Advertisement

Multidimensional Approach for Analysis of Chromosomes Nucleotide Composition

  • Ivan V. StepanyanEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 938)

Abstract

A chromosome includes a DNA molecule with a part or all of the genome of an organism. Statistically known that chromosomes nucleotide compositions are different for different biological species. Special comparative method of visualization the chromosomes nucleotide composition of various organisms is described. This analysis is conducted by means of a metric space of binary orthogonal functions taking into account physical-chemical parameters of nitrogenous bases of the genetic code. In consideration that genetic algebra and geometry are connected with a relations purposed in this article algorithms allows to display a statistical chromosome nucleotide composition data in a metric spaces using multidimensional analysis.

Keywords

Nucleotide composition DNA symmetries Multidimensional analysis 

Notes

Acknowledgments

Part of the calculations was performed on the supercomputer “MVS-10P” (JSCC RAS). Author thanks Sergey Petoukhov and Vitaly Svirin for scientific discussions.

References

  1. 1.
    Petoukhov, S.V., He, M.: Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics: Advanced Patterns and Applications, 271 p. IGI Global, Hershey (2010)Google Scholar
  2. 2.
    Chargaff, E., Lipshitz, R., Green, C.: Composition of the deoxypentose nucleic acids of four genera of sea-urchin. J. Biol. Chem. 195(1), 155–160 (1952). PMID 14938364Google Scholar
  3. 3.
    Scaria, T., Christopher, T.: Microarray gene retrieval system based on LFDA and SVM. Int. J. Intell. Syst. Appl. (IJISA) 10(1), 9–15 (2018).  https://doi.org/10.5815/ijisa.2018.01.02
  4. 4.
    Zhang, D., Wang, Y., Tao, W.: Epipolar geometry estimation for wide baseline stereo. Int. J. Eng. Manuf. (IJEM) 2(3), 38–45 (2012).  https://doi.org/10.5815/ijem.2012.03.06CrossRefGoogle Scholar
  5. 5.
    Jayapriya, J., Arock, M.: A novel distance metric for aligning multiple sequences using DNA hybridization process. Int. J. Intell. Syst. Appl. (IJISA) 8(6), 40–47 (2016).  https://doi.org/10.5815/ijisa.2016.06.05CrossRefGoogle Scholar
  6. 6.
    Hu, Z., Dychka, I., Sulema, Y., Valchuk, Y., Shkurat, O.: Method of medical images similarity estimation based on feature analysis. Int. J. Intell. Syst. Appl. (IJISA) 10(5), 14–22 (2018).  https://doi.org/10.5815/ijisa.2018.05.02CrossRefGoogle Scholar
  7. 7.
    Moallem, P., Karimizadeh, A., Yazdchi, M.: Using shape information and dark paths for automatic recognition of touching and overlapping chromosomes in G-band images. Int. J. Image Graphics Sign. Process. (IJIGSP) 5(5), 22–28 (2013).  https://doi.org/10.5815/ijigsp.2013.05.03CrossRefGoogle Scholar
  8. 8.
    Feldman, D.P.: “17.4 The chaos game”, Chaos and Fractals: An Elementary Introduction, pp. 178–180. Oxford University Press (2012). ISBN 9780199566440Google Scholar
  9. 9.
    Petoukhov, S.V.: Genetic coding and united-hypercomplex systems in the models of algebraic biology. Biosystems 158, 31–46 (2017)CrossRefGoogle Scholar
  10. 10.
    Stepanian, I.V., Petoukhov, S.V.: The matrix method of representation, analysis and classification of long genetic sequences. http://arxiv.org/pdf/1310.8469.pdf
  11. 11.
    Mousa, H.M.: DNA-genetic encryption technique. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 8(7), 1–9 (2016).  https://doi.org/10.5815/ijcnis.2016.07.01CrossRefGoogle Scholar
  12. 12.
    Chandel, A., Sood, M.: A genetic approach based solution for seat allocation during counseling for engineering courses. Int. J. Inf. Eng. Electron. Bus. (IJIEEB) 8(1), 29–36 (2016).  https://doi.org/10.5815/ijieeb.2016.01.04CrossRefGoogle Scholar
  13. 13.
    Wu, J., Zhang, W., Jiang, R.: Prioritization of candidate nonsynonymous single nucleotide polymorphisms via sequence conservation features. Int. J. Eng. Manuf. (IJEM) 1(5), 66–72 (2011).  https://doi.org/10.5815/ijem.2011.05.09CrossRefGoogle Scholar
  14. 14.
    Balonin, N.A., Balonin, Y.N., Djokovic, D.Z., Karbovskiy, D.A., Sergeev, M.B.: Construction of symmetric Hadamard matrices. https://arxiv.org/abs/1708.05098
  15. 15.
    Georgiou, S., Koukouvinos, C., Seberry, J.: Hadamard matrices, orthogonal designs and construction algorithms. In: Designs 2002: Further Computational and Constructive Design Theory, pp. 133–205. Kluwer, Boston (2003). ISBN 1-4020-7599-5Google Scholar
  16. 16.
    Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Res. 18(8), 2163–2170 (1990)CrossRefGoogle Scholar
  17. 17.
    Petoukhov, S.V., Svirin, V.I.: Fractal genetic nets and symmetry principles in long nucleotide sequences. Symmetry Cult. Sci. 23(3–4), 303–322 (2012)Google Scholar
  18. 18.
    Rudner, R., Karkas, J.D., Chargaff, E.: Separation of B. SubtilisDNA into complementary strands. 3. Direct analysis. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 60, no. 3, pp. 921–922 (1968).  https://doi.org/10.1073/pnas.60.3.921. PMC 225140
  19. 19.
    Townsend, J.P., Su, Z., Tekle, Y.: Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny. Genetics 61(5), 835–849 (2012).  https://doi.org/10.1093/sysbio/sys036. PMID 22389443

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mechanical Engineering Research InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations