Coevolution of Generative Adversarial Networks

  • Victor CostaEmail author
  • Nuno LourençoEmail author
  • Penousal MachadoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11454)


Generative adversarial networks (GAN) became a hot topic, presenting impressive results in the field of computer vision. However, there are still open problems with the GAN model, such as the training stability and the hand-design of architectures. Neuroevolution is a technique that can be used to provide the automatic design of network architectures even in large search spaces as in deep neural networks. Therefore, this project proposes COEGAN, a model that combines neuroevolution and coevolution in the coordination of the GAN training algorithm. The proposal uses the adversarial characteristic between the generator and discriminator components to design an algorithm using coevolution techniques. Our proposal was evaluated in the MNIST dataset. The results suggest the improvement of the training stability and the automatic discovery of efficient network architectures for GANs. Our model also partially solves the mode collapse problem.


Neuroevolution Coevolution Generative adversarial networks 



This article is based upon work from COST Action CA15140: ImAppNIO, supported by COST (European Cooperation in Science and Technology):


  1. 1.
    Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)Google Scholar
  2. 2.
    Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)Google Scholar
  3. 3.
    Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)Google Scholar
  4. 4.
    Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821. IEEE (2017)Google Scholar
  5. 5.
    Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANS. In: Advances in Neural Information Processing Systems, pp. 5769–5779 (2017)Google Scholar
  6. 6.
    Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANS. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)Google Scholar
  7. 7.
    Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRefGoogle Scholar
  8. 8.
    Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification. J. Artif. Intell. Res. 21, 63–100 (2004)CrossRefGoogle Scholar
  9. 9.
    Miikkulainen, R., et al.: Evolving deep neural networks. arXiv preprint arXiv:1703.00548 (2017)
  10. 10.
    LeCun, Y.: The MNIST database of handwritten digits (1998).
  11. 11.
    Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)CrossRefGoogle Scholar
  12. 12.
    Assunção, F., Lourenço, N., Machado, P., Ribeiro, B.: Evolving the topology of large scale deep neural networks. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 19–34. Springer, Cham (2018). Scholar
  13. 13.
    Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42(1–3), 228–234 (1990)CrossRefGoogle Scholar
  14. 14.
    Rawal, A., Rajagopalan, P., Miikkulainen, R.: Constructing competitive and cooperative agent behavior using coevolution. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), pp. 107–114 (2010)Google Scholar
  15. 15.
    García-Pedrajas, N., Hervás-Martínez, C., Muñoz-Pérez, J.: Covnet: a cooperative coevolutionary model for evolving artificial neural networks. IEEE Trans. Neural Netw. 14(3), 575–596 (2003)CrossRefGoogle Scholar
  16. 16.
    García-Pedrajas, N., Hervás-Martínez, C., Ortiz-Boyer, D.: Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans. Evol. Comput. 9(3), 271–302 (2005)CrossRefGoogle Scholar
  17. 17.
    Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 9, 937–965 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANS created equal? a large-scale study. arXiv preprint arXiv:1711.10337 (2017)
  19. 19.
    Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. arXiv preprint arXiv:1803.00657 (2018)
  20. 20.
    Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANS trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6629–6640 (2017)Google Scholar
  21. 21.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)Google Scholar
  22. 22.
    Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)Google Scholar
  24. 24.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)Google Scholar
  25. 25.
    Ficici, S.G., Pollack, J.B.: A game-theoretic memory mechanism for coevolution. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 286–297. Springer, Heidelberg (2003).
  26. 26.
    Monroy, G.A., Stanley, K.O., Miikkulainen, R.: Coevolution of neural networks using a layered pareto archive. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 329–336. ACM (2006)Google Scholar
  27. 27.
    Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CISUC, Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations