Towards the Evolution of Graph Oriented Databases

  • Soumaya BoukettayaEmail author
  • Ahlem Nabli
  • Faiez Gargouri
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 941)


As one of NoSQL data models, graph oriented databases are highly recommended to store and manage interconnected data. Used as back-end for today applications, NoSQL databases come with the challenge of effectively managing data evolution. In fact, NoSQL graph oriented databases offer a great flexibility. Usually such flexibility helps developers to manage huge data quantities with heterogeneous structure. Nevertheless, they may struggle to deal with legacy entities in production. The problem of evolution in NoSQL databases is not well treated. The common procedure is to migrate all data eagerly, but that comes with the cost of the application downtime. So lazy migration strategy may be more cost-efficient, as legacy entities are only migrated in case they are actually accessed by the application. In this paper, we propose an approach to control the evolution of data in the graph oriented databases by highlighting a lazy migration process.


Graph oriented databases Lazy migration Database evolution 


  1. 1.
    Caruccio, L., Polese, G., Tortora, G.: Synchronization of queries and views upon schema evolutions: a survey. ACM Trans. Database Syst. (TODS) 41(2), 9 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cleve, A., Gobert, M., Meurice, L., Maes, J., Weber, J.: Understanding database schema evolution: a case study. Sci. Comput. Program. 97, 113–121 (2015)CrossRefGoogle Scholar
  3. 3.
    Haubold, F., Schildgen, J., Scherzinger, S., Deßloch, S.: Controvol flex: flexible schema evolution for NoSQL application development (2017)Google Scholar
  4. 4.
    Herrmann, K., Voigt, H., Rausch, J., Behrend, A., Lehner, W.: Robust and simple database evolution. Inf. Syst. Front. 20(1), 45–61 (2018)CrossRefGoogle Scholar
  5. 5.
    Klettke, M., Störl, U., Scherzinger, S., Regensburg, O.: Schema extraction and structural outlier detection for JSON-based NoSQL data stores. In: BTW, vol. 2105, pp. 425–444 (2015)Google Scholar
  6. 6.
    Klettke, M., Störl, U., Shenavai, M., Scherzinger, S.: NoSQL schema evolution and big data migration at scale. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 2764–2774. IEEE (2016)Google Scholar
  7. 7.
    Li, X.: A survey of schema evolution in object-oriented databases. In: Technology of Object-Oriented Languages and Systems, 1999. TOOLS 31, Proceedings, pp. 362–371. IEEE (1999)Google Scholar
  8. 8.
    Mahfoudh, M.: Adaptation d’ontologies avec les grammaires de graphes typés: évolution et fusion. Ph.D. thesis, Université de Haute Alsace-Mulhouse (2015)Google Scholar
  9. 9.
    Manousis, P., Vassiliadis, P., Zarras, A., Papastefanatos, G.: Schema evolution for databases and data warehouses. In: European Business Intelligence Summer School, pp. 1–31. Springer (2015)Google Scholar
  10. 10.
    Meurice, L., Cleve, A.: Supporting schema evolution in schema-less NoSQL data stores. In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 457–461. IEEE (2017)Google Scholar
  11. 11.
    Qiu, D., Li, B., Su, Z.: An empirical analysis of the co-evolution of schema and code in database applications. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pp. 125–135. ACM (2013)Google Scholar
  12. 12.
    Ringlstetter, A., Scherzinger, S., Bissyandé, T.F.: Data model evolution using object-NoSQL mappers: Folklore or state-of-the-art? In: Proceedings of the 2nd International Workshop on BIG Data Software Engineering, pp. 33–36. ACM (2016)Google Scholar
  13. 13.
    Ruiz, D.S., Morales, S.F., Molina, J.G.: Inferring versioned schemas from NoSQL databases and its applications. In: International Conference on Conceptual Modeling, pp. 467–480. Springer (2015)Google Scholar
  14. 14.
    Scherzinger, S., de Almeida, E.C., Cerqueus, T., de Almeida, L.B., Holanda, P.: Finding and fixing type mismatches in the evolution of object-NoSQL mappings. In: EDBT/ICDT Workshops (2016)Google Scholar
  15. 15.
    Scherzinger, S., Klettke, M., Störl, U.: Managing schema evolution in NoSQL data stores. arXiv preprint arXiv:1308.0514 (2013)
  16. 16.
    Scherzinger, S., Sombach, S., Wiech, K., Klettke, M., Störl, U.: Datalution: a tool for continuous schema evolution in NoSQL-backed web applications. In: Proceedings of the 2nd International Workshop on Quality-Aware DevOps, pp. 38–39. ACM (2016)Google Scholar
  17. 17.
    Scherzinger, S., Störl, U., Klettke, M.: A datalog-based protocol for lazy data migration in agile NoSQL application development. In: Proceedings of the 15th Symposium on Database Programming Languages, pp. 41–44. ACM (2015)Google Scholar
  18. 18.
    Boukettaya, S., Ahlem Nabli, F.G.: Vers l’évolution des bases de données orientées graphes : opérations d’évolution. In: ASD 2018: Big data & Applications, ASD, pp. 557–569, May 2018Google Scholar
  19. 19.
    Subotic, D., Poscic, P., Jovanovic, V.: Data warehouse schema evolution: state of the art. In: Central European Conference on Information and Intelligent Systems. Faculty of Organization and Informatics Varazdin, p. 18 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Soumaya Boukettaya
    • 1
    • 2
    Email author
  • Ahlem Nabli
    • 1
    • 3
  • Faiez Gargouri
    • 1
    • 4
  1. 1.MIRACL LaboratorySfax UniversitySfaxTunisia
  2. 2.Faculty of Economics and Management of SfaxSfax UniversitySfaxTunisia
  3. 3.Faculty of Computer Sciences and Information TechnologyAl-Baha UniversityAl BahahKingdom of Saudi Arabia
  4. 4.Institute of Computer Science and MultimediaSfax UniversitySfaxTunisia

Personalised recommendations