luo SH, Gao M, Chen J, Xing XR, Li Z, Zhou XT, Wen W (2011) J New Mater Electrochem Syst 14:141–146

    Article  CAS  Google Scholar 

  299. Xia H, Yan F, Lai MO, Lu L, Song WD (2009) Funct Mater Lett 02:163–167

    Article  CAS  Google Scholar 

  300. Ménétrier M, Saadoune I, Levasseur S, Delmas C (1999) J Mater Chem 9:1135–1140

    Article  Google Scholar 

  301. Lu Z, Dahn JR (2002) J Electrochem Soc 149:A815–A822

    Article  CAS  Google Scholar 

  302. Liu JL, Chen L, Hou MY, Wang F, Che RC, Xia YY (2012) J Mater Chem 22:25380–25387

    Article  CAS  Google Scholar 

  303. Kong JZ, Wang CL, Xu Q, Tai GA, Li AD, Wu D, Li H, Zhou F, Yu C, Sun Y, Jia D, Tang WP (2015) Electrochim Acta 174:542–550

    Google Scholar 

  304. Lu J, Peng Q, Wang W, Nan C, Li L, Li Y (2013) J Am Chem Soc 135:1649–1652

    Article  CAS  PubMed  Google Scholar 

  305. Padhy R, Rao AN, Parashar SKS, Parashar K, Chaudhuri P (2014) Solid State Ionics 256:29–37

    Article  CAS  Google Scholar 

  306. Yu C, Wang H, Guan XF, Zheng J, Li LP (2013) J Alloys Compd 546:239–245

    Article  CAS  Google Scholar 

  307. Wang Y, Zhou AJ, Dai XY, Feng LD, Li JW, Li JZ (2014) J Power Sources 266:114–120

    Article  CAS  Google Scholar 

  308. Shi SJ, Tu JP, Tang YY, Yu YX, Zhang YQ, Wang XL, Gu CD (2013) J Power Sources 228:14–23

    Article  CAS  Google Scholar 

  309. Miao XW, Ni H, Zhang H, Wang CG, Fang JH, Yang G (2014) J Power Sources 264:147–154

    Article  CAS  Google Scholar 

  310. Vijayakumar M, Kerisit S, Yang ZG, Graff GL, Liu J, Sears JA, Burton SD, Rosso KM, Hu JZ (2009) J Phys Chem C 113:20108–20116

    Article  CAS  Google Scholar 

  311. Luo D, Li G, Fu C, Chao Z, Jing F, Jian M, Li Q (2015) LiMO2 (M = Mn, Co, Ni) hexagonal sheets with (101) facets for ultrafast charging–discharging lithium ion batteries. J Power Sources 276:238–246. https://doi.org/10.1016/j.jpowsour.2014.11.122

  312. Lee KS, Myung ST, Amine K, Lee KS, Myung ST, Amine K, Yashiro H, Sun YK (2007) Structural and electrochemical properties of layered Li[Ni[sub 1−2x]Co[sub x]Mn[sub x]]O[sub 2] (x = 0.1–0.3) positive electrode materials for Li-ion batteries. J Electrochem Soc 154(10):A971–A977. https://doi.org/10.1149/1.2769831

  313. Eom J, Kim MG, Cho J (2008) Storage characteristics of LiNi[sub 0.8]Co[sub 0.1+x]Mn[sub 0.1−x]O[sub 2] (x = 0, 0.03, and 0.06) cathode materials for lithium batteries. J Electrochem Soc 155(3):A239–A245. https://doi.org/10.1149/1.2830946

  314. Bang H, Kim DH, Bae YC, Sun YK (2008) Effects of metal ions on the structural and thermal stabilities of Li[Ni[sub 1−x−y]Co[sub x]Mn[sub y]]O[sub 2] (x+y ≤ 0.5) studied by in situ high temperature XRD. J Electrochem Soc 155(12):A952–A958. https://doi.org/10.1149/1.2988729

  315. Fey GT, Shiu R, Subramanian V, Chen JG, Chen CL (2002) LiNi0.8Co0.2O2 cathode materials synthesized by the maleic acid assisted sol–gel method for lithium batteries. J Power Sources 103(2):265–272. https://doi.org/10.1016/S0378-7753(01)00859-X

  316. Yao JH, Shen CQ, Zhang PJ, Gregory DH, Wang LB (2013) Surface coating of LiMn2O4 spinel via in situ hydrolysis route: effect of the solution. Ionics 19:739–745

    Article  CAS  Google Scholar 

  317. Liu DQ, Liu XQ, He ZZ (2007) Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4. J Alloys Compd 436:387–391

    Article  CAS  Google Scholar 

  318. Ha HW, Yun NJ, Kim K (2007) Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries. Electrochim Acta 52:3236–3241

    Article  CAS  Google Scholar 

  319. Zhao S, Chang QJ, Jiang K, Bai Y, Yang YQ, Zhang WF (2013) Performance improvement of spinel LiMn2O4 cathode material by LaF3 surface modification. Solid State Ionics 253:1–7

    Article  CAS  Google Scholar 

  320. Shang YS, Liu JL, Huang T, Yu AS (2013) Effect of heat treatment on the structure and electrochemical performance of FePO4 coated spinel LiMn2O4. Electrochim Acta 113:248–255

    Article  CAS  Google Scholar 

  321. Hu YM, Yao J, Zhao Z, Zhu MY, Li Y, Jin HM, Zhao HJ, Wang JZ (2013) ZnO-doped LiFePO4 cathode material for lithium-ion battery fabricated by hydrothermal method. Mater Chem Phys 141:835–841

    Article  CAS  Google Scholar 

  322. Singhala R, Tomarb MS, Burgos JG, Katiyara RS (2008) Electrochemical performance of ZnO-coated LiMn1.5Ni0.5O4 cathode material. J Power Sources 183:334–338

    Article  CAS  Google Scholar 

  323. Kong JZ, Ren C, Tai GA, Zhang X, Li AD, Wu D, Li H, Zhou F (2014) Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. J Power Sources 266:433–439

    Article  CAS  Google Scholar 

  324. Tu J, Zhao XB, Xie J, Cao GS, Zhung DG, Zhu TJ, Tu JP (2007) Enhanced low voltage cycling stability of LiMn2O4 cathode by ZnO coating for lithium ion batteries. J Alloys Compd 432:313–317

    Article  CAS  Google Scholar 

  325. Liu HW, Cheng CX, Hu ZQ, Zhang KL (2007) The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries. Mater Chem Phys 101:276–279

    Article  CAS  Google Scholar 

  326. Tu J, Zhao XB, Cao GS, Zhu TJ, Zhung DG, Tu JP (2006) Electrochemical performance of surface-modified LiMn2O4 prepared by a melting impregnation method. J Mater Sci Technol 22:433–436

    CAS  Google Scholar 

  327. Zhao JQ, Wang Y (2012) Ultrathin surface coatings for improved electrochemical performance of lithium ion battery electrodes at elevated temperature. J Phys Chem C 116:11867–11876

    Article  CAS  Google Scholar 

  328. Yabuuchi N, Ohzuku T (2003) J Power Sources 119–121:171–174

    Article  CAS  Google Scholar 

  329. Amine K, Chen Z, Zhang Z, Liu J, Lu W, Qin Y, Lu J, Curtis L, Sun Y (2011) J MaterChem 21:17754–17759

    CAS  Google Scholar 

  330. Kim G-H, Kim M-H, Myung S-T, Sun YK (2005) J Power Sources 146:602–605

    Article  CAS  Google Scholar 

  331. Liu XZ, Li HQ, Yoo E, Ishida M, Zhou HS (2012) Electrochim Acta 83:253–258

    Article  CAS  Google Scholar 

  332. Yuan X, Xu QJ, Liu X, Liu H, Min Y, Xia Y (2016) Layered cathode material with improved cycle performance and capacity by surface anchoring of TiO2 nanoparticles for Li-ion batteries. Electrochim Acta 213:648–654. https://doi.org/10.1016/j.electacta.2016.07.157

  333. Zhou LZ, Xu QJ, Liu MS, Jin X (2013) Novel solid-state preparation and electrochemical properties of Li1.13[Ni0.2Co0.2Mn0.47]O2 material with a high capacity by acetate precursor for Li-ion batteries. Solid State Ionics 249–250:134–138. https://doi.org/10.1016/j.ssi.2013.07.024

  334. Jin X, Xu Q, Yuan X, Zhou L, Xia Y (2013) Synthesis, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries. Electrochim Acta 114:605–610. https://doi.org/10.1016/j.electacta.2013.10.091

  335. Lee ES, Manthiram A (2014) Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J Mater Chem A 2(11):3932. https://doi.org/10.1039/c3ta14975g

  336. Tabuchi M, Nabeshima Y, Takeuchi T, Kageyama H, Tatsumi K, Akimoto J, Shibuya H, Imaizumi J (2011) Synthesis and electrochemical characterization of Fe and Ni substituted Li2MnO3—an effective means to use Fe for constructing “Co-free” Li2MnO3 based positive electrode material. J Power Sources 196(7):3611–3622. https://doi.org/10.1016/j.jpowsour.2010.12.060

  337. Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D (2016) Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv Energy Mater 6(8):1502398. https://doi.org/10.1002/aenm.201502398

  338. Li B, Li C, Cai J, Zhao J (2015) Retracted article: in situ nano-coating on Li1.2Mn0.52Ni0.13Co0.13O2 with a layered@spinel@coating layer heterostructure for lithium-ion batteries. J Mater Chem A 3(42):21290–21297. https://doi.org/10.1039/c5ta06387f

  339. Zheng J, Gu M, Genc A, Xiao J, Xu P, Chen X, Zhu Z, Zhao W, Pullan L, Wang C, Zhang JG (2014) Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett 14(5):2628–2635. https://doi.org/10.1021/nl500486y

  340. Chen CJ, Pang WK, Mori T, Peterson VK, Sharma N, Lee PH, Wu SH, Wang CC, Song YF, Liu RS (2016) The origin of capacity fade in the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) microsphere positive electrode: an operando neutron diffraction and transmission X-ray microscopy study. J Am Chem Soc 138(28):8824–8833. https://doi.org/10.1021/jacs.6b03932

  341. Zheng J, Xu P, Gu M, Xiao J, Browning ND, Yan P, Wang C, Zhang JG (2015) Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem Mater 27(4):1381–1390. https://doi.org/10.1021/cm5045978

  342. Chen Y, Xie K, Zheng C, Ma Z, Chen Z (2014) Enhanced Li storage performance of LiNi0.5Mn1.5O4-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. ACS Appl Mater Interfaces 6(19):16888–16894. https://doi.org/10.1021/am504412n

  343. Zhao E, Liu X, Hu Z, Sun L, Xiao X (2015) Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries. J Power Sources 294:141–149. https://doi.org/10.1016/j.jpowsour.2015.06.059

  344. Li J, Zhan C, Lu J, Yuan Y, Shahbazian Yassar R, Qiu X, Amine K (2015) Improve first-cycle efficiency and rate performance of layered-layered Li1.2Mn0.6Ni0.2O2 using oxygen stabilizing dopant. ACS Appl Mater Interfaces 7(29):16040–16045. https://doi.org/10.1021/acsami.5b04343

  345. Wang Z, Liu E, He C, Shi C, Li J, Zhao N (2013) Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sources 236:25–32. https://doi.org/10.1016/j.jpowsour.2013.02.022

    Article  CAS  Google Scholar 

  346. Xu G, Liu Z, Zhang C, Cui G, Chen L (2015) Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J Mater Chem A 3(8):4092–4123

    Article  CAS  Google Scholar 

  347. Yang L, Takahashi M, Wang B (2006) A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling. Electrochim Acta 51(16):3228–3234

    Article  CAS  Google Scholar 

  348. Amatucci G, Du Pasquier A, Blyr A, Zheng T, Tarascon J-M (1999) The elevated temperature performance of the LiMn2O4/C system: failure and solutions. Electrochim Acta 45(1):255–271

    Article  CAS  Google Scholar 

  349. Quinlan FT, Sano K, Willey T, Vidu R, Tasaki K, Stroeve P (2001) Surface characterization of the spinel LixMn2O4 cathode before and after storage at elevated temperatures. Chem Mater 13(11):4207–4212

    Article  CAS  Google Scholar 

  350. Amine K, Liu J, Kang S, Belharouak I, Hyung Y, Vissers D, Henriksen G (2004) Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. J Power Sources 129(1):14–19

    Article  CAS  Google Scholar 

  351. Xiao L, Zhao Y, Yang Y, Cao Y, Ai X, Yang H (2008) Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method. Electrochim Acta 54(2):545–550

    Article  CAS  Google Scholar 

  352. Wang X, Tanaike O, Kodama M, Hatori H (2007) High rate capability of the Mg-doped Li–Mn–O spinel prepared via coprecipitated precursor. J Power Sources 168(1):282–287

    Article  CAS  Google Scholar 

  353. Huang J, Yang F, Guo Y, Peng C, Bai H, Peng J, Guo J (2015) LiMgxMn2–xO4 (x ≤ 0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature. Ceram Int 41(8):9662–9667

    Article  CAS  Google Scholar 

  354. Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn J (1997) Synthesis and electrochemistry of LiNixMn2–xO4. J Electrochem Soc 144(1):205–213

    Article  CAS  Google Scholar 

  355. Amarilla J, Petrov K, Pico F, Avdeev G, Rojo J, Rojas R (2009) Sucrose-aided combustion synthesis of nanosized LiMn1.99–yLiyM0.01O4 (M = Al3+, Ni2+, Cr3+, Co3+, y = 0.01 and 0.06) spinels: characterization and electrochemical behavior at 25 and at 55 °C in rechargeable lithium cells. J Power Sources 191(2):591–600

    Article  CAS  Google Scholar 

  356. Zhang L-X, Wang Y-Z, Jiu H-F, Wang Y-L, Sun Y-X, Li Z (2014) Controllable synthesis of Co-doped spinel LiMn2O4 nanotubes as cathodes for Li-ion batteries. Electron Mater Lett 10(2):439–444

    Article  CAS  Google Scholar 

  357. Uludag AA, Erdaş A, Ozcan S, Nalci D, Güler MO, Cetinkaya T, Uysal M, Akbulut H (2015) Cr-and V-substituted LiMn2O4 cathode electrode materials for high-rate battery applications. In: Progress in clean energy, vol 2. Springer, pp 41–56

    Google Scholar 

  358. Luan X, Guan D, Wang Y (2012) Enhancing high-rate and elevated-temperature performances of nano-sized and micron-sized LiMn2O4 in lithium-ion batteries with ultrathin surface coatings. J Nanosci Nanotechnol 12(9):7113–7120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Şahan H, Dokan FK, Ülgen A, Patat Ş (2014) Improvement of cycling stability of LiMn2O4 cathode by Fe2O3 surface modification for Li-ion battery. Ionics 20(3):323–333

    Article  CAS  Google Scholar 

  360. Lai C, Ye W, Liu H, Wang W (2009) Preparation of TiO2-coated LiMn2O4 by carrier transfer method. Ionics 15(3):389–392

    Article  CAS  Google Scholar 

  361. Ju B, Wang X, Wu C, Wei Q, Yang X, Shu H, Bai Y (2014) Excellent cycling stability of spherical spinel LiMn2O4 by Y2O3 coating for lithium-ion batteries. J Solid State Electrochem 18(1):115–123

    Article  CAS  Google Scholar 

  362. Ming H, Yan Y, Ming J, Adkins J, Li X, Zhou Q, Zheng J (2014) Gradient V2O5 surface-coated LiMn2O4 cathode towards enhanced performance in Li-ion battery applications. Electrochim Acta 120:390–397

    Article  CAS  Google Scholar 

  363. Lee J-W, Park S-M, Kim H-J (2009) Effect of LiNi1/2Mn1/2O2 coating on the electrochemical performance of Li–Mn spinel. Electrochem Commun 11(6):1101–1104

    Article  CAS  Google Scholar 

  364. Yan J, Liu H, Wang Y, Zhao X, Mi Y, Xia B (2015) Enhanced high-temperature cycling stability of LiNi1/3Co1/3Mn1/3O2-coated LiMn2O4 as cathode material for lithium ion batteries. Ionics 21(7):1835–1842

    Article  CAS  Google Scholar 

  365. Qiu T, Wang J, Lu Y, Yang W (2014) Improved elevated temperature performance of commercial LiMn2O4 coated with LiNi0.5Mn1.5O4. Electrochim Acta 147:626–635

    Article  CAS  Google Scholar 

  366. Li X, Xu Y, Wang C (2009) Novel approach to preparation of LiMn2O4 core/LiNixMn2–xO4 shell composite. Appl Surf Sci 255(11):5651–5655

    Article  CAS  Google Scholar 

  367. Lin GQ, Wen L, Liu YM (2010) Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J Solid State Electrochem 14(12):2191–2202. https://doi.org/10.1007/s10008-010-1061-5

    Article  CAS  Google Scholar 

  368. Yi TF, Xie Y, Ye MF, Jiang LJ, Zhu RS, Zhu YR (2011) Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries. Ionics 17:383–389. https://doi.org/10.1007/s11581-011-0550-6

    Article  CAS  Google Scholar 

  369. Zhu YR, Yi TF (2016) Recent progress in the electrolytes for improving the cycling stability of LiNi0.5Mn1.5O4 high-voltage cathode. Ionics 22:1759–1774. https://doi.org/10.1007/s11581-016-1788-9

    Article  CAS  Google Scholar 

  370. Mao J, Ma MZ, Liu PP, Hu JH, Shao GS, Battaglia V, Dai KH, Liu G (2016) The effect of cobalt doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4cathode material. Solid State Ionics 292:70–74. https://doi.org/10.1016/j.ssi.2016.05.008

    Article  CAS  Google Scholar 

  371. Lu M, Han ES, Zhu LZ, Chen S, Zhang GQ (2016) The effects of Ti4+–Fe3+ co-doping on Li Ni1/3Co1/3Mn1/3 O2. Solid State Ionics 298:9–14. https://doi.org/10.1016/j.ssi.2016.10.014

    Article  CAS  Google Scholar 

  372. Kou YJ, Han ES, Zhu LZ, Liu LL, Zhang ZA (2016) The effect of Ti doping on electrochemical properties of Li1.167Ni0.4Mn0.383Co0.05O2 for lithium-ion batteries. Solid State Ionics 296:154–157. https://doi.org/10.1016/j.ssi.2016.09.020

    Article  CAS  Google Scholar 

  373. Svegl F, Orel B, Grabec-Svegl I, Kaucic V (2000) Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route. Electrochim Acta 45(25–26):4359–4371

    Article  CAS  Google Scholar 

  374. Saadoune I, Delmas C (1996) LiNi1–yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behaviour. J Mater Chem 6(2):193–199. https://doi.org/10.1039/jm9960600193

    Article  CAS  Google Scholar 

  375. Myung S-T, Komaba S, Hirosaki N, Hosoya K, Kumagai N (2005) Improvement of structural integrity and battery performance of LiNi0.5Mn0.5O2 by Al and Ti doping. J Power Sources 146(1–2):645–649. https://doi.org/10.1016/j.jpowsour.2005.03.083

    Article  CAS  Google Scholar 

  376. Yang G, Zhao E, Chen M, Cheng Y, Xue L, Hu Z, Xiao X, Li F (2017) Mg doping improving the cycle stability of LiNi0.5Mn0.5O2 at high voltage. J Solid State Electr. https://doi.org/10.1007/s10008-017-3666-4

  377. Song D, Hou P, Wang X, Shi X, Zhang L (2015) Understanding the origin of enhanced performances in core-shell and concentration-gradient layered oxide cathode materials. ACS Appl Mater Interfaces 7(23):12864–12872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Mezaal MA, Qu L, Li G, Zhang R, Xuejiao J, Zhang K, Liu W, Lei L (2015) Promoting the cyclic and rate performance of lithium-rich ternary materials via surface modification and lattice expansion. RSC Adv 5(113):93048–93056

    Article  CAS  Google Scholar 

  379. Gong C, Lv W, Qu L, Bankole OE, Li G, Zhang R, Hu M, Lei L (2014) Syntheses and electrochemical properties of layered Li0.95Na0.05Ni1/3Co1/3Mn1/3O2 and LiNi1/3Co1/3Mn1/3O2. J Power Sources 247:151–155

    Article  CAS  Google Scholar 

  380. Islam MS, Fisher CA (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Yu XZ, Lu BA, Xu Z (2014) Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO-3D graphene hybrid electrodes. Adv Mater 26:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302. https://doi.org/10.1021/cr020731c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Yu H, Kim H, Wang Y, He P, Asakura D, Nakamura Y, Zhou H (2012) High energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys Chem 14:6584–6595

    Google Scholar 

  384. Armstrong AR, Holzapfel M, Novàk P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 199:220–226

    Article  CAS  Google Scholar 

  386. Mohanty D, Sefat AS, Kalnaus S, Li J, Meisner RA, Payzant EA, Abraham DP, Wood DL, Daniel C (2013) Investigating phase transformation in theLi1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J Mater Chem A 1:6249–6261

    Article  CAS  Google Scholar 

  387. Martha SK, Nanda J, Kim Y, Unocic RR, Pannala S, Dudney NJ (2013) Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. J Mater Chem A 1:5587–5595

    Article  CAS  Google Scholar 

  388. Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 216:179–186

    Article  CAS  Google Scholar 

  389. Bettge M, Li Y, Gallagher K, Zhu Y, Wu Q, Lu W, Bloom I, Abraham DP (2013) Voltage fade of layered oxides: its measurement and impact on energy density. J Electrochem Soc 160(11):A2046–A2055

    Article  CAS  Google Scholar 

  390. Nayak PK, Grinblat J, Levi E, Penki Ti R, Levi M, Sun Y-K, Markovsky B, Aurbach D (2016) Remarkably improved electrochemical performance of Li- and Mn-rich cathodes upon substitution of Mn with Ni. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.6b07959

  391. Park SH, Sun Y-K (2003) Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275–x/2)AlxMn(0.575–x/2)]O2 materials prepared by sol–gel method. J Power Sources 119–121:161–165

    Article  CAS  Google Scholar 

  392. Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX (2015) Magnesium-doped Li1.2 [Co0.13Ni0.13Mn0.54] O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 7:13014–13021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Robert R, Villevieille C, Novák P (2014) Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. J Mater Chem A 2:8589–8598

    Article  CAS  Google Scholar 

  394. Kim G-H, Kim J-H, Myung S-T, Yoon CS, Sun Y-K (2005) Improvement of high-voltage cycling behavior of surface-modified Li[Ni1/3Co1/3Mn1/3]O2 cathodes by fluorine substitution for Li-ion batteries. J Electrochem Soc 152:A1707–A1713

    Article  CAS  Google Scholar 

  395. Shin HS, Park SH, Yoon CS, Sun YK (2005) Effect of fluorine on the electrochemical properties of layered LiNi0.43Co0.22Mn0.35O2 cathode materials via a carbonate process. Electrochem Solid-State Lett 8:A559

    Article  CAS  Google Scholar 

  396. Woo SU, Park BC, Yoon CS, Myung ST, Prakash J, Sun YK (2007) Improvement of electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode materials by fluorine substitution. J Electrochem Soc 154:A649

    Article  CAS  Google Scholar 

  397. Shin HS, Shin D, Sun YK (2006) Improvement of electrochemical properties of Li[Ni0.4Co0.2Mn(0.4–x)Mgx]O2–yFy cathode materials at high voltage region. Electrochim Acta 52:1477

    Article  CAS  Google Scholar 

  398. Kim G-H, Myung S-T, Bang HJ, Prakash J, Sun Y-K (2004) Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3–x)Mgx]O2–yFy via coprecipitation. Electrochem Solid-State Lett 7(12):A477–A480

    Article  CAS  Google Scholar 

  399. Axelbaum RL, Lengyel M (2015) Doped lithium-rich layered composite cathode materials. United States Patent, US2015/0270545A1

    Google Scholar 

  400. Luo W, Zhou F, Zhao X, Lu Z, Li X, Dahn JR (2010) Synthesis, characterization, and thermal stability o LiNi1/3Mn1/3Co1/3–zMgzO2, LiNi1/3–zMn1/3Co1/3MgzO2, and LiNi1/3Mn1/3–zCo1/3MgzO2. Chem Mater 22:1164–1172

    Article  CAS  Google Scholar 

  401. Kim Y, Kim HS, Martin SW (2006) Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries. Electrochim Acta 52(3):1316–1322

    Article  CAS  Google Scholar 

  402. Chen Y, Zhang Y, Wang F, Wang Z, Zhang Q (2014) Improve the structure and electrochemical performance of LiNiCoMnO2 cathode material by nano Al2O3 ultrasonic coating. J Alloys Compd 611:135–141

    Article  CAS  Google Scholar 

  403. Li D, Kato Y, Kobayakawa K, Noguchi H, Sato Y (2006) Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating. J Power Sources 160(2):1342–1348

    Article  CAS  Google Scholar 

  404. Wu Y, Manthiram A (2006) High capacity, surface-modified layered LiLi, 1–x…/3Mn, 2–x…/3Nix/3Cox/3O2 cathodes with low irreversible capacity loss. Electrochem Solid State Lett 9(5):A221–A224

    Article  CAS  Google Scholar 

  405. Choi J, Manthiram A (2005) Investigation of the irreversible capacity loss in the layered LiNi1/3Mn1/3Co1/3O2 cathodes. Electrochem Solid State Lett 8(8):C102–C105

    Article  CAS  Google Scholar 

  406. Chen Z, Qin Y, Amine K, Sun YK (2010) Role of surface coating on cathode materials for lithium-ion batteries. J Mater Chem 20:7606–7612

    Article  CAS  Google Scholar 

  407. Huang Y, Chen J, Cheng F, Wan W, Liu W, Zhou H, Zhang X (2010) A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process. J Power Sources 195(24):8267–8274

    Article  CAS  Google Scholar 

  408. Wu Y, Manthiram A (2007) Effect of Al3+ and F doping on the irreversible oxygen loss from layered Li[Li0.17Mn0.58Ni0.25]O2 cathodes. Electrochem Solid-State Lett 10(8):A151–A154

    Article  CAS  Google Scholar 

  409. Shu J, Shui M, Huang F, Ren Y, Wang Q, Xu D, Hou L (2010) J Phys Chem C 114:3323–3328

    Article  CAS  Google Scholar 

  410. Wang ZG, Wang ZX, Peng WJ, Guo HJ, Li XH, Wang JX, Qi A (2014) Ionics 20:1525–1534

    Article  CAS  Google Scholar 

  411. Luo W, Li X, Dahn JR (2010) J Electrochem Soc 157:A782–A789

    Article  CAS  Google Scholar 

  412. Scott ID, Jung YS, Cavanagh AS, Yan Y, Dillon AC, George SM, Lee SH (2011) Nano Lett 11:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Jung YS, Lu P, Cavanagh AS, Ban C, Kim GH, Lee SH, George SM, Harris SJ, Dillon AC (2013) Adv Energy Mater 3:213–219

    Article  CAS  Google Scholar 

  414. Dai X, Zhou A, Xu J, Yang B, Wang L, Li J (2015) J Power Sources 298:114–122

    Article  CAS  Google Scholar 

  415. Shim J, Lee S, Park S (2014) Chem Mater 26:2537–2543

    Article  CAS  Google Scholar 

  416. Cho J, Kim Y, Kim T, Park B (2001) Angew Chem Int Ed Engl 18:3367–3369

    Article  Google Scholar 

  417. Lee J, Kim B, Cho J, Kim Y, Park B (2004) J Electrochem Soc 151:A801–A805

    Article  CAS  Google Scholar 

  418. Sun Y, Yoon C, Myung S, Belharouak I, Amine K (2009) J Electrochem Soc 156:A1005–A1010

    Article  CAS  Google Scholar 

  419. Lee H, Park Y (2013) Solid State Ionics 230:86–91

    Article  CAS  Google Scholar 

  420. Park JS, Mane AU, Elam JW, Croy JR (2015) Chem Mater 27:1917–1920

    Article  CAS  Google Scholar 

  421. Kim S-M, Jin B-S, Lee S-M, Kim H-S (2015) Effects of the fluorine-substitution and acid treatment on the electrochemical performances of 0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2 cathode material for Li-ion battery. Electrochim Acta 171:35–41

    Article  CAS  Google Scholar 

  422. Li J, Xu Y, Li X, Zhang Z (2013) Li2MnO3 stabilized LiNi1/3Co1/3Mn1/3O2 cathode with improved performance for lithium ion batteries. Appl Surf Sci 285:235–240

    Article  CAS  Google Scholar 

  423. Yu H, Zhou H (2013) High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J Phys Chem Lett 4(8):1268–1280

    Article  CAS  PubMed  Google Scholar 

  424. Yano A, Aoyama S, Shikano M, Sakaebe H, Tatsumi K, Ogumi Z (2015) Surface structure and high-voltage charge/discharge characteristics of Al-oxide coated LiNi1/3Co1/3Mn1/3O2 cathodes. J Electrochem Soc 162(2):A3137–A3144

    Article  CAS  Google Scholar 

  425. Wang D, Wang X, Yu R, Bai Y, Wang G, Liu M, Yang X (2016) The control and performance of Li4Mn5O12 and Li2MnO3 phase ratios in the lithium-rich cathode materials. Electrochim Acta 190:1142–1149

    Article  CAS  Google Scholar 

  426. Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4:63268–63284

    Article  CAS  Google Scholar 

  427. Zhong S, Hu P, Luo X, Zhang X, Wu L (2016) Preparation of LiNi0.5Mn1.5O4 cathode materials by electrospinning. Ionics 22:2037–2044

    Article  CAS  Google Scholar 

  428. Wu L, Lu J, Wei G, Wang P, Ding H, Zheng J, Li X, Zhong S (2014) Synthesis and electrochemical properties of xLiMn0.9Fe0.1PO4·yLi3V2(PO4)3/C composite cathode materials for lithium-ion batteries. Electrochim Acta 146:288–294

    Article  CAS  Google Scholar 

  429. Wang Z, Wang Z, Guo H, Peng W, Li X (2015) Synthesis of Li2MnO3-stabilized LiCoO2 cathode material by spray-drying method and its high-voltage performance. J Alloy Compd 626:228–233

    Article  CAS  Google Scholar 

  430. Liu Y, Zhang Z, Fu Y, Wang Q, Pan J, Su M, Battaglia VS (2016) Investigation the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with ZnAl2O4 coating for lithium ion batteries. J Alloy Compd 685:523–532

    Article  CAS  Google Scholar 

  431. Chen M, Chen D, Liao Y, Zhong X, Li W, Zhang Y (2016) Layered lithium-rich oxide nanoparticles doped with spinel phase: acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery. ACS Appl Mater Inter 8:4575–4584

    Article  CAS  Google Scholar 

  432. Johnson CS, Korte SD, Vaughey JT, Thackeray MM, Bofinger TE, Shao-Horn Y, Hackney SA (1999) Structural and electrochemical analysis of layered compounds from Li2MnO3. J Power Sources 81–82:491–495

    Article  Google Scholar 

  433. He L, Xu J, Han T, Han H, Wang Y, Yang J, Wang J, Zhu W, Zhang C, Zhang Y (2017) SmPO4-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a cathode material with enhanced cycling stability for lithium ion batteries. Ceram Int 43:5267–5273

    Article  CAS  Google Scholar 

  434. Wang R, Li X, Wang Z, Guo H, Wang J (2015) Electrochemical analysis for cycle performance and capacity fading of lithium manganese oxide spinel cathode at elevated temperature using p-toluenesulfonyl isocyanate as electrolyte additive. Electrochim Acta 180:815–823

    Article  CAS  Google Scholar 

  435. Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500

    Article  CAS  Google Scholar 

  436. Zheng F, Ou X, Pan Q, Xiong X, Yang C, Liu M (2017) The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. J Power Sources 346:31–39

    Article  CAS  Google Scholar 

  437. Xiang Y, Sun Z, Li J, Wu X, Liu Z, Xiong L, He Z, Long B, Yang C, Yin Z (2017) Improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries synthesized by the polyvinyl alcohol assisted sol-gel method. Ceram Int 43:2320–2324

    Article  CAS  Google Scholar 

  438. Song L, Tang Z, Chen Y, Xiao Z, Li L, Zheng H, Li B, Liu Z (2016) Structural analysis of layered Li2MnO3-LiMO2 (M = Ni1/3Mn1/3Co1/3, Ni1/2Mn1/2) cathode materials by Rietveld refinement and first-principles calculations. Ceram Int 42:8537–8544

    Article  CAS  Google Scholar 

  439. Oishi M, Yogi C, Watanabe I, Ohta T, Orikasa Y, Uchimoto Y, Ogumi Z (2015) Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2. J Power Sources 276:89–94

    Article  CAS  Google Scholar 

  440. He Z, Wang Z, Huang Z, Chen H, Li X, Guo H (2015) A novel architecture designed for lithium rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 oxides for lithium-ion batteries. J Mater Chem A 3:16817–16823

    Article  CAS  Google Scholar 

  441. Lu LG, Han XB, Li JQ et al (2013) J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  442. Hassoun J, Lee KS, Sun YK et al (2011) J Am Chem Soc 133:3139–3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Xiong X, Wang Z, Guo H, Zhang Q et al (2013) J Mater Chem A 1:1284–1288

    Article  CAS  Google Scholar 

  444. Jo M, Noh M, Oh P et al (2014) Adv Energy Mater 4:1301583

    Article  CAS  Google Scholar 

  445. Hou PY, Wang XQ, Song DW (2014) J Power Sources 265:174–181

    Article  CAS  Google Scholar 

  446. Wu KC, Wang F, Gao LL et al (2012) Electrochim Acta 75:393–398

    Article  CAS  Google Scholar 

  447. Wu F, Wang M, Su Y et al (2009) Electrochim Acta 54:6803–6807

    Article  CAS  Google Scholar 

  448. Xu M, Chen ZY, Zhu HL et al (2015) J Mater Chem A 3:13933–13945

    Article  CAS  Google Scholar 

  449. Chen Z, Dahn JR (2002) Electrochem Solid-State Lett 5:A213–A216

    Article  CAS  Google Scholar 

  450. Li L, Chen Z, Song L et al (2015) J Alloy Compd 638:77–82

    Article  CAS  Google Scholar 

  451. Huang Y, Jin F-M, Chen F-J et al (2014) J Power Sources 256:1–7

    Article  CAS  Google Scholar 

  452. Zhao EY, Xiao XL, Hu ZB et al (2015) Chem Commun 51:9093–9096

    Article  CAS  Google Scholar 

  453. Wang D, Li XH, Wang WL et al (2015) Ceram Int 41:6663–6667

    Article  CAS  Google Scholar 

  454. Weaving JS, Coowar F, Teagle DA, Cullen J, Dass V, Bindin P, Green R, Macklin WJ (2001) Development of high energy density Li-ion batteries based on LiNi1–x–yCoxAlyO2. J Power Sources 97:733–735

    Article  Google Scholar 

  455. Lee KK, Yoon WS, Kim KB, Lee KY, Hong ST (2001) Characterization of LiNi0.85Co0.10M0.05O2 (M = Al, Fe) as a cathode material for lithium secondary batteries. J Power Sources 97:308–312

    Article  Google Scholar 

  456. Cao H, Xia BJ, Xu NX, Zhang CF (2004) Structural and electrochemical characteristics of Co and Al co-doped lithium nickelate cathode materials for lithium-ion batteries. J Alloys Compd 376(1):282–286

    Article  CAS  Google Scholar 

  457. Yabuuchi N, Ohzuku T (2006) Lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Electrochem Soc 4:107–107

    Google Scholar 

  458. Wang Y, Jiang J, Dahn JR (2007) The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte. Electrochem Commun 9(10):2534–2540

    Article  CAS  Google Scholar 

  459. Li T, Li X, Wang Z, Guo H (2017) A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: a case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2. J Power Sources 342:495–503

    Article  CAS  Google Scholar 

  460. Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J (2016) Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim Acta 188:48–56

    Article  CAS  Google Scholar 

  461. Wang J, Liu Z, Yan G, Li H, Peng W, Li X, Shih K (2016) Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: focus on interfacial stability. J Power Sources 329:553–557

    Article  CAS  Google Scholar 

  462. Marezio M, Remeika JP (1966) High-pressure synthesis and crystal structure of α-LiAlO2. J Chem Phys 44(8):3143–3144

    Article  CAS  Google Scholar 

  463. Hu L, Tang Z, Zhang Z (2008) Hydrothermal synthesis of single crystal mesoporous LiAlO2 nanobelts. Mater Lett 62(12):2039–2042

    Article  CAS  Google Scholar 

  464. Robertson AD, West AR, Ritchie AG (1997) Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ionics 104(1):1–11

    Article  CAS  Google Scholar 

  465. Barker J, Saidi MY, Gover RKB, Burns P, Bryan A (2007) The effect of Al substitution on the lithium insertion properties of lithium vanadium fluorophosphate, LiVPO4F. J Power Sources 174(2):927–931. https://doi.org/10.1016/j.jpowsour.2007.06.079

    Article  CAS  Google Scholar 

  466. Gover RKB, Bryan A, Burns P, Barker J (2006) The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics 177(17–18):1495–1500. https://doi.org/10.1016/j.ssi.2006.07.028

    Article  CAS  Google Scholar 

  467. Barker J, Saidi MY, Swoyer JL (2003) A sodium-ion cell based on the fluorophosphate compound NaVPO4 F. Electrochem Solid-State Lett 6(1):A1–A4. https://doi.org/10.1149/1.1523691

    Article  CAS  Google Scholar 

  468. Wang J, Li X, Wang Z, Guo H, Li Y, He Z, Huang B (2013) Enhancement of electrochemical performance of Al-doped LiVPO4F using AlF3 as aluminum source. J Alloys Compd 581:836–842. https://doi.org/10.1016/j.jallcom.2013.07.147

    Article  CAS  Google Scholar 

  469. Bai G, Yang Y, Shao H (2013) Synthesis and electrochemical properties of polyhedron-shaped Li3V2–xSnx(PO4)3 as cathode material for lithium-ion batteries. J Electroanal Chem 688:98–102. https://doi.org/10.1016/j.jelechem.2012.08.018

    Article  CAS  Google Scholar 

  470. Wang HY, Tang AD, Huang KL (2011) Thermal behavior investigation of LiNi1/3Co1/3Mn1/3O2-based Li-ion battery under overcharged test. Chin J Chem 29(1):27–32. https://doi.org/10.1002/cjoc.201190056

    Article  Google Scholar 

  471. Lin CH, Zhang YZ, Chen L, Lei Y, Junker O, Guo Y, Yuan HY, Xiao D (2015) Hydrogen peroxide assisted synthesis of LiNi1/3Co1/3Mn1/3O2 as high-performance cathode for lithium-ion batteries. J Power Sources 280:263–271. https://doi.org/10.1016/j.jpowsour.2015.01.084

  472. Noh HJ, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode materials for lithium-ion batteries. J Power Sources 233:121–130. https://doi.org/10.1016/j.jpowsour.2013.01.063

    Article  CAS  Google Scholar 

  473. He XM, Li JJ, Cai Y, Jiang CY, Wan CR (2006) Preparation of spherical spinel LiMn2O4 cathode material for Li-ion batteries. Mater Chem Phys 95(1):105–108. https://doi.org/10.1016/j.matchemphys.2005.06.006

    Article  CAS  Google Scholar 

  474. Zhang XY, Mauger A, Lu Q, Groult H, Perrigaud L, Gendron F, Julien CM (2010) Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by wet-chemical method. Electrochim Acta 55(22):6440–6449. https://doi.org/10.1016/j.electacta.2010.06.040

    Article  CAS  Google Scholar 

  475. Zhao T, Chen S, Li L, Zhang X, Chen R, Belharouak I, Wu F, Amine K (2013) Synthesis, characterization, and electrochemistry of cathode materials Li Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. J Power Sources 228:206–213. https://doi.org/10.1016/j.jpowsour.2012.11.099

    Article  CAS  Google Scholar 

  476. Kong JZ, Yang XY, Zhai HF, Ren C, Li H, Li JX, Tang Z, Zhou F (2013) Synthesis and electrochemical properties of Li-excess Li1+x[Ni0.5Co0.2Mn0.3]O2 cathode materials using ammonia-free chelating agent. J Alloys Compd 580:491–496. https://doi.org/10.1016/j.jallcom.2013.06.149

    Article  CAS  Google Scholar 

  477. Wang CL, Zhou F, Ren C, Wang YF, Kong JZ, Jiang YX, Yan GZ, Li JX (2015) Influences of carbonate co-precipitation temperature and stirring time on the microstructure and electrochemical properties of Li1.2[Mn0.52Ni0.2Co0.08]O2 positive electrode for lithium ion battery. Solid State Ionics 281:96–104. https://doi.org/10.1016/j.ssi.2015.09.016

    Article  CAS  Google Scholar 

  478. Kong JZ, Zhai HF, Ren C, Tai GA, Yang XY, Zhou F, Li H, Li JX, Tang Z (2014) High-capacity Li(Ni0.5Co0.2Mn0.3)O2 lithium-ion battery cathode synthesized using a green chelating agent. J Solid State Electrochem 18(1):181–188. https://doi.org/10.1007/s10008-013-2240-y

    Article  CAS  Google Scholar 

  479. Gabrisch H, Yazami R, Fultz B (2004) Hexagonal to cubic spinel transformation in lithiated cobalt oxide TEM investigation. J Electrochem Soc 151:A891–A897

    Article  CAS  Google Scholar 

  480. Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem Mater 16:906–914

    Article  CAS  Google Scholar 

  481. Jafta CJ, Mathe MK, Manyala N, Roos WD, Ozoemena KI (2013) Microwave-assisted synthesis of high-voltage nanostructured LiMn1.5Ni0.5O4 spinel: tuning the Mn3+ content and electrochemical performance. ACS Appl Mater Interfaces 5:7592–7598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  482. Manthiram A, Chemelewski K, Lee ES (2014) A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7:1339–1350

    Article  CAS  Google Scholar 

  483. Yoon S, Bridges CA, Unocic RR, Paranthaman MP (2013) Mesoporous TiO2 spheres with a nitridated conducting layer for lithium-ion batteries. J Mater Sci 48:5125–5131

    Article  CAS  Google Scholar 

  484. Zhang HZ, Qiao QQ, Li GR, Ye SH, Gao XP (2012) Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. J Mater Chem 22:13104–13109

    Article  CAS  Google Scholar 

  485. Koleva V, Zhecheva E, Stoyanova R (2011) Dalton Trans 40:7385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  486. Zhang W, Shan Z, Zhu K, Liu S, Liu X, Tian J (2015) Electrochim Acta 153:385

    Article  CAS  Google Scholar 

  487. Aono S, Urita K, Yamada H, Moriguchi I (2012) Solid State Ion 225:556

    Article  CAS  Google Scholar 

  488. Dong Y, Wang L, Zhang S et al (2012) J Power Sources 215:116

    Article  CAS  Google Scholar 

  489. Gu Y, Wang H, Zhu Y, Wang L, Qian Y, Chu Y (2015) Solid State Ion 274:106

    Article  CAS  Google Scholar 

  490. Cui Y-T, Xu N, Kou L-Q, Wu M-T, Chen L (2014) J Power Sources 249:42

    Google Scholar 

  491. Nam T, Doan L, Bakenov Z, Taniguchi I (2010) Adv Powder Technol 21:187

    Article  CAS  Google Scholar 

  492. Jo M, Yoo H, Jung YS, Cho J (2012) J Power Sources 216:162

    Article  CAS  Google Scholar 

  493. Kou L, Chen F, Tao F, Dong Y, Chen L (2015) Electrochim Acta 173:721

    Article  CAS  Google Scholar 

  494. Chen Z, Xie T, Li L, Xu M (2014) Ionics 20:629

    Article  CAS  Google Scholar 

  495. Lain MJ (2001) Recycling of lithium ion cells and batteries. J Power Sources 97–98:736–738

    Article  Google Scholar 

  496. Xu J, Thomas HR, Francis RW, Lum KR, Wang J, Liang B (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177:512–527

    Article  CAS  Google Scholar 

  497. Paulino JF, Busnardo NG, Afonso JC (2008) Recovery of valuable elements from spent Li-batteries. J Hazard Mater 150:843–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Zhang P, Yokoyama T, Itabashi O, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47:259–271

    Article  CAS  Google Scholar 

  499. Contestabile M, Panero S, Scrosati B (2001) A laboratory-scale lithium-ion battery recycling process. J Power Sources 92:65–69

    Article  CAS  Google Scholar 

  500. Shin SM, Kim NH, Sohn JS, Young DH, Kim YH (2005) Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79:172–181

    Article  CAS  Google Scholar 

  501. Dorella G, Mansur MB (2007) A study of the separation of cobalt from spent Li-ion battery residues. J Power Sources 170:210–215

    Article  CAS  Google Scholar 

  502. Zou H, Gratz E, Apelian D, Wang Y (2013) A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem 15:1183–1191

    Article  CAS  Google Scholar 

  503. Gratz E, Sa Q, Apelian D, Wang Y (2014) A closed loop process for recycling spent lithium ion batteries. J Power Sources 262:255–262

    Article  CAS  Google Scholar 

  504. Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT, Doublet ML, Foix D, Gonbeau D, Walker W, Prakash AS, Ben Hassine M, Dupont L, Tarascon JM (2013) Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater 12:827–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  505. Wei YJ, Nam KW, Kim KB, Chen G (2006) Spectroscopic studies of the structural properties of Ni substituted spinel LiMn2O4. Solid State Ionics 177(1–2):29–35. https://doi.org/10.1016/j.ssi.2005.10.015

    Article  CAS  Google Scholar 

  506. Lee YS, Kumada N, Yoshio M (2001) Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2–xO4) for lithium secondary battery. J Power Sources 96(2):376–384. https://doi.org/10.1016/S0378-7753(00)00652-2

    Article  CAS  Google Scholar 

  507. Liao L, Wang X, Luo X, Wang X, Gamboa S, Sebastian PJ (2006) Synthesis and electrochemical properties of layered Li[Ni0.333Co0.333Mn0.293Al0.04]O2–zFz cathode materials prepared by the sol–gel method. J Power Sources 160(1):657–661. https://doi.org/10.1016/j.jpowsour.2005.12.095

    Article  CAS  Google Scholar 

  508. Wang J, Yao SZ, Lin WQ, Wu BH, He XY, Li JY, Zhao JB (2015) Improving the electrochemical properties of high-voltage lithium nickel manganese oxide by surface coating with vanadium oxides for lithium ion batteries. J Power Sources 280(15):114–124. https://doi.org/10.1016/j.jpowsour.2015.01.087

    Article  CAS  Google Scholar 

  509. Zhao D, Wang Y, Zhang Y (2011) High-performance Li-ion batteries and supercapacitors base on 1-D nanomaterials in prospect. Nano-Micro Lett. 3(1):62–71. https://doi.org/10.3786/nml.v3i1.p62-71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter