Skip to main content

Self-organized Cultured Neuronal Networks: Longitudinal Analysis and Modeling of the Underlying Network Structure

  • Chapter
  • First Online:
Book cover Biological Systems: Nonlinear Dynamics Approach

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 20))

  • 641 Accesses

Abstract

This work analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, we introduce and implement a graph-based unsupervised segmentation algorithm that automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by an adjacency matrix in which nodes are identified as neurons or clusters of neurons, and links are the reconstructed connections (neurites) between them. The algorithm is also able to extract all other relevant morphological information characterizing neurons and neurites. More importantly and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs’ micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achard, S., Bullmore, E.: Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3(2), e17 (2007)

    Article  Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97(21), 11,149–11,152 (2000)

    Article  Google Scholar 

  4. Anava, S., Greenbaum, A., Ben Jacob, E., Hanein, Y., Ayali, A.: The regulative role of neurite mechanical tension in network development. Biophys. J. 96(4), 1661–1670 (2009)

    Article  Google Scholar 

  5. Ayali, A.: Editorial: models of invertebrate neurons in culture. J. Mol. Histol. 43(4), 379–81 (2012)

    Article  Google Scholar 

  6. Baker, B.J., Kosmidis, E.K., Vucinic, D., Falk, C.X., Cohen, L.B., Djurisic, M., Zecevic, D.: Imaging brain activity with voltage- and calcium-sensitive dyes. Cell. Mol. Neurobiol. 25(2), 245–282 (2005)

    Article  Google Scholar 

  7. Bakkum, D.J., Chao, Z.C., Gamblen, P., Ben-Ary, G., Shkolnik, A.G., DeMarse, T.B., Potter, S.M.: Embodying cultured networks with a robotic drawing arm. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 2996–2999 (2007)

    Google Scholar 

  8. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baruchi, I., Jacob, E.B.: Towards neuro-memory-chip: imprinting multiple memories in cultured neural networks. Phys. Rev. E. 75(5), 050901(R) (2007)

    Article  Google Scholar 

  10. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boccaletti, S., Bianconi, G., Criado, R., del Genio, C., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)

    Article  MathSciNet  Google Scholar 

  12. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  13. Bologna, L.L., Nieus, T., Tedesco, M., Chiappalone, M., Benfenati, F., Martinoia, S.: Low-frequency stimulation enhances burst activity in cortical cultures during development. Neuroscience 165(3), 692–704 (2010)

    Article  Google Scholar 

  14. Breskin, I., Soriano, J., Moses, E., Tlusty, T.: Percolation in living neural networks. Phys. Rev. Lett. 97, 188,102 (2006)

    Article  Google Scholar 

  15. Buice, M.A., Cowan, J.D.: Statistical mechanics of the neocortex. Prog. Biophys. Mol. Biol. 99, 53–86 (2009)

    Article  Google Scholar 

  16. Chatterjee, N., Sinha, S.: Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. Prog. Brain Res. 168, 145–153 (2007) (Elsevier)

    Google Scholar 

  17. Cohen, O., Keselman, A., Moses, E., Martnez, M.R., Soriano, J., Tlusty, T.: Quorum percolation in living neural networks. EPL 89(1), 18008 (2010)

    Article  Google Scholar 

  18. Demarse, T.B., Wagenaar, D.A., Blau, A.W., Potter, S.M.: The neurally controlled animat: Biological brains acting with simulated bodies. Auton. Robot. 11(3), 305–310 (2001)

    Article  MATH  Google Scholar 

  19. Downes, J.H., Hammond, M.W., Xydas, D., Spencer, M.C., Becerra, V.M., Warwick, K., Whalley, B.J., Nasuto, S.J.: Emergence of a small-world functional network in cultured neurons. PLoS Comput Biol 8(5), e1002522 (2012)

    Article  Google Scholar 

  20. Eckmann, J.P., Feinerman, O., Gruendlinger, L., Moses, E., Soriano, J., Tlusty, T.: The physics of living neural networks. Phys. Rep. 449(13), 54–76 (2007) (Nonequilibrium physics: From complex fluids to biological systems III. Living systems)

    Article  MathSciNet  Google Scholar 

  21. Feldt, S., Bonifazi, P., Cossart, R.: Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights. Trends Neurosci. 34(5), 225–236 (2011)

    Article  Google Scholar 

  22. Fuchs, E., Ayali, A., Robinson, A., Hulata, E., Ben-Jacob, E.: Coemergence of regularity and complexity during neural network development. Dev Neurobiol 67(13), 1802–1814 (2007)

    Article  Google Scholar 

  23. Fuchs, E., Ayali, A., Ben-Jacob, E., Boccaletti, S.: The formation of synchronization cliques during the development of modular neural networks. Phys. Biol. 6(3), 036018 (2009)

    Article  Google Scholar 

  24. Grienberger, C., Konnerth, A.: Imaging calcium in neurons. Neuron 73(5), 862–885 (2012)

    Article  Google Scholar 

  25. Harrison, R.G., Greenman, M.J., Mall, F.P., Jackson, C.M.: Observations of the living developing nerve fiber. Anat. Rec. 1(5), 116–128 (1907)

    Article  Google Scholar 

  26. Honey, C.J., Kötter, R., Breakspear, M., Sporns, O.: Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA 104(24), 10,240–10,245 (2007)

    Article  Google Scholar 

  27. Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 106(6), 2035–2040 (2009)

    Article  Google Scholar 

  28. Jacobi, S., Soriano, J., Moses, E.: BDNF and NT-3 increase velocity of activity front propagation in unidimensional hippocampal cultures. J. Neurophysiol. 104(6), 2932–2939 (2010)

    Article  Google Scholar 

  29. Latora, V., Marchiori, M.: Economic small-world behavior in weighted networks. EPJ B 32(2), 249–263 (2003)

    Article  Google Scholar 

  30. Li, D., Li, G., Kosmidis, K., Stanley, H.E., Bunde, A., Havlin, S.: Percolation of spatially constraint networks. EPL 93(6), 68004 (2011)

    Article  Google Scholar 

  31. Maeda, E., Robinson, H.P., Kawana, A.: The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons. J. Neurosci. 15(10), 6834–6845 (1995)

    Article  Google Scholar 

  32. Marom, S., Shahaf, G.: Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Q. Rev. Biophys. 35(1), 63–87 (2002)

    Article  Google Scholar 

  33. Meijering, E.: Neuron tracing in perspective. Cytometry A 77(7), 693–704 (2010)

    Article  MathSciNet  Google Scholar 

  34. Melli, G., Höke, A.: Dorsal root ganglia sensory neuronal cultures: a tool for drug discovery for peripheral neuropathies. Expert. Opin. Drug Discov. 4(10), 1035–1045 (2009)

    Article  Google Scholar 

  35. Morin, F.O., Takamura, Y., Tamiya, E.: Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. J. Biosci. Bioeng. 100(2), 131–143 (2005)

    Article  Google Scholar 

  36. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  37. Orlandi, J.G., Soriano, J., Alvarez-Lacalle, E., Teller, S., Casademunt, J.: Noise focusing and the emergence of coherent activity in neuronal cultures. Nat. Phys. 9, 582–590 (2013)

    Article  Google Scholar 

  38. Rad, A.A., Sendiña-Nadal, I., Papo, D., Zanin, M., Buldú, J.M., del Pozo, F., Boccaletti, S.: Topological measure locating the effective crossover between segregation and integration in a modular network. Phys. Rev. Lett. 108, 228,701 (2012)

    Google Scholar 

  39. de Santos, D., Lorente, V., de la Paz, F., Cuadra, J.M., Alvarez-Sánchez, J.R., Fernández, E., Ferrández, J.M.: A client-server architecture for remotely controlling a robot using a closed-loop system with a biological neuroprocessor. Robot. Auton. Syst. 58(12), 1223–1230 (2010)

    Article  Google Scholar 

  40. de Santos-Sierra, D., Arriaga-Gómez, M.F., Bailador, G., Avila, C.S.: Low computational cost multilayer graph-based segmentation algorithms for hand recognition on mobile phones. In: 2014 International Carnahan Conference on Security Technology (ICCST), pp. 1–5

    Google Scholar 

  41. de Santos-Sierra, D., Sendiña-Nadal, I., Leyva, I., Almendral, J.A., Anava, S., Ayali, A., Papo, D., Boccaletti, S.: Emergence of small-world anatomical networks in self-organizing clustered neuronal cultures. PLoS ONE 9(1), e85828 (2014)

    Google Scholar 

  42. de Santos-Sierra, D., Sendiña-Nadal, I., Leyva, I., Almendral, J.A., Ayali, A., Anava, S., Sánchez-Ávila, C., Boccaletti, S.: Graph-based unsupervised segmentation algorithm for cultured neuronal networks’ structure characterization and modeling. Cytometry A 87A, 513–523 (2015)

    Article  Google Scholar 

  43. de Sierra-Santos, D.: Self-organizing cultured neural networks: image analysis techniques for longitudinal tracking and modeling of the underlying network structure. PhD thesis, Technical University of Madrid (2015)

    Google Scholar 

  44. Schmeltzer, C., Soriano, J., Sokolov, I.M., Rüdiger, S.: Percolation of spatially constrained Erdős–Rényi networks with degree correlations. Phys. Rev. E 89, 012116 (2014)

    Article  Google Scholar 

  45. Segev, R., Benveniste, M., Shapira, Y., Ben-Jacob, E.: Formation of electrically active clusterized neural networks. Phys. Rev. Lett. 90(16), 168101 (2003)

    Article  Google Scholar 

  46. Sendiña-Nadal, I., Soriano, J.: Cultivos neuronales: sistemas modelo para comprender la dinámica y la conectividad en redes. In: Maestú, F., del Pozo, F., Pereda, E. (eds.) Conectividad funcional y anatómica en el cerebro humano: Análisis de señales y aplicaciones en ciencias de la salud, pp. 103–113. Elsevier, Amsterdam (2015)

    Google Scholar 

  47. Shefi, O., Ben-Jacob, E., Ayali, A.: Growth morphology of two-dimensional insect neural networks. Neurocomputing 44–46, 635–643 (2002)

    Article  MATH  Google Scholar 

  48. Shefi, O., Golding, I., Segev, R., Ben-Jacob, E., Ayali, A.: Morphological characterization of in vitro neuronal networks. Phys. Rev. E 66, 021905 (2002)

    Article  Google Scholar 

  49. Sombati, S., Delorenzo, R.J.: Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. J. Neurophysiol. 73(4), 1706–1711 (1995)

    Article  Google Scholar 

  50. Soriano, J., Rodríguez Martínez, M., Tlusty, T., Moses, E.: Development of input connections in neural cultures. Proc. Natl. Acad. Sci. USA 105(37), 13758–13763 (2008)

    Article  Google Scholar 

  51. Sun, J.J., Kilb, W., Luhmann, H.J.: Self-organization of repetitive spike patterns in developing neuronal networks in vitro. Eur. J. Neurosci. 32(8), 1289–1299 (2010)

    Article  Google Scholar 

  52. Teller, S., Granell, C., De Domenico, M., Soriano, J., Gómez, S., Arenas, A.: Emergence of assortative mixing between clusters of cultured neurons. PLoS Comput. Biol. 10(9), e1003796 (2014)

    Article  Google Scholar 

  53. van Pelt, J., Vajda, I., Wolters, P.S., Corner, M.A., Ramakers, G.J.A.: Dynamics and plasticity in developing neuronal networks in vitro. Prog. Brain Res. 147, 173–188 (2005)

    Google Scholar 

  54. Watts, D., Strogatz, S.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  55. Watts, D.J.: Small worlds: the dynamics of networks between order and randomness. Princeton University Press, Princeton, NJ (1999)

    MATH  Google Scholar 

  56. White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the nervous system of the nematode caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314(1165), 1–340 (1986)

    Article  Google Scholar 

  57. Wilson, S.W.: Knowledge growth in an artificial animal. In: Proceedings of the 1st International Conference on Genetic Algorithms, L. Erlbaum Associates Inc., Hillsdale, NJ, USA, pp. 16–23 (1985)

    Google Scholar 

  58. Woiterski, L., Claudepierre, T., Luxenhofer, R., Jordan, R., Kaes, J.: Stages of neuronal network formation. New. J. Phys. 15(025029), 1–15 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Sendiña-Nadal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Santos-Sierra, D., Leyva, I., Almendral, J.A., Boccaletti, S., Sendiña-Nadal, I. (2019). Self-organized Cultured Neuronal Networks: Longitudinal Analysis and Modeling of the Underlying Network Structure. In: Carballido-Landeira, J., Escribano, B. (eds) Biological Systems: Nonlinear Dynamics Approach. SEMA SIMAI Springer Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-16585-7_4

Download citation

Publish with us

Policies and ethics