Advertisement

Design and Implementation of an IoT-Based Háptical Interface Implemented by Memetic Algorithms to Improve Competitiveness in an Industry 4.0 Model for the Manufacturing Sector

  • Roberto ContrerasEmail author
  • Alberto Ochoa
  • Edgar Cossío
  • Vicente García
  • Diego Oliva
  • Raúl Torres
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 939)

Abstract

In the manufacturing industry, priority is given to quality models in the product, in order to make companies competitive, that is why it has been proposed to implement haptic interfaces capable of detecting anomalies in the operation of the electronic equipment of the companies. Cars in the manufacturing sector, that is why through the implementation of Artificial Intelligence and Smart Manufacturing Models, we can get to build intelligent systems for the correct decision making in the auto parts sector in Mexico. Intelligent manufacturing is a subset that employs various techniques of artificial intelligence and emerging technologies coupled with computer control and high levels of adaptability to adapt to changes in product improvement. Intelligent manufacturing is focused on taking advantage of advanced information technologies and even intelligent analysis of data and manufacturing via the Internet of things to allow flexibility in physical processes to address a dynamic market in each society and from a global perspective. There is more training related to the implementation of artificial intelligence of the workforce for such flexibility of adaptability of products and use of emerging technology instead of specific tasks as is usual in traditional manufacturing, and which requires a larger group of individuals for it.

Keywords

Haptical interface Internet of Things Smart Manufacturing Memetic Algorithms and Smart City 

References

  1. Aijaz, A., Dohler, M., Hamid Aghvami, A., Friderikos, V., Frodigh, M.: Realizing the tactile internet: haptic communications over next generation 5G cellular networks. IEEE Wirel. Commun. 24(2), 82–89 (2017).  https://doi.org/10.1109/MWC.2016.1500157RPCrossRefGoogle Scholar
  2. Albert, B., Maire, J.-L., Pillet, M., Zanni-Merk, C., De Bertrand De Beuvron, F., Charrier, J., Knecht, C.: A haptic quality control method based on the human somatosensory system (n.d.)Google Scholar
  3. Angelini, L., Mugellini, E., Abou Khaled, O., Couture, N.: Internet of tangible things (IoTT): challenges and opportunities for tangible interaction with IoT. Informatics 5(1), 7 (2018).  https://doi.org/10.3390/informatics5010007CrossRefGoogle Scholar
  4. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010).  https://doi.org/10.1016/J.COMNET.2010.05.010CrossRefzbMATHGoogle Scholar
  5. Castañón, J.P.: Retos para méxico: industria 4.0. In Industria 4.0 Retos para México (2018)Google Scholar
  6. Cheng, J., Chen, W., Tao, F., Lin, C.-L.: Industrial IoT in 5G environment towards smart manufacturing (2018).  https://doi.org/10.1016/j.jii.2018.04.001CrossRefGoogle Scholar
  7. Choi, I., Ofek, E., Benko, H., Sinclair, M., Holz, C.: CLAW: a multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality. In: Chi 2018 (2018).  https://doi.org/10.1145/3173574.3174228
  8. Chong, L., Ramakrishna, S., Singh, S.: A review of digital manufacturing-based hybrid additive manufacturing processes. Int. J. Adv. Manuf. Technol. (2018).  https://doi.org/10.1007/s00170-017-1345-3CrossRefGoogle Scholar
  9. Culbertson, H., Schorr, S.B., Okamura, A.M.: Haptics: the present and future of artificial touch sensations. Annu. Rev. Control Robot. Auton. Syst. 11225(1), 1–12 (2018).  https://doi.org/10.1146/annurev-control-060117CrossRefGoogle Scholar
  10. Govindarajan, U.H., Trappey, A.J.C., Trappey, C.V.: Immersive technology for human-centric cyberphysical systems in complex manufacturing processes: a comprehensive overview of the global patent profile using collective intelligence. Complexity (2018).  https://doi.org/10.1155/2018/4283634CrossRefGoogle Scholar
  11. Halim, A.Z.A.: Special Issue Maintenance Process in Automotive Industry (2018)Google Scholar
  12. Halunen, K., Latvala, O.-M., Karvonen, H., Häikiö, J., Valli, S., Federley, M., Peltola, J.: Human verifiable computing in augmented and virtual realities (2017). http://www.vtt.fi/inf/julkaisut/muut/2017/human-verifiable-computing-white-paper.pdf
  13. Harbers, M., Van Berkel, J., Bargh, M.S., Van Den Braak, S., Pool, R., Choenni, S.: A conceptual framework for addressing IoT threats: challenges in meeting challenges. In: 51st Hawaii International Conference on System Sciences (2018)Google Scholar
  14. Haslgrübler, M., Fritz, P., Gollan, B., Ferscha, A.: Getting through. In: Proceedings of the Seventh International Conference on the Internet of Things - IoT 2017, October, pp. 1–8 (2017).  https://doi.org/10.1145/3131542.3131561
  15. Iorga, M., Feldman, L., Barton, R., Martin, M.J., Goren, N., Mahmoudi, C.: Fog Computing Conceptual Model. NIST Special Publication, 500–325 (2018).  https://doi.org/10.6028/NIST.SP.500-325
  16. Khan, M.A., Salah, K.: IoT security: review, blockchain solutions, and open challenges. Future Gen. Comput. Syst. (2018).  https://doi.org/10.1016/j.future.2017.11.022CrossRefGoogle Scholar
  17. Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum, vol. 2351, pp. 282–292 (1995).  https://doi.org/10.1117/12.197321
  18. Ni, D., Yew, A.W.W., Ong, S.K., Nee, A.Y.C.: Haptic and visual augmented reality interface for programming welding robots. Adv. Manuf. 5(3), 191–198 (2017).  https://doi.org/10.1007/s40436-017-0184-7CrossRefGoogle Scholar
  19. Ochoa-zezzatti, A., Hernández, A.: Intelligent traffic management to support people with color blindness in a Smart City (n.d.)Google Scholar
  20. Raymond Choo, K.-K., Bishop, M., Glisson, W., Nance, K.: Internet- and cloud-of-things cybersecurity research challenges and advances (2018).  https://doi.org/10.1016/j.cose.2018.02.008CrossRefGoogle Scholar
  21. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, Fog et al.: a survey and analysis of security threats and challenges. Future Gen. Comput. Syst. (2018).  https://doi.org/10.1016/j.future.2016.11.009CrossRefGoogle Scholar
  22. Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., Harnisch, M.: Industry 4.0. The Boston Consulting Group, 1–20 (2015).  https://doi.org/10.1007/s12599-014-0334-4CrossRefGoogle Scholar
  23. Scott, R.: Comparative Study of Open-Source IoT Middleware Platforms. KTH Estocolmo, Suecia (2018)Google Scholar
  24. Tiwari, A.: A review on haptic science technology and its applications. In: Proceeding of International Conference on Emerging Technologies in Engineering, Biomedical, Management and Science, ETEBMS 2016, March, pp. 78–83 (2016). http://www.sdtechnocrates.com/ETEBMS2016/html/papers/ETEBMS-2016_ENG-EC3.pdf
  25. Urquhart, L., Mcauley, D.: Avoiding the internet of insecure industrial things (2017).  https://doi.org/10.1016/j.clsr.2017.12.004CrossRefGoogle Scholar
  26. Vafadar, M.: Virtual reality: opportunities and challenges. Int. Res. J. Eng. Technol. (IRJET) 3(2), 1139–1145 (2013). https://www.irjet.net/archives/V5/i1/IRJET-V5I1103.pdf
  27. Van Den Berg, D., Glans, R., De Koning, D., Kuipers, F.A., Lugtenburg, J., Polachan, K., Venkata, P.T., Singh, C., Turkovic, B., Van Wijk, B.: Challenges in haptic communications over the tactile internet. IEEE Access 5, 23502–23518 (2017).  https://doi.org/10.1109/ACCESS.2017.2764181CrossRefGoogle Scholar
  28. Whitmore, A., Agarwal, A., Da Xu, L.: The internet of things—a survey of topics and trends. Inf. Syst. Front. 17(2), 261–274.  https://doi.org/10.1007/s10796-014-9489-2CrossRefGoogle Scholar
  29. Wu, H., Liang, S., Hang, W., Liu, X., Wang, Q., Choi, K.S., Qin, J.: Evaluation of motor training performance in 3D virtual environment via combining brain-computer interface and haptic feedback. Procedia Comput. Sci. 107(Icict), 256–261 (2017).  https://doi.org/10.1016/j.procs.2017.03.096CrossRefGoogle Scholar
  30. Xu, L.D., Xu, E.L., Li, L.: Industry 4.0: state of the art and future trends. Int. J. Prod. Res. (2018).  https://doi.org/10.1080/00207543.2018.1444806CrossRefGoogle Scholar
  31. Yannuzzi, M., Milito, R.: Key ingredients in an IoT recipe Fog Computing. In: Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 325–329 (2014)Google Scholar
  32. Yelamarthi, K., Aman, M.S., Abdelgawad, A.: An application-driven modular IoT architecture. Wirel. Commun. Mob. Comput. (2017).  https://doi.org/10.1155/2017/1350929CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Contreras
    • 1
    Email author
  • Alberto Ochoa
    • 1
  • Edgar Cossío
    • 2
  • Vicente García
    • 1
  • Diego Oliva
    • 3
  • Raúl Torres
    • 4
  1. 1.Doctorado en Tecnología, UACJCiudad JuárezMexico
  2. 2.Universidad Enrique Díaz de LeónGuadalajaraMexico
  3. 3.CUCEI, Universidad de GuadalajaraGuadalajaraMexico
  4. 4.Universidad de CuencaCuencaEcuador

Personalised recommendations