Phylogenetic Tree Construction Using Chemical Reaction Optimization

  • Avijit BhattacharjeeEmail author
  • S. K. Rahad Mannan
  • Md. Rafiqul Islam
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)


Phylogenetic tree construction (PT) problem is a well-known NP-hard optimization problem that finds most accurate tree representing evolutionary relationships among species. Different criteria are used to measure the quality of a phylogeny tree by analyzing their relationships and nucleotide sequences. With increasing number of species, solution space of phylogenetic tree construction problem grows exponentially. In this paper, we have implemented Chemical Reaction Optimization algorithm to solve phylogeny construction problem for multiple datasets. For exploring both local and global search space, we have redesigned four elementary operators of CRO to solve phylogeny construction problem. One correction method has been designed for finding good combination of species according to maximum parsimony criterion. The experimental results show that for maximum parsimony criterion our implemented algorithm gives better results for three real datasets and same for one dataset.


Phylogenetic tree Maximum parsimony Metaheuristics Chemical Reaction Optimization 


  1. 1.
    Santander-Jiménez, S., Vega-Rodríguez, M.A.: Applying a multiobjective metaheuristic inspired by honey bees to phylogenetic inference. Biosystems 114(1), 39–55 (2013)CrossRefGoogle Scholar
  2. 2.
    Stamatakis, A.: Phylogenetics: applications, software and challenges. Cancer Genomics-Proteomics 2(5), 301–305 (2005)Google Scholar
  3. 3.
    Lam, A.Y., Li, V.O.: Chemical reaction optimization: a tutorial. Memetic Comput. 4(1), 3–17 (2012)CrossRefGoogle Scholar
  4. 4.
    Goeffon, A., Richer, J.-M., Hao, J.-K.: Progressive tree neighborhood applied to the maximum parsimony problem. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(1), 136–145 (2008)CrossRefGoogle Scholar
  5. 5.
    Qin, L., et al.: A novel approach to phylogenetic tree construction using stochastic optimization and clustering. BMC Bioinform. 7(4), S24 (2006)CrossRefGoogle Scholar
  6. 6.
    Felsenstein, J.: PHYLIP (phylogeny inference package), version 3.5 c (1993)Google Scholar
  7. 7.
    Goloboff, P.A., Farris, J.S., Nixon, K.C.: TNT, a free program for phylogenetic analysis. Cladistics 24(5), 774–786 (2008)CrossRefGoogle Scholar
  8. 8.
    Gascuel, O.: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14(7), 685–695 (1997)CrossRefGoogle Scholar
  9. 9.
    Lemmon, A.R., Milinkovitch, M.C.: The metapopulation genetic algorithm: an efficient solution for the problem of large phylogeny estimation. Proc. Nat. Acad. Sci. 99(16), 10516–10521 (2002)CrossRefGoogle Scholar
  10. 10.
    Zwickl, D.J.: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion (2006)Google Scholar
  11. 11.
    Dutheil, J., et al.: Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics. BMC Bioinform. 7(1), 188 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Avijit Bhattacharjee
    • 1
    Email author
  • S. K. Rahad Mannan
    • 1
  • Md. Rafiqul Islam
    • 1
  1. 1.Computer Science and Engineering DisciplineKhulna UniversityKhulnaBangladesh

Personalised recommendations