Advertisement

Spontaneous Mirror Symmetry Breaking from Recycling in Enantioselective Polymerization

  • David Hochberg
  • Celia Blanco
  • Michael StichEmail author
Chapter
  • 340 Downloads
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 20)

Abstract

A key challenge for origin of life research is understanding how the homochirality of extant biological systems may have emerged during the abiotic phase of chemical evolution. Living systems depend on bio-macromolecules made from chiral building blocks and a crucial question is the relationship of polymerization with the emergence of homochirality. We present a reaction scheme demonstrating how spontaneous mirror symmetry breaking (SMSB) can be achieved in enantioselective polymerization without chiral inhibition and without autocatalysis. The model is based on nucleated cooperative polymerization: nucleation, elongation, dissociation, fusion and fragmentation and monomer racemization. These are micro-reversible processes subject to constraints dictated by chemical thermodynamics. To maintain this closed system out of equilibrium, we model an external energy source which induces the irreversible breakage of the longest polymers in the system. Simulations reveal that SMSB can be achieved starting from the tiny intrinsic statistical fluctuations about the idealized mirror symmetric composition.

Notes

Acknowledgements

The research of CB, MS and DH is supported in part by the grant CTQ2013-47401-C2-2-P (MINECO). CB is an Otis Williams Postdoctoral Fellow in Bioengineering. MS and DH form part of the COST Action CM1304: Emergence and Evolution of Complex Chemical Systems.

References

  1. 1.
    Blackmond, D.G.: The origin of biological homochirality. In: Deamer, D., Szostak, J.W. (eds.) The Origin of Life. Cold Spring Harbor Laboratory Press, New York (2010)CrossRefGoogle Scholar
  2. 2.
    Blanco, C., Hochberg, D.: Chiral polymerization: symmetry breaking and entropy production in closed systems. Phys. Chem. Chem. Phys. 13, 839–849 (2011)CrossRefGoogle Scholar
  3. 3.
    Blanco, C., Ribó, J.M., Hochberg, D.: Modeling spontaneous chiral symmetry breaking and deracemization phenomena: discrete versus continuum approaches. Phys. Rev. E 91, 022801 (2015)Google Scholar
  4. 4.
    Blanco, C., Stich, M., Hochberg, D.: Temporary mirror symmetry breaking and chiral excursions in open and closed systems. Chem. Phys. Lett. 505, 140–147 (2011)CrossRefGoogle Scholar
  5. 5.
    Blanco, C., Stich, M., Hochberg, D.: Mechanically induced homochirality in nucleated enantioselective polymerization. J. Phys. Chem. B 121, 942–955 (2017)CrossRefGoogle Scholar
  6. 6.
    Carnall, J.M.A., Waudby, C.A., Belenguer, A.M., Stuart, M.C.A., Peyralans, J.J.-P., Otto, S.: Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010)CrossRefGoogle Scholar
  7. 7.
    Cintas, P. (ed.): Biochirality: Origins, Evolution and Molecular Recognition. Springer, Heidelberg (2013)Google Scholar
  8. 8.
    Crusats, J., Hochberg, D., Moyano, A., Ribó, J.M.: Frank model and spontaneous emergence of chirality in closed systems. Chem. Phys. Chem. 10, 2123–2131 (2009)CrossRefGoogle Scholar
  9. 9.
    Frank, F.C.: On spontaneous asymmetric synthesis. Biochim. Biophys. Acta 11, 459–463 (1953)CrossRefGoogle Scholar
  10. 10.
    Gherase, D., Conroy, D., Matar, O.K., Blackmond, D.G.: Experimental and theoretical study of the emergence of single chirality in attrition-enhanced deracemization. Cryst. Growth Des. 14, 928–937 (2014)CrossRefGoogle Scholar
  11. 11.
    De Greef, T.F.A., Smulders, M.M.J., Wolffs, M., Schenning, A.P.H.J., Sijbesma, R.P., Meijer, E.W.: Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009)CrossRefGoogle Scholar
  12. 12.
    Guijarro, A., Yus, M.: The Origin of Chirality in the Molecules of Life. RSC Publishing, Cambridge (2009)Google Scholar
  13. 13.
    Hein, J.E., Cao, B.H., Viedma, C., Kellogg, R.M., Blackmond, D.G.: Pasteur’s tweezers revisited: on the mechanism of attrition-enhanced deracemization and resolution of chiral conglomerate solids. J. Am. Chem. Soc. 134, 12629–12636 (2012)CrossRefGoogle Scholar
  14. 14.
    Hitz, T., Luisi, P.L.: Chiral amplification of oligopeptides in the polymerization of alpha-amino acid N-carboxyanhydrides in water. Helv. Chim. Acta 86, 1423–1434 (2003)Google Scholar
  15. 15.
    Iggland, M., Mazzotti, M.: A population balance model for chiral resolution via Viedma ripening. Cryst. Growth Des. 11, 4611–4622 (2011)CrossRefGoogle Scholar
  16. 16.
    Iggland, M., Mazzotti, M.: Solid state deracemisation through growth, dissolution and solution-phase racemisation. Cryst. Eng. Comm. 15, 2319–2328 (2013)CrossRefGoogle Scholar
  17. 17.
    Illos, R.A., Bisogno, F.R., Clodic, G., Bolbach, G., Weissbuch, I., Lahav, M.: Oligopeptides and copeptides of homochiral sequence, via beta-sheets, from mixtures of racemic alpha-amino acids, in a one-pot reaction in water; relevance to biochirogenesis. J. Am. Chem. Soc. 130, 8651–8659 (2008)CrossRefGoogle Scholar
  18. 18.
    Lee, D.H., Granja, J.R., Martinez, J.A., Severin, K., Reza Ghadiri, M.: A self-replicating peptide. Nature 382, 525–528 (1996)CrossRefGoogle Scholar
  19. 19.
    Mills, W.H.: Some aspects of stereochemistry. J. Chem. Technol. Biotechnol. 51, 750–759 (1932)CrossRefGoogle Scholar
  20. 20.
    Noorduin, W.L., Izumi, T., Millemaggi, A., Leeman, M., Meekes, H., van Enckevort, W.J.P., Kellogg, R.M., Kaptein, B., Vlieg, E., Blackmond, D.G.: Emergence of a single solid chiral state from a nearly racemic amino acid derivative. J. Am. Chem. Soc. 130, 1158–1159 (2008)CrossRefGoogle Scholar
  21. 21.
    Noorduin, W.L., van Enckevort, W.J., Meekes, H., Kaptein, B., Kellogg, R.M., Tully, J.C., McBride, J.M., Vlieg, E.: The driving mechanisms behind attrition-enhanced deracemization. Angew. Chem. Int. Ed. 49, 8435–8438 (2010)CrossRefGoogle Scholar
  22. 22.
    Ribó, J.M., Blanco, C., Crusats, J., El-Hachemi, Z., Hochberg, D., Moyano, A.: Absolute asymmetric synthesis in enantioselective autocatalytic reaction networks: theoretical games, speculations on chemical evolution and perhaps a synthetic option. Chem. Eur. J. 20, 17250–17271 (2014)CrossRefGoogle Scholar
  23. 23.
    Ribó, J.M., Crusats, J., Sagués, F., Claret, J., Rubires, R.: Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 2063–2066 (2001)CrossRefGoogle Scholar
  24. 24.
    Ricci, F., Stillinger, F.H., Debenedetti, P.G.: A computational investigation of attrition-enhanced chiral symmetry breaking in conglomerate crystals. J. Chem. Phys. 139, 174503 (2013)CrossRefGoogle Scholar
  25. 25.
    Sczepanski, J.T., Joyce, G.F.: A cross-chiral RNA polymerase ribozyme. Nature 515, 440–442 (2014)CrossRefGoogle Scholar
  26. 26.
    Soai, K., Shibata, T., Morioka, H., Choji, K.: Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature (London) 378, 767–768 (1995)CrossRefGoogle Scholar
  27. 27.
    Viedma, C.: Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 94, 065504 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular EvolutionCentro de Astrobiología (CSIC-INTA)Torrejón de Ardoz, MadridSpain
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Non-linearity and Complexity Research Group, System Analytics Research Institute, School of Engineering and Applied ScienceAston UniversityBirminghamUK

Personalised recommendations