Quantum Program Synthesis: Swarm Algorithms and Benchmarks

  • Timothy AtkinsonEmail author
  • Athena Karsa
  • John Drake
  • Jerry Swan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11451)


In the two decades since Shor’s celebrated quantum algorithm for integer factorisation, manual design has failed to produce the anticipated growth in the number of quantum algorithms. Hence, there is a great deal of interest in the automatic synthesis of quantum circuits and algorithms. Here we present a set of experiments which use Ant Programming to automatically synthesise quantum circuits. In the proposed approach, ants choosing paths in high-dimensional Cartesian space are analogous to transformation of qubits in Hilbert space. In addition to the proposed algorithm, we introduce new evaluation criteria for searching the space of quantum circuits, both for classical simulation and simulation on a quantum computer. We demonstrate that the proposed approach significantly outperforms random search on a suite of benchmark problems based on these new measures.


Quantum algorithms Ant Programming 



T. Atkinson and J. Swan acknowledge the support of EPSRC grant EP/J017515/1.


  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brassard, G., Braunstein, S.L., Cleve, R.: Teleportation as a quantum computation. In: Proceedings of the Fourth Workshop on Physics and Computation, PhysComp 1996, pp. 43–47. Elsevier, Amsterdam (1998)Google Scholar
  3. 3.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  4. 4.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A 400(1818), 97–117 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ding, S., Jin, Z., Yang, Q.: Evolving quantum circuits at the gate level with a hybrid quantum-inspired evolutionary algorithm. Soft Comput. 12(11), 1059–1072 (2008)CrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41 (1996)CrossRefGoogle Scholar
  8. 8.
    Fogel, L.J.: Autonomous automata. Ind. Res. 4, 14–19 (1962)Google Scholar
  9. 9.
    Gepp, A., Stocks, P.: A review of procedures to evolve quantum algorithms. Genet. Program. Evolvable Mach. 10(2), 181–228 (2009)CrossRefGoogle Scholar
  10. 10.
    Green, J., Whalley, J., Johnson, C.: Automatic programming with ant colony optimization. In: Proceedings of the 2004 UK Workshop on Computational Intelligence, pp. 70–77 (2004)Google Scholar
  11. 11.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)CrossRefGoogle Scholar
  12. 12.
    Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and applications. In: Proceedings of 41st Annual Symposium on Foundations of Computer Science, pp. 515–525. IEEE (2000)Google Scholar
  13. 13.
    Keber, C., Schuster, M.G.: Option valuation with generalized ant programming. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, pp. 74–81. Morgan Kaufmann Publishers Inc. (2002)Google Scholar
  14. 14.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  15. 15.
    Leier, A., Banzhaf, W.: Evolving Hogg’s quantum algorithm using linear-tree GP. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 390–400. Springer, Heidelberg (2003). Scholar
  16. 16.
    Lukac, M., et al.: Evolutionary approach to quantum and reversible circuits synthesis. Artif. Intell. Rev. 20(3–4), 361–417 (2003)CrossRefGoogle Scholar
  17. 17.
    Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Massey, P., Clark, J.A., Stepney, S.: Evolving quantum circuits and programs through Genetic Programming. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 569–580. Springer, Heidelberg (2004). Scholar
  19. 19.
    Massey, P., Clark, J.A., Stepney, S.: Human-competitive evolution of quantum computing artefacts by Genetic Programming. Evol. Comput. 14(1), 21–40 (2006)CrossRefGoogle Scholar
  20. 20.
    Miller, J.F.: An empirical study of the efficiency of learning Boolean functions using a Cartesian Genetic Programming approach. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 2, GECCO 1999, pp. 1135–1142. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  21. 21.
    Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  22. 22.
    Reed, M., et al.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482(7385), 382–385 (2012)CrossRefGoogle Scholar
  23. 23.
    Roux, O., Fonlupt, C.: Ant programming: or how to use ants for automatic programming. In: Dorigo, M. (ed.) ANTS 2000 From Ant Colonies to Artificial Ants: 2nd International Workshop on Ant Algorithms (2000)Google Scholar
  24. 24.
    Shende, V.V., Markov, I.L.: On the CNOT-cost of TOFFOLI gates. Quantum Inf. Comput. 9(5), 461–486 (2009)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Spector, L., Barnum, H., Bernstein, H.J., Swamy, N.: Finding a better-than-classical quantum AND/OR algorithm using Genetic Programming. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 1999, vol. 3, pp. 2239–2246. IEEE (1999)Google Scholar
  27. 27.
    Spector, L., Barnum, H., Bernstein, H.J., Swamy, N.: Quantum computing applications of Genetic Programming. Adv. Genet. program. 3, 135–160 (1999)Google Scholar
  28. 28.
    Spector, L., Klein, J.: Machine invention of quantum computing circuits by means of Genetic Programming. AI EDAM 22(3), 275–283 (2008)Google Scholar
  29. 29.
    Stadelhofer, R., Banzhaf, W., Suter, D.: Evolving blackbox quantum algorithms using Genetic Programming. AI EDAM 22(3), 285–297 (2008)Google Scholar
  30. 30.
    Stepney, S., Clark, J.A.: Searching for quantum programs and quantum protocols. J. Comput. Theor. Nanosci. 5(5), 942–969 (2008)CrossRefGoogle Scholar
  31. 31.
    Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). Scholar
  32. 32.
    Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132 (2000)Google Scholar
  33. 33.
    Williams, C.P., Gray, A.G.: Automated design of quantum circuits. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 113–125. Springer, Heidelberg (1999). Scholar
  34. 34.
    Yabuki, T., Iba, H.: Genetic algorithms for quantum circuit design - evolving a simpler teleportation circuit. In: Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, pp. 421–425. ACM (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Timothy Atkinson
    • 1
    Email author
  • Athena Karsa
    • 1
  • John Drake
    • 2
  • Jerry Swan
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK
  2. 2.School of Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUK

Personalised recommendations