A Novel Method for Retrieval of Remote Sensing Image Using Wavelet Transform and HOG

  • Minakshi N. VharkteEmail author
  • Vijaya B. Musande
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 940)


This paper presents the novel approach for retrieving remote sensing images which are based on low level feature extraction like color, texture, and shape. The HSV, Color Correlogram and Color Moments have been used for color feature extraction. Then image has decomposed image using wavelet transform to extract texture feature. Finally, shape feature is extracted using Histogram of oriented gradients (HOG). HOG feature is very useful for finding the local object appearance and shape. KNN classifier is used for training the image features and retrieving similar images. In this paper, UC Merced Land use Land Cover remote sensing Dataset has been used for the experiment. The result of the experiment shows that the combination of wavelet and HOG gives better accuracy and retrieval performance than discrete wavelet transform DWT.


Remote sensing Wavelet transform Histogram of gradient 


  1. 1.
    Aksoy, S., Koperski, K., Tusk, C., Marchisio, G., Tilton, J.C.: Learning bayesian classifiers for scene classification with a visual grammar. IEEE Trans. Geosci. Remote Sens. 43(3), 581–589 (2005)CrossRefGoogle Scholar
  2. 2.
    Filckner, M., Sawhnet, H., Niblack, W., Ashely, J., Qian, H., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: the QBIC system. Computer 28(9), 23–32 (1995)CrossRefGoogle Scholar
  3. 3.
    Smith, J.R., Chang, S.F.: Automated binary texture feature sets for image retrieval. In: 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, GA, vol. 4, pp. 2239–2242 (1996)Google Scholar
  4. 4.
    del Val Cura, L.M., Leite, N.J., Medeiros, C.B.: An architecture for content-based retrieval of remote sensing images. In: 2000 IEEE International Conference on Multimedia and Expo, ICME 2000, Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No. 00TH8532), New York, NY, vol. 1, pp. 303–306 (2000)Google Scholar
  5. 5.
    Plaza, A.J.: Content-based hyperspectral image retrieval using spectral unmixing. In: Proceedings of the SPIE, vol. 8180, pp. 1–8 (2011)Google Scholar
  6. 6.
    Cheng, Q., Yang, C., Shao, Z., Liu, D., Bai, Y.: A prototype system of content-based retrieval of remote sensing images. In: 2003 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2003, Proceedings (IEEE Cat. No. 03CH37477), pp. 3700–3702 (2003)Google Scholar
  7. 7.
    Peijun, D., Yunhao, C., Hong, T., Tao, F.: Study on content-based remote sensing image retrieval. In: Proceedings, 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2005, pp. 703–707 (2005)Google Scholar
  8. 8.
    Yang, Y., Newsam, S.: Geographic image retrieval using local invariant features. IEEE Trans. Geosci. Remote Sens. 51(2), 818–832 (2013)CrossRefGoogle Scholar
  9. 9.
    Sebai, H., Kourgli, A.: An adaptive CBIR system for remote sensed data. In: 2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–6 (2014)Google Scholar
  10. 10.
    Bouteldja, S., Kourgli, A.: Multiscale texture features for the retrieval of high resolution satellite images. In: 2015 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 170–173 (2015)Google Scholar
  11. 11.
    Song, Q., Huang, R., Wang, K.: Remote sensing image retrieval based on attribute profiles. In: 2015 International Conference on Computer Science and Mechanical Automation (CSMA), pp. 231–234Google Scholar
  12. 12.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, pp. 762–768 (1997)Google Scholar
  13. 13.
    Stricker, M.A., Orengo, M.: Similarity of color images. In: SPIE Conference on Storage and Retrieval for Image and Video Databases III, vol. 2420, pp. 381–392 (1995)Google Scholar
  14. 14.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J.: Spatial color indexing and applications. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 602–607 (1998)Google Scholar
  15. 15.
    Kong, F.H.: Image retrieval using both color and texture features. In: 2009 International Conference on Machine Learning and Cybernetics, pp. 2228–2232 (2009)Google Scholar
  16. 16.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRefGoogle Scholar
  17. 17.
    Hua, C.L., Wei, L., Hui, L.G.: Research and implementation of an image retrieval algorithm based on multiple dominant colors. J. Comput. Res. Develop. 36(1), 96–100 (1999)Google Scholar
  18. 18.
    Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS) (2010)Google Scholar
  19. 19.
    Trivedi, S.: Face Recognition using Eigen faces and Manhattan distance classifiers: a tutorial, February 2009Google Scholar
  20. 20.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, vol. 1, pp. 281–297 (1967)Google Scholar
  21. 21.
    Muller, H., Muller, W., Squire, D.M., Maillet, S., Pun, T.: Performance evaluation in content based image retrieval: overview and proposals. Pattern Recogn. Lett. 22, 593–601 (2001)CrossRefGoogle Scholar
  22. 22.
    Ruiz, L.A., Recio, J.A., Fernandez-sarria, A., Hermosilla, T.: A feature extraction software for agriculture object based image analysis. Comput. Electron. Agric. 76, 284–296 (2011)CrossRefGoogle Scholar
  23. 23.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, vol. 1, pp. 886–893 (2005)Google Scholar
  24. 24.
    Kalbkhani, H., Salimi, A., Shayesteh, M.G.: Classification of brain MRI using multi-cluster feature selection and KNN classifier. In: 2015 23rd Iranian Conference on Electrical Engineering, Tehran, pp. 93–98 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.MIT Academy of EngineeringPuneIndia
  2. 2.Jawaharlal Nehru Engineering CollegeAurangabadIndia

Personalised recommendations