Skip to main content

Perioperative Protocols to Facilitate Early Discharge and Rapid Recovery After Robotic Surgery

  • Chapter
  • First Online:
Book cover Robotics in Knee and Hip Arthroplasty

Abstract

Robotic surgery has been developed with the goals of improving accuracy of component position, reducing surgical exposure, optimizing functional outcomes, and improving implant durability. As robotic surgical technology matures, the ancillary technologies that support the procedures themselves evolve concurrently. Facilitating processes around robotic surgery requires attention to several perioperative elements in order to optimize success. Appropriate preoperative planning to help with execution of the surgery, to optimize the patient physically and medically, and to set patient expectations will ensure a smooth transition toward early discharge and full recovery. Self-directed home exercising, to support or supplant formal physical therapy, as well as multimodal pain management to limit narcotic consumption, both inhospital and at home, will help maximize clinical results and patient satisfaction. Web-based rehabilitation, augmented by burgeoning technologies, promises to offer improved results at a lower cost. Finally, it is important to prepare the clinic, hospital, and staff accordingly for the transition to rapid recovery and early discharge after robotic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urish KL, Conditt M, Roche M, Rubash HE. Robotic total knee Arthroplasty: surgical assistant for a customized normal kinematic knee. Orthopedics. 2016;39:e822–7. https://doi.org/10.3928/01477447-20160623-13.

    Article  PubMed  Google Scholar 

  2. Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review. J Arthroplast. 2016;31:2353–63. https://doi.org/10.1016/j.arth.2016.05.026.

    Article  Google Scholar 

  3. Lonner JH. Robotically assisted unicompartmental knee arthroplasty with a handheld image-free sculpting tool. Oper Tech Orthop. 2015;47:29–40. https://doi.org/10.1053/j.oto.2015.03.001.

    Article  Google Scholar 

  4. Jenstrup MT, Jæger P, Lund J, et al. Effects of adductor-canal-blockade on pain and ambulation after total knee arthroplasty: a randomized study. Acta Anaesthesiol Scand. 2012;56:357–64. https://doi.org/10.1111/j.1399-6576.2011.02621.x.

    Article  CAS  PubMed  Google Scholar 

  5. Hanson NA, Allen CJ, Hostetter LS, et al. Continuous ultrasound-guided Adductor Canal block for Total knee Arthroplasty. Surv Anesthesiol. 2015;59:52–3. https://doi.org/10.1097/SA.0000000000000114.

    Article  Google Scholar 

  6. Chan EY, Fransen M, Parker DA, et al. Femoral nerve blocks for acute postoperative pain after knee replacement surgery. Cochrane Database Syst Rev. 2014. https://doi.org/10.1002/14651858.CD009941.pub2.

  7. Shah NA, Jain NP, Panchal KA. Adductor canal blockade following total knee arthroplasty-continuous or single shot technique? Role in postoperative analgesia, ambulation ability and early functional recovery: a randomized controlled trial. J Arthroplast. 2015;30:1476–81. https://doi.org/10.1016/j.arth.2015.03.006.

    Article  Google Scholar 

  8. Parvizi J, Miller AG, Gandhi K. Multimodal pain management after total joint arthroplasty. J Bone Jt Surg – Ser A. 2011;93:1075–84. https://doi.org/10.2106/JBJS.J.01095.

    Article  Google Scholar 

  9. Jain RK, Porat MD, Klingenstein GG, et al. The AAHKS clinical research award: liposomal bupivacaine and periarticular injection are not superior to single-shot intra-articular injection for pain control in Total knee Arthroplasty. J Arthroplast. 2016;31:22–5.

    Article  Google Scholar 

  10. Schroer WC, Diesfeld PG, LeMarr AR, et al. Does extended-release liposomal bupivacaine better control pain than bupivacaine after total knee arthroplasty (TKA)? A prospective, randomized clinical trial. J Arthroplast. 2015;30:64–7. https://doi.org/10.1016/j.arth.2015.01.059.

    Article  Google Scholar 

  11. Bramlett K, Onel E, Viscusi ER, Jones K. A randomized, double-blind, dose-ranging study comparing wound infiltration of DepoFoam bupivacaine, an extended-release liposomal bupivacaine, to bupivacaine HCl for postsurgical analgesia in total knee arthroplasty. Knee. 2012;19:530–6. https://doi.org/10.1016/j.knee.2011.12.004.

    Article  PubMed  Google Scholar 

  12. Bagsby DT, Ireland PH, Meneghini RM. Liposomal bupivacaine versus traditional periarticular injection for pain control after total knee arthroplasty. J Arthroplast. 2014;29:1687–90. https://doi.org/10.1016/j.arth.2014.03.034.

    Article  Google Scholar 

  13. Collis PN, Hunter AM, Vaughn MDD, et al. Periarticular injection after total knee arthroplasty using liposomal bupivacaine vs a modified ranawat suspension: a prospective, randomized study. J Arthroplast. 2016;31:633–6. https://doi.org/10.1016/j.arth.2015.09.025.

    Article  Google Scholar 

  14. Parvizi J, Huang R, Restrepo C, et al. Low-dose aspirin is effective chemoprophylaxis against clinically important venous thromboembolism following total joint arthroplasty a preliminary analysis. J Bone Jt Surg – Am. 2017;99:91–8. https://doi.org/10.2106/JBJS.16.00147.

    Article  Google Scholar 

  15. Nam D, Nunley RM, Johnson SR, et al. The effectiveness of a risk stratification protocol for thromboembolism prophylaxis after hip and knee arthroplasty. J Arthroplast. 2015. https://doi.org/10.1016/j.arth.2015.12.007.

    Article  Google Scholar 

  16. Parvizi J, Huang R, Raphael IJ, et al. Symptomatic pulmonary embolus after joint arthroplasty: stratification of risk factors. Clin Orthop Relat Res. 2014;472:903–12. https://doi.org/10.1007/s11999-013-3358-z.

    Article  PubMed  Google Scholar 

  17. Yoshikawa K, Mutsuzaki H, Sano A, et al. Training with hybrid assistive limb for walking function after total knee arthroplasty. J Orthop Surg Res. 2018;13:1–10. https://doi.org/10.1186/s13018-018-0875-1.

    Article  Google Scholar 

  18. Toogood PA, Abdel MP, Spear JA, et al. The monitoring of activity at home after total hip arthroplasty. Bone Jt J. 2016;98-B:1450–4. https://doi.org/10.1302/0301-620X.98B11.BJJ-2016-0194.R1.

    Article  CAS  Google Scholar 

  19. Chiang CY, Chen KH, Liu KC, et al. Data collection and analysis using wearable sensors for monitoring knee range of motion after total knee arthroplasty. Sensors (Switzerland). 2017. https://doi.org/10.3390/s17020418.

    Article  Google Scholar 

  20. Correia FD, Nogueira A, Magalhães I, et al. Home-based rehabilitation with a novel digital biofeedback system versus conventional in-person rehabilitation after total knee replacement: a feasibility study. Sci Rep. 2018;8:1–12. https://doi.org/10.1038/s41598-018-29668-0.

    Article  CAS  Google Scholar 

  21. Fung V, Ho A, Shaffer J, et al. Use of Nintendo Wii fit™ in the rehabilitation of outpatients following total knee replacement: a preliminary randomised controlled trial. Physiother (United Kingdom). 2012;98:183–8. https://doi.org/10.1016/j.physio.2012.04.001.

    Article  Google Scholar 

  22. Bonnechere B, Jansen B, Salvia P, et al. Validity and reliability of the Nintendo Wii balance board for assessment of standing balance. Gait Posture. 1991. https://doi.org/10.1016/0167-9457(91)90046-z.

    Article  Google Scholar 

  23. Oh J, Kuenze C, Jacopetti M, et al. Validity of the Microsoft Kinect™in assessing spatiotemporal and lower extremity kinematics during stair ascent and descent in healthy young individuals. Med Eng Phys. 2018. https://doi.org/10.1016/j.medengphy.2018.07.011.

    Article  Google Scholar 

  24. Hussain MS, Li J, Brindal E, et al Supporting the delivery of total knee replacements care for both patients and their clinicians with a mobile app and web-based tool: randomized controlled trial protocol. JMIR Res Protoc. 2017. https://doi.org/10.2196/resprot.6498.

    Article  Google Scholar 

  25. Fillingham YA, Darrith B, Lonner JH, et al. Formal physical therapy may not be necessary after unicompartmental knee arthroplasty: a randomized clinical trial. J Arthroplast. 2018;33:S93–S99.e3. https://doi.org/10.1016/j.arth.2018.02.049.

    Article  Google Scholar 

  26. Spasić I, Button K, Divoli A, et al. TRAK app suite: a web-based intervention for delivering standard care for the rehabilitation of knee conditions. JMIR Res Protoc. 2015;4:e122. https://doi.org/10.2196/resprot.4091.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jiang S, Xiang J, Gao X, et al. The comparison of telerehabilitation and face-to-face rehabilitation after total knee arthroplasty: a systematic review and meta-analysis. J Telemed Telecare. 2018;24:257–62. https://doi.org/10.1177/1357633X16686748.

    Article  PubMed  Google Scholar 

  28. Russell TG, Buttrum P, Wootton R, G a J. Internet-based outpatient telerehabilitation for patients following total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2011;93:113–20. https://doi.org/10.2106/JBJS.I.01375.

    Article  PubMed  Google Scholar 

  29. Shukla H, Nair SR, Thakker D. Role of telerehabilitation in patients following total knee arthroplasty: evidence from a systematic literature review and meta-analysis. J Telemed Telecare. 2016;23:339–46. https://doi.org/10.1177/1357633X16628996.

    Article  PubMed  Google Scholar 

  30. Nelson MJ, Crossley KM, Bourke MG, Russell TG. Telerehabilitation feasibility in Total joint replacement. Int J Telerehabil. 2017;9:31–8. https://doi.org/10.5195/ijt.2017.6235.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chughtai M, Kelly JJ, Newman JM, et al. The role of virtual rehabilitation in total and unicompartmental knee arthroplasty. J Knee Surg. 2019;32:105–10. https://doi.org/10.1055/s-0038-1637018.

    Article  PubMed  Google Scholar 

  32. Gonzalez-Franco M, Gilroy S, Moore JO. Empowering patients to perform physical therapy at home. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, EMBC 2014: IEEE; 2014. p. 6308–11.

    Google Scholar 

  33. Bahadori S, Immins T, Wainwright TW. A review of wearable motion tracking systems used in rehabilitation following hip and knee replacement. J Rehabil Assist Technol Eng. 2018;5:205566831877181. https://doi.org/10.1177/2055668318771816.

    Article  Google Scholar 

  34. Kwasnicki RM, Ali R, Jordan SJ, et al. A wearable mobility assessment device for total knee replacement: A longitudinal feasibility study. Int J Surg. 2015. https://doi.org/10.1016/j.ijsu.2015.04.032.

    Article  Google Scholar 

  35. Lin JFS, Kulić D. Human pose recovery using wireless inertial measurement units. Physiol Meas. 2012;33:2099–115. https://doi.org/10.1088/0967-3334/33/12/2099.

    Article  PubMed  Google Scholar 

  36. Lam AWK, Varona-Marin D, Li Y, et al. Automated rehabilitation system: movement measurement and feedback for patients and physiotherapists in the rehabilitation clinic. Human-Computer Interact. 2016;31:294–334. https://doi.org/10.1080/07370024.2015.1093419.

    Article  Google Scholar 

  37. Fleischman AN, Crizer MP, Tarabichi M, Smith S, Rothman RH, Lonner JH, Chen AF. 2018 John N. Insall Award: Recovery of knee flexion with unsupervised home exercise is not inferior to outpatient physical therapy after TKA: a randomized trial. Clin Orthop. 2019;477:60–9.

    Article  Google Scholar 

  38. Meng W, Liu Q, Zhou Z, et al. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics. 2015. https://doi.org/10.1016/j.mechatronics.2015.04.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jess H. Lonner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feldstein, M.J., Lonner, J.H. (2019). Perioperative Protocols to Facilitate Early Discharge and Rapid Recovery After Robotic Surgery. In: Lonner, J. (eds) Robotics in Knee and Hip Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-030-16593-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16593-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16592-5

  • Online ISBN: 978-3-030-16593-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics