Advertisement

Overview

  • János Ladvánszky
Chapter
  • 199 Downloads
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

In this chapter, a historical overview has been obtained from the appearance of the power matching problem to its various applications. We point out that this is a central problem in circuit theory. The detailed overview makes the placement of our work and its relation to other works easier.

Keywords

Circuit theory Nonlinear circuits Power matching Maximum power theorem 

References

International References

  1. [Arai79]
    Y. Arai et al., High power GaAs FET amplifier for TWT replacement. Fujitsu Sci. Tech. J. 15(3), 63–82 (1979)Google Scholar
  2. [Baranyi86]
    A. Baranyi, Modelling of large-signal microwave devices, in Hungarian, Híradástechnika, 6/1986, pp. 273-280Google Scholar
  3. [Belevitch48]
    V. Belevitch, Transmission losses in 2n-terminal networks. J. Appl. Phys. 19(7), 636–638 (1948). in Circuit Theory: Foundations and Classical Contributions, ed. by M.E. Van Valkenburg (Dowden, Hutchinson and Ross, Inc., 1974)Google Scholar
  4. [Baudrand70]
    H. Baudrand, On the generalizations of the maximum power transfer theorem. Proc. IEEE 58, 1780–1781 (1970)CrossRefGoogle Scholar
  5. [Boyd84]
    S. Boyd, L.O. Chua, C.A. Desoer, Analytical foundations of Volterra series. IMA J. Math. Control Info. 1, 243–282 (1984)CrossRefGoogle Scholar
  6. [Calvaer83]
    A.J. Calvaer, On the maximum loading of active linear electric multiports. Proc. IEEE 71, 282–283 (1983)CrossRefGoogle Scholar
  7. [Chaffin73]
    R.J. Chaffin, W.H. Leighton, Large-signal S-parameter characterization of UHF power transistors, in IEEE MTT International Microwave Symposium, Dig. Tech. Papers, University of Colorado, Boulder, CO, (5 June 1973), pp. 155–157Google Scholar
  8. [Chua79]
    L.O. Chua, C.Y. Ng, Frequency domain analysis of nonlinear systems: general theory. Electron. Circuits Syst., 165–185 (1979).  https://doi.org/10.1049/ij-ecs:19790030
  9. [Curtice85]
    W.R. Curtice, M. Ettenberg, A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans. Microwave Theory Tech. 33(12), 1383–1394 (1985)CrossRefGoogle Scholar
  10. [Cusack74]
    J.M. Cusack et al., Automatic load contour mapping for microwave power transistors. IEEE Trans. Microwave Theory Tech. 22(12), 1146–1152 (1974)CrossRefGoogle Scholar
  11. [Desoer73]
    C. A. Desoer: „The maximum power transfer theorem for n-ports”, IEEE Trans. Circuit Theory, 1973, 20328–330Google Scholar
  12. [Desoer83]
    C.A. Desoer, A maximum power transfer problem. IEEE Trans. Circuits Syst. CAS-30(10), 757–758 (1983)MathSciNetCrossRefGoogle Scholar
  13. [Flanders76]
    H. Flanders, On the maximal power transfer theorem for n-ports. Circuit Theory Appl 4, 319–344 (1976)MathSciNetCrossRefGoogle Scholar
  14. [Franz06]
    M.O. Franz, B. Schölkopf, A unifying view of Wiener and Volterra theory and polynomial kernel regression. Neural Comput. 18(12), 3097–3118 (2006)MathSciNetCrossRefGoogle Scholar
  15. [Gelb68]
    A. Gelb, W.E. Vander Velde, Multiple-input describing functions and nonlinear system design (McGraw-Hill, New York, 1968)zbMATHGoogle Scholar
  16. [Honjo81]
    K. Honjo, Y. Takayama, A 25W 5GHz GaAs FET amplifier for a microwave landing system. IEEE Trans. Microwave Theory Tech. 29(6), 579–582 (1981)CrossRefGoogle Scholar
  17. [Kuo77]
    Y.L. Kuo, Frequency-domain analysis of weakly nonlinear networks. IEEE Trans. Circuits Syst.. CS-11(4) 1977; CS-11(5), 2–6 (1977)Google Scholar
  18. [Lin72]
    P.M. Lin, Determination of available power from resistive multiports. IEEE Trans. Circuit Theory 19, 385–386 (1972)CrossRefGoogle Scholar
  19. [Lin85]
    P.M. Lin, Competitive power extraction from linear n-ports. IEEE Trans. Circuits Syst. 32, 185–191 (1985)MathSciNetCrossRefGoogle Scholar
  20. [Mathis72]
    B.A. Mathis, H.F. Mathis, Maximum power transfer from a multiple-terminal network to a single impedance. Proc. IEEE 60, 746 (1972)Google Scholar
  21. [Mazumder77]
    S.R. Mazumder, P.D. Van der Puije, An experimental method of characterizing nonlinear two-ports and its application to microwave class C transistor power amplifier design. IEEE J. Solid State Circuits 12(5), 576–580 (1977)CrossRefGoogle Scholar
  22. [Mazumder78]
    S.R. Mazumder, P.D. Van der Puije, Two-signal method of measuring the large signal S-parameters of transistors. IEEE Trans. Microwave Theory Tech. 26(6), 417–420 (1978)CrossRefGoogle Scholar
  23. [Poulin80]
    D. Poulin, Load-pull measurements help you meet your match. Microwaves 19, 61–65 (1980)Google Scholar
  24. [Rauscher80]
    C. Rauscher, H.A. Willing, Design of broad-band GaAs FET power amplifiers. IEEE Trans. Microwave Theory Tech. 28(10), 1054–1059 (1980)CrossRefGoogle Scholar
  25. [Rohrer65]
    R.A. Rohrer, The scattering matrix normalized to complex n-port load networks. IEEE Trans. Circuit Theory 12, 223–230 (1965)CrossRefGoogle Scholar
  26. [Rohrer68]
    R.A. Rohrer, Optimal matching: a new approach to the matching problem for real time-invariant one-port networks. IEEE Trans. Circuit Theory 15, 118–124 (1968)CrossRefGoogle Scholar
  27. [Sandberg]
    I.W. Sandberg, Multidimensional nonlinear myopic maps, Volterra series, and uniform neural-network approximations, in Intelligent Methods in Signal Processing and Communications, ed. by D. Docampo et al., (Birkhäuser, Boston, 1997)Google Scholar
  28. [Soares77]
    R.A. Soares, Novel large signal S-parameter measurement technique aids GaAs power amplifier design, in Proceedings of 6th EuMC, (September 1977), pp. 113–117Google Scholar
  29. [Spinei72]
    F. Spinei, On generalizations of the maximum power transfer problem. Proc. IEEE 60, 903–904 (1972)CrossRefGoogle Scholar
  30. [Takayama76]
    Y. Takayama. A new load-pull characterization method for microwave power transistors, in International Microwave Symposium, Dig. Tech. Papers, June 1976, pp. 218–220Google Scholar
  31. [Tserng79]
    H.Q. Tserng, Design and performance of microwave power GaAs FET amplifiers. Microw. J 22(6), 94–100 (1979)Google Scholar
  32. [Tucker79]
    R.S. Tucker, Third order intermodulation distortion and gain compression in GaAs FET’s. IEEE Trans. Microwave Theory Tech. 27(5), 400–408 (1979)CrossRefGoogle Scholar
  33. [Tucker80]
    R.S. Tucker, Optimum load admittance for a microwave power transistor. Proc. IEEE 68(3), 410–411 (1980)CrossRefGoogle Scholar
  34. [Tucker81]
    R.S. Tucker, RF characterization of microwave power FETs. IEEE Trans. Microwave Theory Tech. 29(8), 776–781 (1981)CrossRefGoogle Scholar
  35. [Tucker84]
    R.S. Tucker, P.D. Bradley, Computer-aided error correction of large-signal load-pull measurements. IEEE Trans. Microwave Theory Tech. 32(3), 296–300 (1984)CrossRefGoogle Scholar
  36. [Vendelin78]
    G.D. Vendelin, Power GaAs FET amplifier design with large signal tuning parameters, in IEEE 1978 Asilomar Conference on Circuits and Systems, Dig. Tech. Papers, Pacific Grove, CA (1978), pp. 139–141Google Scholar
  37. [Vidyasagar74]
    M. Vidyasagar, Maximum power transfer in n ports with passive loads. IEEE Trans. Circuits Syst. CAS-21(3), 327–330 (1974)MathSciNetCrossRefGoogle Scholar
  38. [Volterra27]
    V. Volterra, Theory of functionals and of integrals and integro-differential equations. Madrid 1927 (Spanish), translated version reprinted Dover Publications, New York (1959)Google Scholar
  39. [Wyatt83]
    J.L. Wyatt. Nonlinear dynamic maximum power theorem, with numerical method, Research Report, MIT, LIDS-P-1331, September 1983Google Scholar
  40. [Wyatt83A]
    J.L. Wyatt, Nonlinear dynamic maximum power theorem, with numerical method. Internal report, Massachusetts Institute of Technology, LIDS-P-1331 (1983)Google Scholar
  41. [Wyatt83B]
    J.L. Wyatt, L.O. Chua, Nonlinear resistive maximum power theorem, with solar cell application. IEEE Trans. Circuit Syst. 30, 824–828 (1983)CrossRefGoogle Scholar
  42. [Wyatt88]
    J.L. Wyatt, Nonlinear dynamic maximum power theorem. IEEE Trans. Circuits and Syst. 35(5), 563–566 (1988)MathSciNetCrossRefGoogle Scholar
  43. [Youla59]
    D.C. Youla, L.J. Castriota, H.J. Carlin, Bounded Real scattering matrices and the foundation of linear passive network theory. IRE Trans. Circuit Theory CT-6(1), 102–124 (1959)CrossRefGoogle Scholar
  44. [Zemack80]
    D. Zemack, A new load-pull measurement technique eases GaAs characterization. Microw. J. 23(11), 63–67 (1980)Google Scholar

Own Publications

  1. [Ladvanszky85a]
    J. Ladvánszky, A. Baranyi, On power matching of nonlinear resistive sources. Proceedings of the European Conference on Circuit Theory and Design. ECCTD’85, Prague, Czechoslovakia, 2–6 September 1985, pp. 186–188Google Scholar
  2. [Ladvanszky85b]
    J. Ladvánszky, Nemlineáris rezisztív áramkörök teljesítmény-illesztése (power matching of nonlinear resistive circuits, in Hungarian), a TKI Közleményei, Budapest, 1985/3–4, 53–70. oldGoogle Scholar
  3. [Ladvanszky86a]
    J. Ladvánszky, On the extension of the nonlinear resistive maximum power theorem I. Proceedings of the International Symposium on Circuits and Systems, ISCAS’86, San José, California, USA, May 5–7, pp. 257–259, (1986)Google Scholar
  4. [Ladvanszky86b]
    J. Ladvánszky, On the extension of the nonlinear resistive maximum power theorem II. Proceedings of the International Colloquium on Microwave Communications, Budapest, Hungary, Aug. 25–29, pp. 251–252 (1986)Google Scholar
  5. [Ladvanszky87a]
    J. Ladvánszky, Maximum power theorem - a describing function approach. Proceedings of the European Conference on Circuit Theory and Design, ECCTD’87, Paris, France, September 1–4, pp. 35–40 (1987)Google Scholar
  6. [Ladvanszky87b]
    J. Ladvánszky, Teljesítmény-maximalizálás a leírófüggvény-módszer alkalmazásával (Power maximization applying describing function approach, in Hungarian). a TKI Közleményei, Budapest, 1987/2., 61–80. oldGoogle Scholar
  7. [Ladvanszky88a]
    J. Ladvánszky, Nemlineáris, mikrohullámú áramkörök tervezésének problémái: teljesítményillesztés, a reflexiós mátrix mérési hibáinak korrekciója (Some problems of nonlinear, microwave circuit design, in Hungarian). kandidátusi értekezés, Magyar Tudományos Akadémia (1988) március 7Google Scholar
  8. [Ladvanszky88b]
    J. Ladvánszky, Nemlineáris, mikrohullámú áramkörök hasznos teljesítményének maximalizálása (Maximizing effective power in nonlinear, microwave circuits, in Hungarian). a Bognár Géza Emlékülés kiadványa (Proceedings of the memorial session in honor of Géza Bognár), Budapest (1988). április 20–21., 125–130. oldGoogle Scholar
  9. [Ladvanszky88c]
    J. Ladvánszky, Maximum power transfer in weakly nonlinear circuits. Proceedings of the International Symposium on Circuits and Systems, ISCAS’88, Helsinki, Finland, June 7–9, pp. 2723–2726 (1988)Google Scholar
  10. [Ladvanszky89]
    J. Ladvánszky, Nemlineáris, mikrohullámú áramkörök teljesítményillesztése (Power matching in nonlinear, microwave circuits, in Hungarian). Híradástechnika, 1989/3., 89–95. oldGoogle Scholar
  11. [Ladvanszky99]
    J. Ladvánszky, Maximális teljesítmény-átvitel kis nemlinearitású áramkörökben (Maximum power transfer in weakly nonlinear circuits, in Hungarian). Híradástechnika, 1999/6. 8–12. oldGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • János Ladvánszky
    • 1
  1. 1.Ericsson Telecom HungaryBudapestHungary

Personalised recommendations