Abstract
Lithium-ion batteries (Li-ion batteries) have been commonly used as power sources in consumer electronics including laptops, cellular phones, and full and hybrid electric vehicles because of their long cycling life, high energy capacity, and eco-friendliness.
This book was machine-generated
References
Main Document References
Xu Y, Hou S, Yang G et al (2018) J Solid State Electrochem 22:785. https://doi.org/10.1007/s10008-017-3811-0
Jiao Z, Gao R, Tao H et al (2016) J Nanopart Res 18:307. https://doi.org/10.1007/s11051-016-3617-5
Lu HH, Shi CS, Zhao NQ et al (2018) Rare Met 37:107. https://doi.org/10.1007/s12598-017-0983-9
Li F, Zhai G, Ren H et al (2018) Ionics 24:111. https://doi.org/10.1007/s11581-017-2173-z
Li G, He B, Zhou M et al (2017) Ionics 23:607. https://doi.org/10.1007/s11581-016-1822-y
Long B, Chen S, Wang B et al (2018) J Nanopart Res 20:164. https://doi.org/10.1007/s11051-018-4263-x
Zhou R, Chen Y, Fu Y et al (2018) Ionics 24:1595. https://doi.org/10.1007/s11581-017-2329-x
Cai S, Wang G, Jiang M et al (2017) J Solid State Electrochem 21:1129. https://doi.org/10.1007/s10008-016-3414-1
Xu S, Zhang Z, Wu T et al (2018) Ionics 24:99. https://doi.org/10.1007/s11581-017-2191-x
Wang Y, Jin Y, Duan Y et al (2017) Ionics 23:2005. https://doi.org/10.1007/s11581-017-2044-7
Yao L, Su Q, Xiao Y et al (2017) J Nanopart Res 19:261. https://doi.org/10.1007/s11051-017-3935-2
Pramanik A, Maiti S, Sreemany M et al (2016) J Nanopart Res 18:93. https://doi.org/10.1007/s11051-016-3401-6
Gao Y, Li J, Liu Y et al (2017) Ionics 23:2301. https://doi.org/10.1007/s11581-017-2089-7
Chen Y, Li J, Yue G et al (2017) Nano-Micro Lett 9:32. https://doi.org/10.1007/s40820-017-0131-y
Zhou R, Chen Y, Fu Y et al (2018) Ionics 24:1321. https://doi.org/10.1007/s11581-017-2294-4
Xu J, Tang H, Xu T et al (2017) Ionics 23:3273. https://doi.org/10.1007/s11581-017-2160-4
Lu L, Xu S, Luo Z et al (2016) J Nanopart Res 18:183. https://doi.org/10.1007/s11051-016-3492-0
Shan H, Zhao Y, Li X et al (2016) J Appl Electrochem 46:851. https://doi.org/10.1007/s10800-016-0961-1
Xu Z, Liu W, Yang Y et al (2017) Nanoscale Res Lett 12:615. https://doi.org/10.1186/s11671-017-2382-4
Fu Y, Zhong B, Chen Y et al (2017) J Porous Mater 24:613. https://doi.org/10.1007/s10934-016-0297-6
Li D, Guo E, Lu Q et al (2017) J Solid State Electrochem 21:2313. https://doi.org/10.1007/s10008-017-3579-2
Wu J, Lau WM, Geng DS (2017) Rare Met 36:307. https://doi.org/10.1007/s12598-017-0904-y
Lu L, Min F, Luo Z et al (2016) J Nanopart Res 18:357. https://doi.org/10.1007/s11051-016-3677-6
Zhang Y, Wang Q, Wang B et al (2017) Ionics 23:1407. https://doi.org/10.1007/s11581-017-1975-3
Li Y, Wu X (2018) Ionics 24:1329. https://doi.org/10.1007/s11581-017-2291-7
Li J, Huang S, Xu S, Lan L, Lu L, Li S (2017) Nanoscale Res Lett 12(1):576. https://doi.org/10.1186/s11671-017-2342-z
Cao Z, Meng H, Dou P et al (2017) J Solid State Electrochem 21:955. https://doi.org/10.1007/s10008-016-3440-z
Steinhauer M, Diemant T, Heim C et al (2017) J Appl Electrochem 47:249. https://doi.org/10.1007/s10800-016-1032-3
Tang WJ, Peng WJ, Yan GC et al (2017) Ionics 23:3281. https://doi.org/10.1007/s11581-017-2143-5
Bian S, Liu M, Shi Y et al (2018) Ionics 24:1919. https://doi.org/10.1007/s11581-018-2445-2
Kuriganova AB, Vlaic CA, Ivanov S et al (2016) J Appl Electrochem 46:527. https://doi.org/10.1007/s10800-016-0936-2
Lu W, Xiong S, Xie K et al (2016) Ionics 22:2095. https://doi.org/10.1007/s11581-016-1743-9
Nowak AP, Lisowska-Oleksiak A, Wicikowska B et al (2017) J Solid State Electrochem 21:2251. https://doi.org/10.1007/s10008-017-3561-z
Wang QT, Li RR, Zhou XZ et al (2016) J Solid State Electrochem 20:1331. https://doi.org/10.1007/s10008-016-3127-5
Arai S, Fukuoka R (2016) J Appl Electrochem 46:331. https://doi.org/10.1007/s10800-016-0933-5
Tian J, Zhao F, Xue P et al (2017) Ionics 23:1357. https://doi.org/10.1007/s11581-016-1947-z
Wang R, Feng L, Yang W, Zhang Y, Zhang Y, Bai W, Liu B, Zhang W, Chuan Y, Zheng Z, Guan H (2017) Nanoscale Res Lett 12:575. https://doi.org/10.1186/s11671-017-2348-6
Li Y, Levine AM, Zhang J et al (2018) J Appl Electrochem 48:811. https://doi.org/10.1007/s10800-018-1205-3
Ho DN, Yildiz O, Bradford P et al (2018) J Appl Electrochem 48:127. https://doi.org/10.1007/s10800-017-1140-8
Su M, Liu Y, Wan H et al (2017) Ionics 23:405. https://doi.org/10.1007/s11581-016-1867-y
Wang J, Qin X, Yan X et al (2017) Ionics 23:1131. https://doi.org/10.1007/s11581-016-1909-5
Son BD, Lee JK, Yoon WY (2018) Nanoscale Res Lett 13(1):58. https://doi.org/10.1186/s11671-018-2460-2
Song HY, Fukutsuka T, Miyazaki K et al (2016) J Appl Electrochem 46:1099. https://doi.org/10.1007/s10800-016-0996-3
Kim HJ, Choi JH, Choi JW (2017) Nano Converg 4(1):24. https://doi.org/10.1186/s40580-017-0118-x
Nowak AP (2018) J Solid State Electrochem 22:2297. https://doi.org/10.1007/s10008-018-3942-y
Other Bibliographic References
Pan QM, Qin LM, Liu J, Wang HB (2010) Flower-like ZnO–NiO–C films with high reversible capacity and rate capability for lithium-ion batteries. Electrochim Acta 55:5780–5785
Lu J, Chen ZH, Ma ZF, Pan F, Curtiss LA, Amine K (2010) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotech 11:1031–1038
Hameer S, Niekerk JL (2015) A review of large-scale electrical energy storage. Int J Energy Res 39:1179–1195
Peters JF, Baumann M, Zimmermann B, Braun J, Weil M (2017) The environmental impact of Li-ion batteries and the role of key parameters—a review. Renew Sust Energ Rev 67:491–506
Wang BB, Wang G, Cheng XM, Wang H (2016) Synthesis and electrochemical investigation of core-shell ultrathin NiO nanosheets grown on hollow carbon microspheres composite for high performance lithium and sodium ion batteries. Chem Eng J 306:1193–1202
Xu X, Tan H, Xi K, Ding SJ, Yu DM, Cheng SD, Yang G, Peng XY, Fakeeh A, Kumar RV (2015) Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life. Carbon 84:491–499
Zou F, Chen YM, Liu KW, Yu ZT, Liang WF, Bhaway SM, Gao M, Zhu Y (2016) Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10:377–386
Zhang F, Jiang DG, Zhang XG (2016) Porous NiO materials prepared by solid-state thermolysis of a Ni-MOF crystal for lithium-ion battery anode. Nano-Struct Nano-Objects 5:1–6
Mollamahale YB, Liu Z, Zhen YD, Tian ZQ, Hosseini D, Chen LW, Shen PK (2016) Simple fabrication of porous NiO nanoflowers: growth mechanism, shape evolution and their application into Li-ion batteries. Int J Hydrog Energy 42:7202–7211
Huang G, Zhang FF, Du XC, Qin YL, Yin DG, Wang LM (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599
Zou YL, Qi ZG, Ma ZS, Jiang WJ, Hu RW, Duan JL (2017) MOF-derived porous ZnO/MWCNTs nanocomposite as anode materials for lithium-ion batteries. J Electroanal Chem 788:184–191
Zhang H, Tao H, Jiang Y, Jiao Z, Minghong Wu, Zhao B (2010) Ordered nanostructure CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J Power Sources 195:2950–2955
Zhang LS, Jiang LY, Yan HJ, Wang WD, Wang W, Song WG, Guo YG, Wan LJ (2010) Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J Mater Chem 20:5462–5467
Jiang X, Yang X, Zhu Y, Fan K, Zhao P, Li C (2013) Designed synthesis of graphene–TiO2–SnO2 ternary nanocomposites as lithium-ion anode materials. New J Chem 37:3671–3678
Han S, Jiang J, Huang Y, Tang Y, Cao J, Wu D, Feng X (2015) Hierarchical TiO2–SnO2–graphene aerogels for enhanced lithium storage. Phys Chem Chem Phys 17:1580–1584
Tang Y, Wu D, Chen S, Zhang F, Jia J, Feng X (2013) Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy Environ Sci 6:2447–2451
Xia T, Zhang W, Wang ZH, Zhang YL, Song XY, Murowchick J, Battaglia V, Liu G, Chen X (2014) Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 6:109
Xing Z, Asiri AM, Obaid AY, Sun X, Ge X (2014) Carbon nanofiber-templated mesoporous TiO2 nanotubes as a high-capacity anode material for lithium-ion batteries. RSC Adv 4(18):9061
Liu L, Fan Q, Sun C, Gu X, Li H, Gao F, Chen Y, Dong L (2013) Synthesis of sandwich-like TiO2@C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J Power Sources 221:141
Moitzheim S, Nimisha CS, Deng S, Cott DJ, Detavernier C, Vereecken PM (2014) Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteries. Nanotechnology 25(50):504008
Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 122(24):4153
Bai L, Fang F, Zhao YY, Liu YG, Li JP, Huang GY, Sun HY (2014) A sandwich structure of mesoporous anatase TiO2 sheets and reduced graphene oxide and its application as lithium-ion battery electrodes. RSC Adv 4:43039–43046
Xiao CL, Zhang SC, Wang SB, Xing YL, Lin RX, Wei X, Wang WX (2016) ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery. Electrochim Acta 189:245–251
Xiao SN, Pan DL, Wang LJ, Zhang ZZ, Lyu ZY, Dong WH, Chen XL, Zhang DQ, Chen W, Li HX (2016) Porous CuO nanotubes/graphene with sandwich architecture as high-performance anodes for lithium-ion batteries. NANO 8:19343–19351
Wang BB, Wang G, Zheng ZZ, Wang H, Bai JT, Bai JB (2013) Carbon coated Fe3O4 hybrid material prepared by chemical vapor deposition for high performance lithium-ion batteries. Electrochim Acta 106:235–243
Huang GY, Xu SM, Cheng YB, Zhang WJ, Li J, Kang XH (2015) NiO nanosheets with large specific surface area for lithium-ion batteries and supercapacitors. Int J Electrochem Sci 10:2594–2601
Huang GY, Xu SM, Yang Y, Sun HY, Li ZB, Chen Q, Lu SS (2014) Micro-spherical CoCO3 anode for lithium-ion batteries. Mater Lett 131:236–239
Huang GY, Xu SM, Yang Y, Chen YB, Li ZB (2015) Rapid-rate capability of micro-/nano-structured CoO anodes with different morphologies for lithium-ion batteries. Int J Electrochem Sci 10:10587–10596
Yan CS, Chen G, Zhou X, Sun JX, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater 26:1428–1436
Wang YQ, Geng FS, Yue XB, Yuan AB, Xu JQ (2016) Enhanced lithium storage performance of a self-assembled hierarchical porous Co3O4/VGCF hybrid high-capacity anode material for lithium-ion batteries. Ionics 1–8
Liu CF, Zhang CK, Song HQ, Zhang CP, Liu YG, Nan XH, Cao GZ (2016) Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 22:290–300
Huang GY, Xu SM, Li LY, Wang XJ, Lu SS (2014) Synthesis and modification of a lamellar Co3O4 anode for lithium-ion batteries. Acta Phys Chim Sin 30:1121–1126
Huang GY, Xu SM, Lu SS, Li LY, Sun HY (2014) Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries. Electrochim Acta 135:420–427
Zhang DW, Qian A, Chen JJ, Wen JW, Wang L, Chen CH (2012) Electrochemical performances of nano-Co3O4 with different morphologies as anode materials for Li-ion batteries. Ionics 18:591–597
Ma JM, Manthiram A (2012) Precursor-directed formation of hollow Co3O4 nanospheres exhibiting superior lithium storage properties. RSC Adv 2:3187
Fan S, Liu XJ, Li YF, Yan E, Wang CH, Liu JH, Zhang Y (2013) Non-aqueous synthesis of crystalline Co3O4 nanoparticles for lithium-ion batteries. Mater Lett 91:291–293
Wang DL, Yu YC, He H, Wang J, Zhou WD, Abruña HD (2015) Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9:1775–1781
Huang GY, Xu SM, Lu SS, Li LY, Sun HY (2014) Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl Mater Interfaces 6:7236–7243
Ye MH, Li CX, Zhao Y, Qu LT (2016) Graphene decorated with bimodal size of carbon polyhedrons for enhanced lithium storage. Carbon 106:9–19
Shen LF, Zhang XG, Li HS, Yuan CZ, Cao GZ (2011) Design and tailoring of a three-dimensional TiO2–graphene–carbon nanotube nanocomposite for fast lithium storage. J Phys Chem Lett 2:3096–3101
Rai AK, Anh LT, Gim J, Mathew V, Kang J, Paul BJ, Singh NK, Song JJ, Kim J (2013) Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery. J Power Sources 244:435–441
Liu Y, Wang W, Gu L, Wang YW, Ying YL, Mao YY, Sun LW, Peng XS (2013) Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 5:9850–9855
Zhang X, Hu YG, Zhu DZ, Xie AJ, Shen YH (2016) A novel porous CuO nanorod/rGO composite as a high stability anode material for lithium-ion batteries. Ceram Int 42:1833–1839
Zhou X, Xi L, Chen F, Bai T, Wang B, Yang J (2016) In situ growth of SnO2, nanoparticles in heteroatoms doped cross-linked carbon frameworks for lithium ion batteries anodes. Electrochim Acta 213:633–640
Wagemaker M, van Eck ERH, Kentgens APM, Mulder FM (2009) Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J Phys Chem B 113:224–230
Kamata M, Fujine S, Yoneda K, Kanda K, Esaka T (1999) Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography. Solid State Ionics 123(1):165
Chu S, Zhong Y, Cai R, Zhang Z, Wei S, Shao Z (2016) Mesoporous and nanostructured TiO2 layer with ultra-high loading on nitrogen-doped carbon foams as flexible and free standing electrodes for lithium-ion batteries. Small 12(48):6724–6734
Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098
Wang X, Weng Q, Liu X, Wang X, Tang DM, Tian W, Zhang C, Yi W, Liu D, Bando Y, Golberg D (2014) Atomistic origins of high rate capability and capacity of n-doped graphene for lithium storage. Nano Lett 14(3):1164–1171
Xing LB, Hou SF, Zhang JL, Zhou J, Li Z, Si W, Zhuo S (2015) A facile preparation of three dimensional N, S co-doped graphene hydrogels with thiocarbohydrazide for electrode materials in supercapacitor. Mater Lett 147:97–100
Zhuang GL, Bai J, Tao X, Luo JM, Wang X, Gao Y, Zhong X, Li XN, Wang JG (2015) Synergistic effect of S, N-co-doped mesoporous carbon materials with high performance for oxygen-reduction reaction and li-ion batteries. J Mater Chem A 3(40):20244–20253
Wu S, Xia T, Wang J, Lu F, Xu C, Zhang X, Huo L, Zhao H (2017) Ultrathin mesoporous Co3O4 nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries. Appl Surf Sci 406:46–55
Jin Y, Wang L, Shang Y, Gao J, Li J, He X (2014) Facile synthesis of monodisperse Co3O4 mesoporous microdisks as an anode material for lithium ion batteries. Electrochim Acta 151:109–117
Wang Y, Ding PS, Wang C (2016) J Alloys Compd 654:273–279
Yang Q, Wu J, Huang K, Lei M, Wang WJ, Tang SS, Lu PJ, Lu YK, Li J (2016) J Alloys Compd 667:29–35
Glushenkov AM, Hassan MF, Stukachev VI, Guo Z, Liu HK, Kuvshinov GG, Chen Y (2010) J Solid State Electrochem 14:1841–1846
Zhou ZY, Xie WH, Li SY, Jiang XY, He DY, Peng SL, Ma F (2015) J Solid State Electrochem 19:1211–1215
Niu CJ, Meng JS, Han CH, Zhao KN, Yan MY, Mai LQ (2014) Nano Lett 14:2873–2878
Wang Z, Su F, Madhavi S, Lou XW (2011) Nanoscale 3:1618–1623
Mo YD, Ru Q, Song X, Hu SJ, Guo LY, Chen XQ (2015) Electrochim Acta 176:575–585
Chen H, Zhang Q, Wang J, Wang Q, Zhou X, Li X, Yang Y, Zhang K (2014) Nano Energy 10:245–258
Mohamed SG, Chen CJ, Chen CK, Hu SF, Liu RS (2014) ACS Appl Mater Interfaces 6:22701–22708
Fu C, Li G, Luo D, Huang X, Zheng J, Li L (2014) ACS Appl Mater Interfaces 6:2439–2449
Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699
Zhang GQ, Lou XW (2014) Angew Chem Int Ed 53:9041–9044
Liang J, Yu XY, Zhou H, Wu HB, Ding SJ, Lou XW (2014) Angew Chem Int Ed 53:12803–12807
Wang HG, Yuan S, Ma DL, Zhang XB, Yan JM (2015) Electrospun materials for rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci 8:1660–1681
Guo R, Zhao L, Yue W (2015) Assembly of core–shell structured porous carbon–graphene composites as anode materials for lithium-ion batteries. Electrochim Acta 152:338–344
Chen T, Pan L, Loh TAJ, Chua DHC, Yao Y, Chen Q, Li D, Qin W, Sun Z (2014) Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries. Dalton Trans 43:14931–14935
Yang SJ, Nam S, Kim T, Im JH, Jung H, Kang JH, Wi S, Park B, Park CR (2013) Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J Am Chem Soc 135:7394
Su LW, Wu XB, Zheng LH, Zheng TL, Hei JP, Wang LB, Wang YH, Ren MM (2016) Excellent lithium storage materials consisting of highly distributed Fe3O4 quantum dots on commercially available graphite nanoplates. Part Part Syst Charact 33:597
Liu SH, Wang YW, Dong YF, Zhao ZB, Wang ZY, Qiu JS (2015) Ultrafine Fe3O4 quantum dots on hybrid carbon nanosheets for long-life. High-Rate Alkali-Metal Storage 3:38
Liu H, Jia MQ, Zhu QZ, Cao B, Chen RJ, Wang Y, Wu F, Xu B (2016) 3D-0D graphene-Fe3O4 quantum dot hybrids as high-PerformanceAnode materials for sodium-ion batteries. ACS Appl Mater Interfaces 8:26878
Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504
Li YN, Chu YQ, Qin QZ (2004) Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries. J Electrochem Soc 151:A1077–A1083
Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946
Lee S, Cho Y, Song HK, Lee KT, Cho J (2012) Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew Chem Int Ed 51:8748–8752
Xiong T, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@C Topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv Funct Mater 22(4):861
Qi Y, Zhang H, Du N, Yang D (2013) Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. J Mater Chem A 1:2337–2342
Huang X, Wang R, Xu D, Wang Z, Wang H, Xu J, Wu Z, Liu Q, Zhang Y, Zhang X (2013) Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv Funct Mater 23:4345–4353
Guan H, Wang X, Li H, Zhi C, Zhai T, Bando Y, Golberg D (2012) CoO octahedral nanocages for high-performance lithium ion batteries. Chem Commun 48:4878–4880
Sun Y, Hu X, Luo W, Huang Y (2012) Ultrathin CoO/graphene hybrid nanosheets: a highly stable anode material for lithium-ion batteries. J Phys Chem C 116:20794
Sun Y, Hu X, Luo W, Huang Y (2012) Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. J Mater Chem 22:13826
Peng C, Chen B, Qin Y, Yang S, Li C, Zuo Y, Liu S, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6:1074
Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078
Wang H, Qing C, Guo J, Aref AA, Sun D, Wang B, Tang Y (2014) Highly conductive carbon–CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. J Mater Chem A 2:11776
Gao Z, Song N, Li X (2015) Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high performance supercapacitors. J Mater Chem A 3:14833
Yang M, Lv F, Wang Z, Xiong Y, Li M, Wang W, Zhang L, Wu S, Liu H, Gu Y, Lu Z (2015) Binder-free hydrogenated NiO–CoO hybrid electrodes for high performance supercapacitors. RSC Adv 5:31725
Zhou YQ, Wang HG, Zeng Y, Li C, Shen Y, Chang JJ, Duan Q (2015) Nitrogen-doped porous carbon/Sn composites as high capacity and long life anode materials for lithium-ion batteries. Mater Lett 155:18–22
Li WH, Li MS, Wang M, Zeng LC, Yu Y (2015) Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 13:693–701
Ji LW, Yao YF, Toprakci O, Lin Z, Liang YZ, Shi Q, Medford AJ, Millns CR, Zhang XW (2010) Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J Power Sources 195:2050–2056
Wu J, Zuo L, Song Y, Chen Y, Zhou R, Chen S, Wang L (2016) Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. J Alloy Compd 656:745–752
Mei T, Zhang L, Wang XB, Qian YT (2014) One-pot synthesis of carbon nanoribbons and their enhanced lithium storage performance. J Mater Chem 2:11974–11979
Zhang F, Wang KX, Li GD, Chen JS (2009) Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem Commun 11:130–133
Chang JL, Gao ZY, Wang XR, Wu DP, Xu F, Wang X, Guo YM, Jiang K (2015) Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim Acta 157:290–298
Fey GTK, Chen CL (2001) High-capacity carbons for lithium-ion batteries prepared from rice husk. J Power Sources 97:47–51
Ru HH, Bai NB, Xiang KX, Zhou W, Chen H, Zhao XS (2016) Porous carbons derived from microalgae with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 194:10–16
Cao XY, Chen SQ, Wang GX (2014) Porous carbon particles derived from natural peanut shells as lithium ion battery anode and its electrochemical properties. Mater Lett 4:819–826
Ou J, Zhang YZ, Chen L, Guo Y, Xiao D (2015) Hierarchical porous carbons fabricated from silica via flame synthesis as anode materials for high-performance lithium-ion batteries. Ionics 21(7):1881–1891
Yuan GH, Wang G, Wang H, Bai T (2015) Synthesis and electrochemical investigation of radial ZnO microparticles as anode materials for lithium-ion batteries. Ionics 21(2):365–371
Wang W, Sun Y, Liu B, Wang SG, Cao MH (2015) Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 91:56–65
Guo DC, Han F, Lu AH (2015) Porous carbon anodes for a high capacity lithium-ion battery obtained by incorporating silica into benzoxazine during polymerization. Chem Eur J 21:1520–1525
Peng YT, Lo CT (2015) Electrospun porous carbon nanofibers as lithium ion battery anodes. J Solid State Electrochem 19:3401–3410
Li DD, Chen HB, Wei M, Ding LX, Wang SQ, Wang HH (2015) Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94:888–894
Liu P, Hao QL, Xia XF, Lu L, Lei W, Wang X (2015) 3D hierarchical mesoporous flowerlike cobalt oxide nanomaterials: controllable synthesis and electrochemical properties. J Phys Chem 119:8537–8546
Du FH, Wang KX, Fu W, Gao PF, Wang JF, Yang J, Chen JS (2013) A graphene-wrapped silver-porous silicon composite with enhanced electrochemical performance for lithium-ion batteries. J Mater Chem A 1(43):13648–13654. https://doi.org/10.1039/c3ta13092d
Song JX, Chen SR, Zhou MJ, Xu T, Lv DP et al (2014) Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. J Mater Chem A 2(5):1257–1262. https://doi.org/10.1039/c3ta14100d
Wang CD, Chui YS, Ma RG, Wong TL, Ren JG, Wu QH, Chen XF, Zhang WJ (2013) A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. J Mater Chem A 1(35):10092–10098. https://doi.org/10.1039/c3ta11740e
Shiva K, Jayaramulu K, Rajendra HB, Maji T, Bhattacharyya AJ (2014) In-situ stabilization of tin nanoparticles in porous carbon matrix derived from metal organic framework: high capacity and high rate capability anodes for lithium-ion batteries. Z Anorg Allg Chem 640(6):1115–1118. https://doi.org/10.1002/zaac.201300621
Wang YX, Lim YG, Park MS, Chou SL, Kim JH, Liu HK, Dou SX, Kim YJ (2014) Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A 2(2):529–534. https://doi.org/10.1039/c3ta13592f
Yin JF, Cao HQ, Zhou ZF, Zhang JX, Qu MZ (2012) SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. J Mater Chem 22(45):23963–23970. https://doi.org/10.1039/c2jm35137d
Liu X, Zhao C, Zhang H, Shen Q (2015) Facile synthesis of porous ZnMnO3 spherulites with a high lithium storage capability. Electrochim Acta 151:56–62. https://doi.org/10.1016/j.electacta.2014.11.020
Zhao S, Wang Y, Liu R, Yu Y, Wei S, Yu F, Shen Q (2015) Full-molar-ratio synthesis and enhanced lithium storage properties of CoxFe1−xCO3 composites with an integrated lattice structure and an atomic-scale synergistic effect. J Mater Chem A 3(33):17181–17189. https://doi.org/10.1039/c5ta03785a
Feng F, Kang W, Yu F, Zhang H, Shen Q (2015) High-rate lithium storage capability of cupric-cobaltous oxalate induced by unavoidable crystal water and functionalized graphene oxide. J Power Sources 282:109–117. https://doi.org/10.1016/j.jpowsour.2015.02.043
Taillades G, Sarradin J (2004) Silver: high performance anode for thin film lithium ion batteries. J Power Sources 125(2):199–205. https://doi.org/10.1016/j.jpowsour.2003.07.004
Shilpa A (2015) Sharma, Enhanced electrochemical performance of electrospun Ag/hollow glassy carbon nanofibers as free-standing Li-ion battery anode. Electrochim Acta 176:1266–1271. https://doi.org/10.1016/j.electacta.2015.07.093
Li ZQ, Yin LW (2015) Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J Mater Chem A 3(43):21569–21577. https://doi.org/10.1039/c5ta05733g
Li C, Chen T, Xu W, Lou X, Pan L, Chen Q, Hu B (2015) Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J Mater Chem A 3(10):5585–5591. https://doi.org/10.1039/c4ta06914e
Ma JJ, Wang HJ, Yang X, Chai YQ, Yuan R (2015) Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frameworks as anodes for lithium-ion batteries. J Mater Chem A 3(22):12038–12043. https://doi.org/10.1039/c5ta00890e
Xie Z, He Z, Feng X, Xu W, Cui X et al (2016) Hierarchical sandwich-like structure of ultrafine n-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl Mater Interfaces 8(16):10324–10333. https://doi.org/10.1021/acsami.6b01430
Su P, Xiao H, Zhao J, Yao Y, Shao Z, Li C, Yang Q (2013) Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chem Sci 4:2941–2946
Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313
Song Y, Zuo L, Chen S, Wu J, Hou H, Wang L (2015) Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@ nano-Si as anode materials for lithium-ion batteries. Electrochim Acta 173:588–594
Tan Y, Zhu K, Li D, Bai F, Wei Y, Zhang P (2014) N-doped graphene/Fe–Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J 258:93–100
Liu H, Li W, Shen D, Zhao D, Wang G (2015) Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J Am Chem Soc 137:13161–13166
Jiang C, Lin X (2009) Electrochemical synthesis of Fe3O4-PB nanoparticles with core-shell structure and its electrocatalytic reduction toward H2O2. J Solid State Electrochem 13:1273–1278
Chen T, Hu Y, Cheng B, Chen R, Lv H, Ma L, Zhu G, Wang Y, Yan C, Tie Z, Jin Z, Liu J (2016) Multi-yolk-shell copper oxide@ carbon octahedra as high-stability anodes for lithium-ion batteries. Nano Energy 20:305–314
Wang L, Zheng Y, Wang X, Chen S, Xu F, Zuo L, Wu J, Sun L, Li Z, Hou H, Song Y (2014) ACS Appl Mater Interfaces 6:7117
Wang L, Zheng Y, Zhang Q, Zuo L, Chen S, Chen S, Hou H, Song Y (2014) Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Adv 4:51072–51079
Zhou X, Shi J, Liu Y, Su Q, Zhang J, Du G (2014) Microwave-assisted synthesis of hollow CuO–Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J Alloy Compd 615:390–394
Wang X, Yang Z, Sun X, Li X, Wang D, Wang P, He D (2011) NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J Mater Chem 21:9988–9990
Xia Y, Xiao Z, Dou X, Huang H, Lu X, Yan R, Gan Y, Zhu W, Tu J, Zhang W, Tao X (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7:7083–7092
Shim HW, Jin YH, Seo SD, Lee SH, Kim DW (2011) Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 5:443–449
Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499
Wang Y, Li H, He P, Hosono E, Zhou H (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294–1305
Manthiram A, Murugan AV, Sarkar A, Muraliganth T (2008) Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ Sci 1:621–638
Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715
Zhao SQ, Wei SS, Liu R, Wang YX, Yu Y, Shen Q (2015) Cobalt carbonate dumbbells for high-capacity lithium storage: a slight doping of ascorbic acid and an enhancement in electrochemical performances. J Power Sources 284:154–161
Zhang RH, Zhang F, Feng JK, Qian YT (2014) Green and facile synthesis of porous ZnCO3 as a novel anode material for advanced lithium-ion batteries. Mater Lett 118:5–7
Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457
Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187
Cui B, Lin H, Li JB, Li X, Yang J, Tao J (2008) Core–ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv Funct Mater 18:1440–1447
Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv Mater 22:347
Su Y, Li S, Wu D, Zhang F, Liang H, Gao P, Cheng C, Feng X (2012) Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 6:8349–8356
Huang G, Xu S, Lu S, Li L, Sun H (2014) Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl Mater Interfaces 6:7236–7243
Su H, Xu YF, Feng SC, Wu ZG, Sun XP, Shen CH et al (2015) Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES. ACS Appl Mater Interfaces 7:8488–8494
Köse H, Karaal Ş, Aydın AO, Akbulut H (2015) A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol–gel method. J Power Sources 295:235–245
Zhou X, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157
Yan B, Li M, Li X, Bai Z, Dong L, Li D (2015) Electrochemical impedance spectroscopy illuminating performance evolution of porous core-shell structured nickel/nickel oxide anode materials. Electrochim Acta 164:55–61
Wang M, Yang H, Zhou X, Shi W, Zhou Z, Cheng P (2015) Rational design of SnO2@C nanocomposites for lithium ion batteries by utilizing adsorption properties of MOFs. Chem Commun (Camb) 52:717–720
Zhong Y, Yang M, Zhou X, Zhou Z (2015) Structural design for anodes of lithium-ion batteries: emerging horizons from materials to electrodes. Mater Horiz 2:553–566
Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11:1849–1852
Wi S, Woo H, Lee S, Kang J, Kim J, An S et al (2015) Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials. Nanoscale Res Lett 10:204
Vinayan BP, Nagar R, Raman V, Rajalakshmi N, Dhathathreyan KS, Ramaprabhu S (2012) Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem 22:9949
Fang S, Shen L, Zheng H, Zhang X (2015) Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries. J Mater Chem A 3:1498–1503
Jiang B, Han C, Li B, He Y, Lin Z (2016) ACS Nano 10:2728
Wu J, Song Y, Zhou R, Chen S, Zuo L, Hou H, Wang L (2015) J Mater Chem A 3:7793
Wang X, Huang L, Zhao Y (2016) Nanoscale Res Lett 11:37
Yao X, Kong J, Zhou D, Zhao C, Zhou R, Lu X (2014) Carbon 79:493
Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S (2013) Adv Energy Mater 3:513
Mueller F, Bresser D, Paillard E, Winter M, Passerini S (2013) J Power Sources 236:87
Han Y, Qi P, Li S, Feng X, Zhou J, Li H, Su S, Li X, Wang B (2014) Chem Commun 50:8057
Chen K, Song S, Xue D (2015) J Mater Chem A 3:2441
Liu J, Xia H, Lu L, Xue D (2010) J Mater Chem 20:1506
Wu J, Xue D (2011) Nanosci Nanotech Lett 3:371
Liu J, Xue D (2010) Electrochim Acta 56:243
Liu J, Liu F, Gao K, Wua J, Xue D (2009) J Mater Chem 19:6073
Yin YX, Xin S, Guo YG, Wan LJ (2013) Angew Chem Int Ed 52(50):13186–13200
Liu J, Zhang JG, Yang ZG, Lemmon JP, Imhoff C, Graff GL, Li LY, Hu JZ, Wang CM, Xiao J, Xia GD, Viswanathan VV, Baskaran S, Sprenkle V, Li XL, Shao YY, Schwenzer B (2013) Adv Funct Mater 23(8):929–946
Bhattab MD, Dwyer CÓ (2015) Phys Chem Chem Phys 17(7):4799–4844
Goodenough JB, Park KS (2013) J Am Chem Soc 135(4):1167–1176
Chen ZH, Belharouak I, Sun YK, Amine K (2013) Adv Funct Mater 23(8):959–969
Li HB, Zhou QY, Gao YT (2015) Nano Res 8(3):900–906
Peng YT, Lo CT (2015) J Solid State Electrochem 19(11):3401–3410
Yu CY, Bai Y, Yan D, Li XG, Zhang WF (2014) J Solid State Electrochem 18(7):1933–1940
Li XD, Li W, Li MC, Cui P, Chen DH, Gengenbach T, Chu LH, Liu HY, Song GS (2015) J Mater Chem A 3(6):2762–2769
Wang ZY, Sha JW, Liu EZ, He CN, Shi CS, Li JJ, Zhao NQ (2014) J Mater Chem A 2(23):8893–8901
Novoselov KS, Geim AK, Morozov SV Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666–669
Geim AK, Novoselov KS (2007) Nat Mater 6(3):183–191
Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22(35):3906–3924
Loh KP, Bao QL, Ang PK, Yang JX (2010) J Mater Chem 20(12):2277–2289
Zheng CC, He CH, Zhang HY, Wang WG, Lei XL (2015) Ionics 21(1):51–58
Yang SL, Cao CY, Huang PP, Peng L, Sun YB, Wei F, Song WG (2015) J Mater Chem A 3(16):8701–8705
Fu XX, Shi L, Fan CY, Yu SQ, Qian GD, Zhiyu Wang ZY (2015) Electrochim Acta 190:25–32
Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170
He YS, Bai DW, Yang X, Chen J, Liao XZ, Ma ZF (2010) A Co(OH)2−graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochem Commun 12(4):570
Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J, Yang J, Qian Y (2015) Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12:528
Das B, Reddy MV, Rao GVS, Chowdari BVR (2012) Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries. J Mater Chem 22(34):17505
Li J, Xiong S, Liu Y, Ju Z, Qian Y (2013) High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 5(3):981
Xie J, Cao GS, Zhao XB (2005) CoSb3-graphite composite anode material for lithium ion batteries. Rare Met 24(1):42
Yan N, Hu L, Li Y, Wang Y, Zhong H, Hu X, Kong X, Chen Q (2012) Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J Phys Chem C 116(12):7227
Wang Q, Jiao L, Han Y, Du H, Peng W, Huan Q, Song D, Si Y, Wang Y, Yuan H (2011) CoS2 hollow spheres: fabrication and their application in lithium-ion batteries. J Phys Chem C 115(16):8300
Wang Z, Wang Z, Liu W, Xiao W, Lou XW (2013) Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ Sci 6(1):87
Chen X, Cheng M, Chen D, Wang R (2016) Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl Mater Interfaces 8(6):3892
Wu J, Liu WW, Wu YX, Wei TC, Geng D, Mei J, Liu H, Lau WM, Liu LM (2016) Three-dimensional hierarchical interwoven nitrogen-doped carbon nanotubes/CoxNi1−x-layered double hydroxides ultrathin nanosheets for high-performance supercapacitors. Electrochim Acta 203:21
Su X, Xu Y, Liu J, Wang R (2015) Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electrochemical properties. Cryst Eng Commun 17(26):4859
Lu A, Zhang X, Chen Y, Xie Q, Qi Q, Ma Y, Peng DL (2015) Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. J Power Sources 295:329
Xie J, Liu S, Cao G, Zhu T, Zhao X (2013) Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties. Nano Energy 2(1):49
Li Z, Xue H, Wang J, Tang Y, Lee CS, Yang S (2015) Reduced graphene oxide/marcasite-type cobalt selenide nanocrystals as an anode for lithium-ion batteries with excellent cyclic performance. ChemElectroChem 2(11):1682
Yang T, Zhang H, Luo Y, Mei L, Guo D, Li Q, Wang T (2015) Enhanced electrochemical performance of CoMoO4 nanorods/reduced graphene oxide as anode material for lithium-ion batteries. Electrochim Acta 158:327
Zou R, Zhang Z, Yuen MF, Sun M, Hu J, Lee CS, Zhang W (2015) Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Mater 7(6):e195
Wu J, Guo P, Mi R, Liu X, Zhang H, Mei J, Liu H, Lau WM, Liu LM (2015) Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors. J Mater Chem A 3(29):15331
Wang JG, Jin D, Zhou R, Shen C, Xie K, Wei B (2016) One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J Power Sources 306:100
Huang XK, Cui SM, Chang JB, Hallac PB, Fell CR, Luo YT, Metz B, Jiang JW, Hurley PT, Chen JH (2015) A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Angew Chem Int Edit 54:1490–1493
Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135:17881–17888
Liao L, Zhu J, Bian X, Zhu L, Scanlon MD, Girault HH, Liu B (2013) MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv Funct Mater 23:5326–5333
Hou HS, Tang XN, Guo MQ, Shi YQ, Dou P, Xu XH (2014) Facile preparation of Sn hollow nanospheres anodes for lithium-ion batteries by galvanic replacement. Mater Lett 128:408–411
Li QY, Pan QC, Yang GH, Lin XL, Yan ZX, Wang HQ, Huang YG (2015) Synthesis of Sn/MoS2/C composites as high-performance anodes for lithium-ion batteries. J Chem Mater A 3:20375–20381
Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367
Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184
Zhu Z, Wang S, Du J, Jin Q, Zhang T, Cheng F, Chen J (2014) Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett 14:153–157
Dai R, Wang Y, Da P, Wu H, Xu M, Zheng G (2014) Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale 6:13236–13241
Shao Y, Gu M, Li X, Nie Z, Zuo P, Li G, Liu T, Xiao J, Cheng Y, Wang C (2014) Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett 14:255–260
Su D, Dou SX, Wang GX (2015) Bismuth: a new anode for the Na-ion battery. Nano Energy 12:88–95
Yang FH, Yu F, Zhang ZA, Zhang K, Lai YQ, Li J (2016) Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chemistry 22:2333–2338
Crosnier O, Devaux X, Brousse T, Fragnaud P, Schleich DM (2001) Influence of particle size and matrix in “metal” anodes for Li-ion cells. J Power Sources 97:188–190
Beck FR, Epur R, Hong D, Manivannan A, Kumta PN (2014) Microwave derived facile approach to Sn/graphene composite anodes for lithium-ion batteries. Electrochim Acta 127:299–306
Du YJ, Zhu GN, Wang K, Wang YG, Wang CX, Xia YY (2013) Si/graphene composite prepared by magnesium thermal reduction of SiO2 as anode material for lithium-ion batteries. Electrochem Commun 36:107–110
Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539
Liu X, Du YC, Hu LY, Zhou XS, Li YF, Dai ZH, Bao JC (2015) Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance. J Phys Chem C 119:5848–5854
Wang HT, He DW, Wang YS, Wu HP, Wang JG (2012) SnO2/graphene nanocomposite as an enhanced anode material for lithium ion batteries. Adv Mater Res 465:108–111
Fu CJ, Li S, Wang Q (2015) High reversible capacity of nitrogen-doped graphene as an anode material for lithium-ion batteries. Adv Mater Res 1070–1072:459–464
Li XF, Geng DS, Zhang Y, Meng XB, Li RY, Sun XL (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825
Liu XW, Wu Y, Yang ZZ, Pan FS, Zhong XW, Wang JQ, Gu L, Yu Y (2015) Nitrogen-doped 3d macroporous graphene frameworks as anode for high performance lithium-ion batteries. J Power Sources 293:799–805
Xu Y, Zhu XS, Zhou XS, Liu X, Liu YX, Dai ZH, Bao JC (2014) Ge nanoparticles encapsulated in nitrogen-doped reduced graphene oxide as an advanced anode material for lithium-ion batteries. J Phys Chem C 118:28502–28508
Park SK, Jin AH, Yu SH, Ha J, Jang B, Bong SY, Woo S, Sung YE, Piao YZ (2013) In situ hydrothermal synthesis of Mn3O4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim Acta 120:452–459
Wu ZS, Ren WC, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471
Cai DD, Wang SQ, Lian PC, Zhu XF, Li DD, Yang WS, Wang HH (2013) Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochim Acta 90:492–497
Li T, Li XH, Wang ZX, Guo HJ, Li Y (2015) A novel NiCo2O4 anode morphology for lithium-ion batteries. J Mater Chem A 3:11970–11975
Shen L, Yu L, Yu XY, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Ed 54(6):1868–1874
Shen L, Che Q, Li HS, Zhang XG (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24(18):2630–2637
Chen YJ, Zhu J, Qu BH, Graphene ZX (2014) Improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy 3:88–94
Ju ZC, Ma GY, Zhao YL, Xing Z, Qiang YH, Qian YT (2015) A facile method for synthesis of porous NiCo2O4 nanorods as a high-performance anode material for Li-ion batteries. Part Part Syst Charact 32(11):1012–1019
Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int J Hydrog Energy 39(28):15627–15638
Yu XY, Yao XZ, Luo T, Jia Y, Liu JH, Huang XJ (2014) Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. ACS Appl Mater Interfaces 6(5):3689–3695
Huang X, Chen J, Yu H, Peng S, Cai R, Yan Q, Hng HH (2013) Immobilization of plant polyphenol stabilized-Sn nanoparticles onto carbon nanotubes and their application in rechargeable lithium ion batteries. RSC Adv 3:5310–5313
Mukherjee R, Krishnan R, Lu TM, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533
Zhong Y, Zhang Y, Cai M, Balogh MP, Li R, Sun X (2013) Core-shell heterostructures of SnM (M = (Fe, Ni, and Cr) or Cu) alloy nanowires@CNTs on metallic substrates. Appl Surf Sci 270:722–727
Li X, Zhong Y, Cai M, Balogh MP, Wang D, Zhang Y, Li R, Sun X (2013) Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries. Electrochim Acta 89:387–393
Choi NS, Lee YM, Park JH, Park JK (2003) Interfacial enhancement between lithium electrode and polymer electrolytes. J Power Sources 119:610–616
Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 98:52–57. https://doi.org/10.1016/S0378-7753(01)00505-5
Zhuang GV, Xu K, Jow TR, Ross PN (2004) Study of SEI layer formed on graphite anodes in PC/LiBOB electrolyte using IR spectroscopy. Electrochem Solid State Lett 7:A224. https://doi.org/10.1149/1.1756855
Eshkenazi V, Peled E, Burstein L, Golodnitsky D (2004) XPS analysis of the SEI formed on carbonaceous materials. Solid State Ion 170:83–91. https://doi.org/10.1016/S0167-2738(03)00107-3
Buqa H, Würsig A, Vetter J, Spahr ME, Krumeich F, Novák P (2006) SEI film formation on highly crystalline graphitic materials in lithium-ion batteries. J Power Sources 153(2):385–390. https://doi.org/10.1016/j.jpowsour.2005.05.036
Bryngelsson H, Stjerndahl M, Gustafsson T, Edström K (2007) How dynamic is the SEI? J Power Sources 174:970–975. https://doi.org/10.1016/j.jpowsour.2007.06.050
Leroy S, Blanchard F, Dedryvère R, Martinez H, Carré B, Lemordant D et al (2005) Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surf Interface Anal 37:773–781. https://doi.org/10.1002/sia.2072
Xiao A, Yang L, Lucht BL, Kang S-H, Abraham DP (2009) Examining the solid electrolyte interphase on binder-free graphite electrodes. J Electrochem Soc 156:A318–A327. https://doi.org/10.1149/1.3078020
Hirasawa KA, Sato T, Asahina H, Yamaguchi S, Mori S (1997) In situ electrochemical atomic force microscope study on graphite electrodes. J Electrochem Soc 144:L81–L84. https://doi.org/10.1149/1.1837560
Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443. https://doi.org/10.1016/j.jpowsour.2013.11.103
He Y-B, Li B, Liu M, Zhang C, Lv W, Yang C et al (2012) Gassing in Li(4)Ti(5)O(12)-based batteries and its remedy. Nat Sci Rep 2:913. https://doi.org/10.1038/srep00913
Zhou Y, Guo H, Yong Y, Wang Z, Li X, Zhou R (2017) Introducing reduced graphene oxide to improve the electrochemical performance of silicon-based materials encapsulated by carbonized polydopamine layer for lithium ion batteries. Mater Lett 195:164–167
Yang J, Wang BF, Wang K, Liu Y, Xie JY, Wen ZS (2003) Si/C composites for high capacity lithium storage materials. Electrochem Solid State Lett 6:A154–A156
Lee HY, Lee SM (2004) Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem Commun 6:465–469
Wang J, Liu Z, Yan G, Li H, Peng W, Li X, Song L, Shih K (2016) Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: focus on interfacial stability. J Power Sources 329:553–557
Liu YJ, Lv J, Fei Y, Huo XD, Zhu YZ (2013) Improvement of storage performance of LiMn2O4/graphite battery with AlF3-coated LiMn2O4. Ionics 19:1241–1246
Wang RH, Li XH, Wang ZX, Guo HJ, Hou T, Yan GC, Huang B (2015) Lithium carbonate as an electrolyte additive for enhancing the high-temperature performance of lithium manganese oxide spinel cathode. J Alloys Compd 618:349–356
Wang RH, Li XH, Wang ZX, Guo HJ, Wang JX, Hou T (2015) Impacts of vinyl ethylene carbonate and vinylene carbonate on lithium manganese oxide spinel cathode at elevated temperature. J Alloys Compd 632:435–444
Xu C, Lindgren F, Philippe B, Gorgoi M, Bjorefors F, Edstrom K, Gustafsson T (2015) Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem Mater 27:2591–2599
Nie M, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412
Zhao M, Zuo X, Ma X, Xiao X, Yu L, Nan J (2016) Diphenyl disulfide as a new bifunctional film-forming additive for high-voltage LiCoO2/graphite battery charged to 4.4 V. J Power Sources 323:29–36. https://doi.org/10.1016/j.jpowsour.2016.05.052
Wagner R, Brox S, Kasnatscheew J, Gallus DR, Amereller M, Cekic-Laskovic I, Winter M (2014) Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries. Electrochem Commun 40:80–83. https://doi.org/10.1016/j.elecom.2014.01.004
Wang R, Li X, Wang Z, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34:131–140. https://doi.org/10.1016/j.nanoen.2017.02.037
Jurng S et al (2016) Low-temperature characteristics and film-forming mechanism of elemental sulfur additive on graphite negative electrode. J Electrochem Soc 163:A223–A228
Abe K, Yoshitake H, Kitakura T, Hattori T, Wang H, Yoshio M (2004) Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochim Acta 49(26):4613–4622. https://doi.org/10.1016/j.electacta.2004.05.016
Dimov N, Fukuda K, Umeno T, Kugino S, Yoshio M (2003) Characterization of carbon-coated silicon: structural evolution and possible limitations. J Power Sources 114(1):88–95. https://doi.org/10.1016/S0378-7753(02)00533-5
Zhang XW, Patil PK, Wang C, Appleby AJ, Little FE, Cocke DL (2004) Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. J Power Sources 125(2):206–213. https://doi.org/10.1016/j.jpowsour.2003.07.019
Chu YQ, Fu ZW, Qin QZ (2004) Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochim Acta 49(27):4915–4921. https://doi.org/10.1016/j.electacta.2004.06.012
Choi WC, Byun D, Lee JK, Cho B (2004) Electrochemical characteristics of silver- and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries. Electrochim Acta 50(2–3):523–529. https://doi.org/10.1016/j.electacta.2003.12.070
Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141
Chen JS, Lou XWD (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9:1877–1893
Wu HB, Chen JS, Hng HH, Lou XWD (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542
Ding S, Luan D, Boey FYC, Chen JS, Lou XW (2011) SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem Commun 47:7155–7157
Chen W, Ghosh D, Chen S (2008) Large-scale electrochemical synthesis of SnO2 nanoparticles. J Mater Sci 43:5291–5299
Yanson AI, Rodriguez P, Garcia-Araez N, Mom RV, Tichelaar FD, Koper MTM (2011) Cathodic corrosion: a quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew Chem Int Ed 50:6346–6350
Leontyev I, Kuriganova A, Kudryavtsev Yu, Dkhil B, Smirnova N (2012) New life of a forgotten method: electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells. Appl Catal A 431:120–125
Smirnova NV, Kuriganova AB, Leontyeva DV, Leontyev IN, Mikheikin AS (2013) Structural and electrocatalytic properties of Pt/C and Pt-Ni/C catalysts prepared by electrochemical dispersion. Kinet Catal 54:255–262
Leontyeva DV, Leontyev IN, Avramenko MV, Yuzyuk YuI, Kukushkina YuA, Smirnova NV (2013) Electrochemical dispersion as a simple and effective technique toward preparation of NiO based nanocomposite for supercapacitor application. Electrochim Acta 114:356–362
Smart MC, Ratnakumar BV, Surampudi S (1999) J Electrochem Soc 146:486
Huang CK, Sakamoto JS, Wolfenstine J, Surampudi S (2000) J Electrochem Soc 147:2893
Contestabile M, Morselli M, Paraventi R, Neat RJ (2003) J Power Sources 119–121:943
Zhang SS (2006) J Power Sources 162:1379
Herreyre S, Huchet O, Barusseau S, Perton F, Bodet JM, Biensan P (2001) J Power Sources 97–98:576
Smart MC, Ratnakumar BV, Ryan-Mowrey VS, Surampudi S, Prakash GKS, Hu J, Cheung I (2003) J Power Sources 119–121:359
Smith KA, Smart MC, Prakash GKS, Ratnakumar BV (2008) ECS Trans 11:91
Smart MC, Whitacre JF, Ratnakumar BV, Amine K (2007) J Power Sources 168:501
Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) Electrochim Acta 45:67
Aurbach D, Zaban A, Gofer Y, Ely YE, Weissman I, Chusid O, Abramson O (1995) J Power Sources 54:76
Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid B, Markovsky M, Levi E, Levi A, Schechter E, Granot Y (1997) J Power Sources 68:91
Peled E, Golodnitsky D, Menachem C, BarTow D (1998) J Electrochem Soc 145:3482
Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) Electrochim Acta 47:1423
Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z (2005) J Electrochem Soc 152:A2046
Winter BM, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763
Chang WS, Park CM, Kim JH, Kim YU, Jeong G, Sohn HJ (2012) Quartz (SiO2): a new energy storage anode material for Li-ion batteries. Energy Environ Sci 5(5):6895–6899
Doh CH, Veluchamy A, Lee DJ, Lee JH, Jin BS, Moon SI, Park CW, Kim DW (2010) Comparative study on performances of composite anodes of SiO, Si and Graphite for lithium rechargeable batteries. Bull Korean Chem Soc 31(5):1257–1261
Seong IW, Kim KT, Yoon WY (2009) Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell. J Power Sources 189(1):511–514
Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q (2013) Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep 3:1568–1574
Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L (2008) Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochem Commun 10:1876–1878
Gao P, Yang J (2011) Si-based composite anode materials for Li-ion batteries. Prog Chem 23(0203):264–274
Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946
Szczech JR, Jin S (2011) Energy Environ Sci 4:56
Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48(9):1201–1217
Guo S, Li H, Bai H, Tao Z, Chen J (2014) Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. J Power Sources 248:1141–1148
Nishide H, Oyaizu K (2008) Toward flexible batteries. Science (New York, NY) 319(5864):737–738
Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science (New York, NY) 327(5973):1603–1607
Naoi K, Morita M (2008) Advanced polymers as active materials and electrolytes for electrochemical capacitors and hybrid capacitor systems. Electrochem Soc Interface 17(1):44–48
Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12
Laforgue A, Robitaille L (2010) Deposition of ultrathin coatings of polypyrrole and poly(3,4-ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chem Mater 22(8):2474–2480
Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9(10):3635–3639
Tu J, Hu L, Wang W, Hou J, Zhu H, Jiao S (2013) In-situ synthesis of silicon/polyaniline core/shell and its electrochemical performance for lithium-ion batteries. J Electrochem Soc 160(10):A1916–A1921
Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50
Li CM, Zhang RY, Li WS, Zhao LZ, Hu SJ, Rao MM, Xu JX (2007) Ultrasonic-electrodeposited Sn-CNTs composite used as anode material for lithium ion battery. Trans Nonferr Met Soc China 17:s934–s936
Zhang L, Xiang H, Li Z, Wang H (2012) Porous Li3V2(PO4)3/C cathode with extremely high-rate capacity prepared by a sol–gel-combustion method for fast charging and discharging. J Power Sources 203:121–125
Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H (2010) Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:834–840
Wu D, Cheng Y (2012) Enhanced high-rate performance of sub-micro Li4Ti4.95Zn0.05O12 as anode material for lithium-ion batteries. Ionics 19:395–399
Wang L, Yang C, Dou S, Wang S, Zhang J, Gao X, Ma J, Yu Y (2016) Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. Electrochim Acta 219:592–603
Wu Y, Wen Z, Li J (2011) Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv Mater 23:1126–1129
Wu Y, Wen Z, Feng H, Li J (2012) Hollow porous LiMn2O4 microcubes as rechargeable lithium battery cathode with high electrochemical performance. Small 8:858–862
Wang H, Liang Q, Wang W, An Y, Li J, Guo L (2011) Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage. Cryst Growth Des 11:2942–2947
Zhou W, Lin L, Wang W, Zhang L, Wu Q, Li J, Guo L (2011) Hierarchial mesoporous hematite with “electron-transport channels” and its improved performances in photocatalysis and lithium ion batteries. J Phys Chem C 115:7126–7133
Cao K, Jiao L, Xu H, Liu H, Kang H, Zhao Y, Liu Y, Wang Y, Yuan H (2016) Reconstruction of mini-hollow polyhedron Mn2O3 derived from MOFs as a high-performance lithium anode material. Adv Sci (Weinh) 3:1500185
Cao K, Jiao L, Liu H, Liu Y, Wang Y, Guo Z, Yuan H (2015) 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv Energy Mater 5:1401421
Zhang L, Zhang Y, Yuan X (2014) Enhanced high-temperature performances of LiMn2O4 cathode by LiMnPO4 coating. Ionics 21:37–41
Li X, Yang R, Cheng B, Hao Q, Xu H, Yang J, Qian Y (2012) Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55 C. Mater Lett 66:168–171
Yuan G, Bai J, Doan TNL, Chen P (2014) Synthesis and electrochemical investigation of nanosized LiMn2O4 as cathode material for rechargeable hybrid aqueous batteries. Mater Lett 137:311–314
Tang W, Liu LL, Tian S, Li L, Li LL, Yue YB, Bai Y, Wu YP, Zhu K, Holze R (2011) LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries. Electrochem Commun 13:1159–1162
Tang D, Yi R, Gordin ML, Melnyk M, Dai F, Chen S, Song J, Wang D (2014) Titanium nitride coating to enhance the performance of silicon nanoparticles as a lithium-ion battery anode. J Mater Chem A 2:10375–10378
Zhang J, Zhang J, Peng Z, Cai W, Yu L, Wu Z, Zhang Z (2014) Outstanding rate capability and long cycle stability induced by homogeneous distribution of nitrogen doped carbon and titanium nitride on the surface and in the bulk of spinel lithium titanate. Electrochim Acta 132:230–238
Bünting A, Uhlenbruck S, Dellen C, Finsterbusch M, Tsai CL, Sebold D, Buchkremer HP, Vaßen R (2015) Influence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films. J Power Sources 281:326–333
Balogun M-S, Li C, Zeng Y, Yu M, Wu Q, Wu M, Lu X, Tong Y (2014) Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. J Power Sources 272:946–953
Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better… A review of 5 Volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922
Song J, Shin DW, Lu YH et al (2012) Role of oxygen vacancies on the performance of Li[Ni0.5−xMn1.5+x]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem Mater 24:3101
Kawai H, Nagata M, Tukamoto H, West AR (1998) A new lithium cathode LiCoMnO4: toward practical 5 V lithium batteries. Electrochem Solid State Lett 1:212
Dimesso L, Forster C, Jaegermann W et al (2012) Developments in nanostructured LiMPO4 (M = Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture. Chem Soc Rev 41:5068
Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500
Yang Y, Zheng G, Misra S et al (2012) High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc 134:15387
Wang H, Yang Y, Liang Y et al (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644
Manthiram A, Fu Y, Chung SH et al (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751
Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1:2193
Hu Y-Y, Liu Z, Nam K-W et al (2013) Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater 12:1130
Luntz AC, McCloskey BD (2014) Nonaqueous Li-air batteries: a status report. Chem Rev 114:11721
Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336
Park M-S, Kang Y-M, Wang G-X et al (2008) The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv Funct Mater 18:455
Chen XT, Wang KX, Zhai YB et al (2014) A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries. Dalton Trans 43:3137
Liu L, Xie F, Lyu J et al (2016) Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J Power Sources 321:11
Naskar AK, Bi Z, Li Y et al (2014) Tailored recovery of carbons from waste tires for enhanced performance as anodes in lithium-ion batteries. RSC Adv 4:38213
Li Y, Adams RA, Arora A et al (2017) Sustainable potassium-ion battery anodes derived from waste-tire rubber. J Electrochem Soc 164:A1234
Li Y, Paranthaman MP, Akato K et al (2016) Tire-derived carbon composite anodes for sodium-ion batteries. J Power Sour 316:232
Bradford PD et al (2010) A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol 70:1980–1985
Zhang L et al (2015) Strong and conductive dry carbon nanotube films by microcombing. Small 11:3830–3836
Zhang X et al (2007) Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 3:244–248
Wang X et al (2011) Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Compos Sci Technol 71:1677–1683
Wang X et al (2012) Ultrastrong, stiff and multifunctional carbon nanotube composites. Mater Res Lett 1:1–7
Fu K et al (2013) Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes. Adv Mater 25:5109–5114
Faraji S et al (2014) Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets. Carbon N Y 79:113–122
Dufficy MK, Khan SA, Fedkiw PS (2015) Galactomannan binding agents for silicon anodes in Li-ion batteries. J Mater Chem A 3:12023–12030
Cuesta N, Ramos A, Cameán I, Antuña C, García AB (2015) Hydrocolloids as binders for graphite anodes of lithium-ion batteries. Electrochim Acta 155:140–147
Liu J et al (2015) A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv Funct Mater 25:3599–3605
Sudhakar YN, Selvakumar M, Bhat DK (2014) Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte. Mater Sci Eng B 180:12–19
Wang J, Chen Y, Qi L (2011) Open Mater Sci J 5:228
Kasavajjula U, Wang CS, Appleby AJ (2007) J Power Sources 163:1003
Chen LB, Xie XH, Wang BF, Wang K, Xie JY (2006) Mater Sci Eng B 131:186
Ng SH, Wang J, Konstantinov K, Wexler D, Chew SY, Guo ZP, Liu HK (2007) J Power Sources 174:823
Amine K, Wang QZ, Vissers DR, Zhang ZC, Rossi NAA, West R (2006) Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochem Commun 8:429–433
Rossi NAA, West R (2009) Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int 58:267–272
Zhang LZ, Zhang ZC, Harring S, Straughan M, Butorac R, Chen ZH, Lyons L, Amine K, West R (2008) Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications. J Mater Chem 18:3713–3717
Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417
Walkowiak M, Waszak D, Schroeder G, Gierczyk B (2008) Polyether-functionalized disiloxanes as new film-forming electrolyte additive for Li-ion cells with graphitic anodes. Electrochem Commun 10:1676–1679
Schroeder G, Gierczyk B, Waszak D, Kopczyk M, Walkowiak M (2006) Vinyl tris-2-methoxyethoxy silane—a new class of film-forming electrolyte components for Li-ion cells with graphite anodes. Electrochem Commun 8:523–527
Xia Q, Wang B, Wu YP, Luo HJ, Zhao SY, van Ree T (2008) Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries. J Power Sources 180:602–606
Qin XY, Wang JL, Zhang LZ (2012) Progress of organosilicon based electrolytes for lithium-ion batteries. Prog Chem 24(5):155–167
Jeong SK, Inaba M, Iriyama Y, Abe T, Ogumi Z (2003) Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions. Electrochem Solid-State Lett 6:A13–A15
Jeong SK, Inaba M, Iriyama Y, Abe T, Ogumi Z (2008) Interfacial reactions between graphite electrodes and propylene carbonate-based solution: electrolyte-concentration dependence of electrochemical lithium intercalation reaction. J Power Sources 175:540–546
Takeuchi S, Miyazaki K, Sagane F, Fukutsuka T, Jeong SK, Abe T (2011) Electrochemical properties of graphite electrode in propylene carbonate-based electrolytes containing lithium and calcium ions. Electrochim Acta 56:10450–10453
Takeuchi S, Fukutsuka T, Miyazaki K, Abe T (2013) Electrochemical lithium ion intercalation into graphite electrode in propylene carbonate-based electrolytes with dimethyl carbonate and calcium salt. J Power Sources 238:65–68
Henderson WA (2006) Glyme-lithium salt phase behavior. J Phys Chem B 110:13177–13183
Seo DM, Borodin O, Han SD, Boyle PD, Henderson WA (2012) Electrolyte solvation and ionic association II acetonitrile-lithium salt mixtures: highly dissociated salts. J Electrochem Soc 159:A1489–A1500
Yamada Y, Yaegashi M, Abe T, Yamada A (2013) A superconcentrated ether electrolyte for fast-charging li-ion batteries. Chem Commun 49:11194–11196
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A (2014) Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc 136:5039–5046
Song HY, Fukutsuka T, Miyazaki K, Abe T (in press) suppression of co-intercalation reaction of propylene carbonate and lithium ion into graphite negative electrode by addition of diglyme. J Electrochem Soc
Liu XH, Zheng H, Zhong L, Huang S, Karki K, Zhang LQ, Liu Y, Kushima A, Liang WT, Wang JW (2011) Nano Lett 11:3312–3318
Lee SW, McDowell MT, Berla LA, Nix WD, Cui Y (2012) Proc Natl Acad Sci USA 109:4080–4085
Wu H, Cui Y (2012) Nano Today 7:414–429
Yi R, Dai F, Gordin ML, Chen S, Wang D (2013) Adv Energy Mater 3:295–300
Abraham KM (2015) Prospects and limits of energy storage in batteries. J Phys Chem Lett 6:830–844
Demir-Cakan R, Hu YS, Antonietti M, Maier J, Titirici MM (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227–1229
Chen JS, Cheah YL, Chen YT, Jayaprakash N, Madhavi S, Yang YH, Lou XW (2009) SnO2 nanoparticles with controlled carbon nanocoating as high capacity anode materials for lithium-ion batteries. J Phys Chem C 113:20504–20508
Wen Z, Cui Kim H, Mao S, Yu K, Lu G, Pu H, Mao O, Chen J (2012) Binding Sn based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries. J Mater Chem 22:3300–3306
Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham TK, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6:2900–2906
Wang J, Song W-L, Wang Z, Fan L-Z, Zhang Y (2015) Facile fabrication of binder free metallic tin nanoparticle/carbon nanofiber hybrid electrodes for lithium-ion batteries. Electrochim Acta 153:468–475
Li X, Li X, Fan L, Yu Z, Yan B, Xiong D, Song X, Li S, Adair KR, Li D, Sun X (2017) Rational design of Sn/SnO2/porous carbon nanocomposites as anode materials for sodium-ion batteries. Appl Surf Sci 412:170–176
Guo ZG, Cheng JK, Hu ZG, Zhang M, Xu Q, Kang ZX, Zhao D (2014) Metal-organic frameworks (MOFs) as precursors towards TiOx/C composites for photodegradation of organic dye. RSC Adv 4:34221–34225
DeKrafft KE, Wang C, Lin WB (2012) Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv Mater 24:2014–2018
Liu JJ, Yang Y, Zhu WW, Yi X, Dong ZL, Xu XN, Chen MW, Yang K, Lu G, Jiang LX, Liu Z (2016) Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 97:1–9
Meng WJ, Chen W, Zhao L, Huang Y, Zhu MS, Huang Y, Fu YQ, Geng FX, Yu J, Chen XF, Zhi CY (2014) Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8:133–140
Li GC, Liu PF, Liu R, Liu M, Tao K, Zhu SR, Wu MK, Yi FY, Han L (2016) MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans 45:13311–13316
Yue HY, Shi ZP, Wang QX, Cao ZX, Dong HY, Qiao Y, Yin YH, Yang ST (2014) MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:17067–17074
Guo WX, Sun WW, Lv LP, Kong SF, Wang Y (2017) Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 11:4198–4205
Wang W, Yang Y, Yang SJ, Guo ZP, Feng CQ, Tang XC (2015) Synthesis and electrochemical performance of ZnCo2O4 for lithium-ion battery application. Electrochim Acta 155:297–304
Huang B, Yang J, Zou Y, Ma L, Zhou X (2014) Sonochemical synthesis of SnO2/carbon nanotubes encapsulated in graphene sheets composites for lithium ion batteries with superior electrochemical performance. Electrochim Acta 143:63–69
Zhang B, Zheng QB, Huang ZD, Oh SW, Kim JK (2011) SnO2–graphene–carbon nanotube mixture for anode material with improved rate capacities. Carbon 49:4524–4534
Koninck MD, Poirier SC, Marsan B (2006) J Electrochem Soc 153:A2103–A2110
Rosa-Toro AL, Berenguer R, Quijada C, Montilla F, Morallon E, Vazquez JL (2006) J Phys Chem B 110:24021–24029
Feng Y, Liu JH, Wu DL, Zhou ZY, Deng Y, Zhang T, Shih K (2015) Chem Eng J 280:514–524
Shi YQ, Yu B, Zhou KQ, Yuen RKK, Gui Z, Hu Y, Jiang SH (2015) J Hazard Mater 293:87–96
Yunjian L, Xinhai L, Huajun G, Zhixing W, Qiyang H, Wenjie P, Yong Y (2009) Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature. J Power Sources 189:721–725
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Writer, B. (2019). Anode Materials, SEI, Carbon, Graphite, Conductivity, Graphene, Reversible, Formation. In: Lithium-Ion Batteries. Springer, Cham. https://doi.org/10.1007/978-3-030-16800-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-16800-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16799-8
Online ISBN: 978-3-030-16800-1
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)