Skip to main content

Intranasal Delivery of Therapeutic Peptides for Treatment of Ischemic Brain Injury

  • Chapter
  • First Online:

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

There is an unmet need in the treatment of cerebral ischemic stroke to enhance post-stroke functional recovery. Intranasal delivery of therapeutic peptides has been emerging as an important strategy to improve stroke recovery. In this chapter, we introduce the definition and mechanisms of intranasal delivery of therapeutic peptides. We also discuss its advantages and disadvantages in the treatment of stroke. A variety of peptides and the administration regimens that have been tested in stroke animal models are listed. We believe that further investigation in this regard can deepen our understanding of intranasal delivery and may promote its clinical translation in the pursuit of better stroke recovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen R, et al. Decreased percentage of peripheral naive T cells is independently associated with ischemic stroke in patients on hemodialysis. Int Urol Nephrol. 2017;49(11):2051–60.

    Article  Google Scholar 

  2. Whiteford HA, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382(9904):1575–86.

    Article  Google Scholar 

  3. Mozaffarian D, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    PubMed  Google Scholar 

  4. Strand FL. Neuropeptides: general characteristics and neuropharmaceutical potential in treating CNS disorders. Prog Drug Res. 2003;61:1–37.

    CAS  PubMed  Google Scholar 

  5. Lalatsa A, Schatzlein AG, Uchegbu IF. Strategies to deliver peptide drugs to the brain. Mol Pharm. 2014;11(4):1081–93.

    Article  CAS  Google Scholar 

  6. Ma M, et al. Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neurosci. 2008;9:117.

    Article  Google Scholar 

  7. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56(1):3–17.

    Article  CAS  Google Scholar 

  8. Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol. 2006;34(3):252–69.

    Article  CAS  Google Scholar 

  9. Fortuna A, et al. Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules. Eur J Pharm Biopharm. 2014;88(1):8–27.

    Article  CAS  Google Scholar 

  10. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.

    Article  CAS  Google Scholar 

  11. Thorne RG, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.

    Article  CAS  Google Scholar 

  12. Thorne RG, et al. Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience. 2008;152(3):785–97.

    Article  CAS  Google Scholar 

  13. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–72.

    Article  CAS  Google Scholar 

  14. Thorne RG, Frey WH 2nd. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet. 2001;40(12):907–46.

    Article  CAS  Google Scholar 

  15. Shipley MT. Transport of molecules from nose to brain: transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res Bull. 1985;15(2):129–42.

    Article  CAS  Google Scholar 

  16. Rhim T, Lee DY, Lee M. Drug delivery systems for the treatment of ischemic stroke. Pharm Res. 2013;30(10):2429–44.

    Article  CAS  Google Scholar 

  17. Wang Y, et al. Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials. 2012;33(9):2681–92.

    Article  CAS  Google Scholar 

  18. Chen MY, et al. Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. J Neurosurg. 2005;103(2):311–9.

    Article  Google Scholar 

  19. Thompson BJ, Ronaldson PT. Drug delivery to the ischemic brain. Adv Pharmacol. 2014;71:165–202.

    Article  CAS  Google Scholar 

  20. Yang D, et al. Intranasal delivery of cell-penetrating anti-NF-kappaB peptides (tat-NBD) alleviates infection-sensitized hypoxic-ischemic brain injury. Exp Neurol. 2013;247:447–55.

    Article  CAS  Google Scholar 

  21. Saver JL, et al. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. JAMA. 2013;309(23):2480–8.

    Article  CAS  Google Scholar 

  22. Pires A, et al. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311.

    Article  CAS  Google Scholar 

  23. Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14(9):3754–79.

    Article  CAS  Google Scholar 

  24. Costantino HR, et al. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1–2):1–24.

    Article  CAS  Google Scholar 

  25. Iwai M, et al. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke. 2007;38(10):2795–803.

    Article  CAS  Google Scholar 

  26. Iwai M, et al. Enhanced oligodendrogenesis and recovery of neurological function by erythropoietin after neonatal hypoxic/ischemic brain injury. Stroke. 2010;41(5):1032–7.

    Article  CAS  Google Scholar 

  27. Zhang F, et al. Enhanced delivery of erythropoietin across the blood-brain barrier for neuroprotection against ischemic neuronal injury. Transl Stroke Res. 2010;1(2):113–21.

    Article  CAS  Google Scholar 

  28. Castaneda-Arellano R, Feria-Velasco AI, Rivera-Cervantes MC. Activity increase in EpoR and Epo expression by intranasal recombinant human erythropoietin (rhEpo) administration in ischemic hippocampi of adult rats. Neurosci Lett. 2014;583:16–20.

    Article  CAS  Google Scholar 

  29. Yang D, et al. Taming neonatal hypoxic-ischemic brain injury by intranasal delivery of plasminogen activator inhibitor-1. Stroke. 2013;44(9):2623–7.

    Article  CAS  Google Scholar 

  30. Liu XF, et al. Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett. 2001;308(2):91–4.

    Article  CAS  Google Scholar 

  31. Guardia Clausi M, et al. Inhalation of growth factors and apo-transferrin to protect and repair the hypoxic-ischemic brain. Pharmacol Res. 2016;109:81–5.

    Article  CAS  Google Scholar 

  32. Mishra L, Derynck R, Mishra B. Transforming growth factor-beta signaling in stem cells and cancer. Science. 2005;310(5745):68–71.

    Article  CAS  Google Scholar 

  33. Guerra-Crespo M, et al. Intranasal administration of PEGylated transforming growth factor-alpha improves behavioral deficits in a chronic stroke model. J Stroke Cerebrovasc Dis. 2010;19(1):3–9.

    Article  Google Scholar 

  34. Xia Y, et al. Tissue plasminogen activator promotes white matter integrity and functional recovery in a murine model of traumatic brain injury. Proc Natl Acad Sci U S A. 2018;115(39):E9230–8.

    Article  Google Scholar 

  35. Chen D, et al. Intranasal delivery of apelin-13 is neuroprotective and promotes angiogenesis after ischemic stroke in mice. ASN Neuro. 2015;7(5):1759091415605114. https://doi.org/10.1177/1759091415605114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luo Y, et al. CART peptide induces neuroregeneration in stroke rats. J Cereb Blood Flow Metab. 2013;33(2):300–10.

    Article  CAS  Google Scholar 

  37. Kim ID, et al. Intranasal delivery of HMGB1-binding heptamer peptide confers a robust neuroprotection in the postischemic brain. Neurosci Lett. 2012;525(2):179–83.

    Article  CAS  Google Scholar 

  38. Zhao YZ, et al. Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J Control Release. 2016;224:165–75.

    Article  CAS  Google Scholar 

  39. Zhang H, et al. Intranasal delivery of exendin-4 confers neuroprotective effect against cerebral ischemia in mice. AAPS J. 2016;18(2):385–94.

    Article  CAS  Google Scholar 

  40. Sun BL, et al. Intranasal delivery of granulocyte colony-stimulating factor enhances its neuroprotective effects against ischemic brain injury in rats. Mol Neurobiol. 2016;53(1):320–30.

    Article  CAS  Google Scholar 

  41. Zhao X, et al. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci. 2015;35(32):11281–91.

    Article  CAS  Google Scholar 

  42. Yang Y, et al. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J Neurosci. 2017;37(18):4692–704.

    Article  CAS  Google Scholar 

  43. Yu YP, et al. Intranasal recombinant human erythropoietin protects rats against focal cerebral ischemia. Neurosci Lett. 2005;387(1):5–10.

    Article  CAS  Google Scholar 

  44. Teste IS, et al. Dose effect evaluation and therapeutic window of the neuro-EPO nasal application for the treatment of the focal ischemia model in the Mongolian gerbil. ScientificWorldJournal. 2012;2012:607498.

    Article  Google Scholar 

  45. Chen N, et al. Subacute intranasal administration of tissue plasminogen activator improves stroke recovery by inducing axonal remodeling in mice. Exp Neurol. 2018;304:82–9.

    Article  CAS  Google Scholar 

  46. Liu Z, et al. Subacute intranasal administration of tissue plasminogen activator increases functional recovery and axonal remodeling after stroke in rats. Neurobiol Dis. 2012;45(2):804–9.

    Article  CAS  Google Scholar 

  47. Fletcher L, et al. Intranasal delivery of erythropoietin plus insulin-like growth factor-I for acute neuroprotection in stroke. Laboratory investigation. J Neurosurg. 2009;111(1):164–70.

    Article  CAS  Google Scholar 

  48. Fishburn CS. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci. 2008;97(10):4167–83.

    Article  CAS  Google Scholar 

  49. Sakane T, Pardridge WM. Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity. Pharm Res. 1997;14(8):1085–91.

    Article  CAS  Google Scholar 

  50. Wu D, Pardridge WM. Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci U S A. 1999;96(1):254–9.

    Article  CAS  Google Scholar 

  51. Guerra-Crespo M, et al. Transforming growth factor-alpha induces neurogenesis and behavioral improvement in a chronic stroke model. Neuroscience. 2009;160(2):470–83.

    Article  CAS  Google Scholar 

  52. Clement WA, et al. The use of hyaluronidase in nasal infiltration: prospective randomized controlled pilot study. J Laryngol Otol. 2003;117(8):614–8.

    Article  CAS  Google Scholar 

  53. O’Donnell LA, et al. Apelin, an endogenous neuronal peptide, protects hippocampal neurons against excitotoxic injury. J Neurochem. 2007;102(6):1905–17.

    Article  Google Scholar 

  54. Zeng XJ, et al. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons. Exp Cell Res. 2010;316(11):1773–83.

    Article  CAS  Google Scholar 

  55. Yang Y, et al. Apelin-13 protects the brain against ischemia/reperfusion injury through activating PI3K/Akt and ERK1/2 signaling pathways. Neurosci Lett. 2014;568:44–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, T., Smith, A., Chen, J., Li, P. (2019). Intranasal Delivery of Therapeutic Peptides for Treatment of Ischemic Brain Injury. In: Chen, J., Wang, J., Wei, L., Zhang, J. (eds) Therapeutic Intranasal Delivery for Stroke and Neurological Disorders. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16715-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16715-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16713-4

  • Online ISBN: 978-3-030-16715-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics