Advertisement

Time-Delay Feedback Control of an Oscillatory Medium

  • Michael StichEmail author
  • Carsten Beta
Chapter
  • 347 Downloads
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 20)

Abstract

The supercritical Hopf bifurcation is one of the simplest ways in which a stationary state of a nonlinear system can undergo a transition to stable self-sustained oscillations. At the bifurcation point, a small-amplitude limit cycle is born, which already at onset displays a finite frequency. If we consider a reaction-diffusion system that undergoes a supercritical Hopf bifurcation, its dynamics is described by the complex Ginzburg-Landau equation (CGLE). Here, we study such a system in the parameter regime where the CGLE shows spatio-temporal chaos. We review a type of time-delay feedback methods which is suitable to suppress chaos and replace it by other spatio-temporal solutions such as uniform oscillations, plane waves, standing waves, and the stationary state.

References

  1. 1.
    Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)CrossRefGoogle Scholar
  2. 2.
    Kapral, R., Showalter, K. (eds.): Chemical Waves and Patterns. Kluwer Academic, Dordrecht (1995)zbMATHGoogle Scholar
  3. 3.
    Walgraef, D.: Spatio-Temporal Pattern Formation. Springer, New York (1997)CrossRefGoogle Scholar
  4. 4.
    Hoyle, R.: Pattern Formation: An Introduction to Methods. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  5. 5.
    Busse, F.H., Kramer, L. (eds.): Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems. Plenum Press, New York (1990)Google Scholar
  6. 6.
    Li, Y.J., Oslonovitch, J., Mazouz, N., Plenge, F., Krischer, K., Ertl, G.: Turing-type patterns on electrode surfaces science. Science 291, 2395 (2001)CrossRefGoogle Scholar
  7. 7.
    Schöll, E.: Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  8. 8.
    Engel, H., Niedernostheide, F., Purwins, H., Schöll, E. (eds.): Self-Organization in Activator-Inhibitor-Systems: Semiconductors, Gas-Discharge and Chemical Active Media. Wissenschaft und Technik, Berlin (1996)Google Scholar
  9. 9.
    Ackemann, T., Lange, W.: Optical pattern formation in alkali metal vapors: Mechanisms, phenomena and use. Appl. Phys. B 72, 21 (2001)CrossRefGoogle Scholar
  10. 10.
    Umbanhowar, P.B., Melo, F., Swinney, H.L.: Localized excitations in a vertically vibrated granular layer. Nature 382, 793 (1996)CrossRefGoogle Scholar
  11. 11.
    Winfree, A.T.: Chemical waves and fibrillating hearts: discovery by computation. J. Biosci. 27, 465 (2002)CrossRefGoogle Scholar
  12. 12.
    Haken, H.: Brain Dynamics. Springer, Berlin (2002)zbMATHGoogle Scholar
  13. 13.
    Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)CrossRefGoogle Scholar
  14. 14.
    Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  15. 15.
    Lechleiter, J., Girard, S., Peralta, E., Clapham, D.: Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252, 123 (1991)CrossRefGoogle Scholar
  16. 16.
    Steinbock, O., Müller, S.C.: Spatial Attractors in Aggregation Patterns of Dictyostelium discoideum. Z. Naturforsch. C 50, 275 (1995)Google Scholar
  17. 17.
    Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354 (1999)CrossRefGoogle Scholar
  18. 18.
    Beta, C., Kruse, K.: Intracellular Oscillations and Waves. Annu. Rev. Condens. Matter Phys. 8(1), 239 (2017)CrossRefGoogle Scholar
  19. 19.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos. Addison-Wesley, Reading (1994)Google Scholar
  20. 20.
    Belousov, B.P.: Sbornik referatov po Radiatsionnoi Meditsine, Medgiz, Moscow, p. 145. (Collections of abstracts on radiation medicine) (in Russian) (1959)Google Scholar
  21. 21.
    Zaikin, A.N., Zhabotinsky, A.M.: Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System. Nature (London) 255, 535 (1970)CrossRefGoogle Scholar
  22. 22.
    Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634 (1972)CrossRefGoogle Scholar
  23. 23.
    Winfree, A.T.: Scroll-shaped waves of chemical activity in three dimensions. Science 181, 937 (1973)CrossRefGoogle Scholar
  24. 24.
    Vanag, V.K., Epstein, I.R.: Inwardly rotating spiral waves in a reaction-diffusion system. Science 294, 835 (2001)CrossRefGoogle Scholar
  25. 25.
    Vanag, V.K., Zhabotinsky, A.M., Epstein, I.R.: Oscillatory clusters in the periodically illuminated, spatially extended Belousov-Zhabotinsky reaction. Phys. Rev. Lett. 86, 552 (2001)CrossRefGoogle Scholar
  26. 26.
    Jakubith, S., Rotermund, H.H., Engel, W., Von Oertzen, A., Ertl, G.: Spatiotemporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65, 3013 (1990)CrossRefGoogle Scholar
  27. 27.
    Rotermund, H.H.: Imaging of dynamic processes on surfaces by light. Surf. Sci. Rep. 29, 265 (1997)CrossRefGoogle Scholar
  28. 28.
    Kim, M., Bertram, M., Pollmann, M., von Oertzen, A., Mikhailov, A.S., Rotermund, H.H., Ertl, G.: Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic co oxidation on Pt(110). Science 292, 1357 (2001)CrossRefGoogle Scholar
  29. 29.
    Schenk, C.P., Or-Guil, M., Bode, M., Purwins, H.G.: Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains. Phys. Rev. Lett. 78, 3781 (1997)CrossRefGoogle Scholar
  30. 30.
    Alonso, S., Sagués, F., Mikhailov, A.S.: Taming winfree turbulence of scroll waves in excitable media. Science 299, 1722 (2003)CrossRefGoogle Scholar
  31. 31.
    Tyson, J.J., Alexander, K.A., Manoranjan, V.S., Murray, J.D.: Spiral waves of cyclic AMP in a model of slime mold aggregation. Physica D 34, 193 (1989)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Mikhailov, A.S.: Foundations of Synergetics I, 2nd edn. Springer, Berlin (1994)CrossRefGoogle Scholar
  33. 33.
    Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74, 99 (2002)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Chaté, H., Manneville, P.: Phase diagram of the two-dimensional complex Ginzburg-Landau equation. Physica A 224, 348 (1996)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ipsen, M., Kramer, L., Sørensen, P.G.: Amplitude equations for description of chemical reaction-diffusion systems. Phys. Rep. 337, 193 (2000)CrossRefGoogle Scholar
  36. 36.
    Schöll, E., Schuster, H.G. (eds.): Handbook of Chaos Control. Wiley-VCH, Weinheim (2007)Google Scholar
  37. 37.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421 (1992)CrossRefGoogle Scholar
  39. 39.
    Socolar, J.E.S., Sukow, D.W., Gauthier, D.J.: Stabilizing unstable periodic orbits in fast dynamical systems. Phys. Rev. E 50, 3245 (1994)CrossRefGoogle Scholar
  40. 40.
    Erneux, T.: Applied Delay Differential Equations. Springer, New York (2009)zbMATHGoogle Scholar
  41. 41.
    Lu, W., Yu, D., Harrison, R.G.: Control of patterns in spatiotemporal chaos in optics. Phys. Rev. Lett. 76, 3316 (1996)CrossRefGoogle Scholar
  42. 42.
    Bleich, M.E., Hochheiser, D., Moloney, J.V., Socolar, J.E.S.: Controlling extended systems with spatially filtered, time-delayed feedback. Phys. Rev. E 55, 2119 (1997)CrossRefGoogle Scholar
  43. 43.
    Beta, C., Mikhailov, A.S., Rotermund, H.H., Ertl, G.: Defect-mediated turbulence in a catalytic surface reaction. Europhys. Lett. 75, 868 (2006)CrossRefGoogle Scholar
  44. 44.
    Krefting, D., Beta, C.: Theoretical analysis of defect-mediated turbulence in a catalytic surface reaction. Phys. Rev. E 81(3), 036209 (2010)Google Scholar
  45. 45.
    Bertram, M., Beta, C., Pollmann, M., Mikhailov, A.S., Rotermund, H.H., Ertl, G.: Pattern formation on the edge of chaos: experiments with CO oxidation on a Pt(110) surface under global delayed feedback. Phys. Rev. E 67, 036208 (2003)Google Scholar
  46. 46.
    Beta, C., Bertram, M., Mikhailov, A.S., Rotermund, H.H., Ertl, G.: Controlling turbulence in a surface chemical reaction by time-delay autosynchronization. Phys. Rev. E 67, 046224 (2003)Google Scholar
  47. 47.
    Bertram, M., Beta, C., Rotermund, H.H., Ertl, G.: Complex patterns in a periodically forced surface reaction. J. Phys. Chem. B 107(35), 9610 (2003)CrossRefGoogle Scholar
  48. 48.
    Bodega, P.S., Kaira, P., Beta, C., Krefting, D., Bauer, D., Mirwald-Schulz, B., Punckt, C., Rotermund, H.H.: High frequency periodic forcing of the oscillatory catalytic CO oxidation on Pt (110). New J. Phys. 9, 61 (2007)CrossRefGoogle Scholar
  49. 49.
    Beta, C., Moula, M.G., Mikhailov, A.S., Rotermund, H.H., Ertl, G.: Excitable CO oxidation on Pt(110) under nonuniform coupling. Phys. Rev. Lett. 93(18), 188302 (2004)Google Scholar
  50. 50.
    Wolff, J., Stich, M., Beta, C., Rotermund, H.H.: Laser-induced target patterns in the oscillatory CO oxidation on Pt(110). J. Phys. Chem. B 108(38), 14282 (2004)CrossRefGoogle Scholar
  51. 51.
    Punckt, C., Stich, M., Beta, C., Rotermund, H.H.: Suppression of spatiotemporal chaos in the oscillatory CO oxidation on Pt(110) by focused laser light. Phys. Rev. E 77(4), 046222 (2008)Google Scholar
  52. 52.
    Stich, M., Punckt, C., Beta, C., Rotermund, H.H.: Control of spatiotemporal chaos in catalytic CO oxidation by laser-induced pacemakers. Phil. Trans. R. Soc. Lond. A 366, 419 (2008)CrossRefGoogle Scholar
  53. 53.
    Dahlem, M.A., Schneider, F.M., Schöll, E.: Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke. Chaos 18, 026110 (2008)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Schneider, F.W., Schöll, E., Dahlem, M.A.: Controlling the onset of traveling pulses in excitable media by nonlocal spatial coupling and time-delayed feedback. Chaos 19, 015110 (2009)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Fenton, F.H., Cherry, E.M., Hastings, H.M., Evans, S.J.: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12, 852 (2002)CrossRefGoogle Scholar
  56. 56.
    Christini, D.J., Glass, L.: Introduction: Mapping and control of complex cardiac arrhythmias. Chaos 12, 732 (2002)CrossRefGoogle Scholar
  57. 57.
    Franceschini, G., Bose, S., Schöll, E.: Control of chaotic spatiotemporal spiking by time-delay autosynchronization. Phys. Rev. E 60(5), 5426 (1999)CrossRefGoogle Scholar
  58. 58.
    Beck, O., Amann, A., Schöll, E., Socolar, J.E.S., Just, W.: Comparison of time-delayed feedback schemes for spatiotemporal control of chaos in a reaction-diffusion system with global coupling. Phys. Rev. E 66, 016213 (2002)Google Scholar
  59. 59.
    Baba, N., Amann, A., Schöll, E., Just, W.: Giant improvement of time-delayed feedback control by spatio-temporal filtering. Phys. Rev. Lett. 89, 074101 (2002)Google Scholar
  60. 60.
    Unkelbach, J., Amann, A., Just, W., Schöll, E.: Time-delay autosynchronization of the spatiotemporal dynamics in resonant tunneling diodes. Phys. Rev. E 68, 026204 (2003)Google Scholar
  61. 61.
    Battogtokh, D., Mikhailov, A.: Controlling turbulence in the complex Ginzburg-Landau equation. Physica D 90, 84 (1996)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Battogtokh, D., Preusser, A., Mikhailov, A.: Controlling turbulence in the complex Ginzburg-Landau equation II. Two-dimensional systems. Phys. D 106, 327 (1997)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Beta, C., Mikhailov, A.S.: Controlling spatiotemporal chaos in oscillatory reaction-diffusion systems by time-delay autosynchronization. Phys. D 199, 173 (2004)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Bleich, M.E., Socolar, J.E.S.: Controlling spatiotemporal dynamics with time-delay feedback. Phys. Rev. E 54, R17 (1996)CrossRefGoogle Scholar
  65. 65.
    Harrington, I., Socolar, J.E.S.: Limitation on stabilizing plane waves via time-delay feedback. Phys. Rev. E 64, 056206 (2001)Google Scholar
  66. 66.
    Montgomery, K.A., Silber, M.: Feedback control of travelling wave solutions of the complex Ginzburg-Landau equation. Nonlinearity 17, 2225 (2004)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Postlethwaite, C.M., Silber, M.: Spatial and temporal feedback control of traveling wave solutions of the two-dimensional complex Ginzburg-Landau equation. Phys. D 236, 65 (2007)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Stich, M., Casal, A.C., Díaz, J.I.: Control of turbulence in oscillatory reaction-diffusion systems through a combination of global and local feedback. Phys. Rev. E 76, 036209 (2007)Google Scholar
  69. 69.
    Stich, M., Beta, C.: Control of pattern formation by time-delay feedback with global and local contributions. Phys. D 239, 1681 (2010)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Stich, M., Casal, A., Beta, C.: Stabilization of standing waves through time-delay feedback. Phys. Rev. E 88, 042910 (2013)Google Scholar
  71. 71.
    Stich, M., Elec, J.: Comments on multiple oscillatory solutions in systems with time-delay feedback. Diff. Eqs. Conf. 22, 99 (2015)Google Scholar
  72. 72.
    Stich, M., Chattopadhyay, A.K.: Noise-induced standing waves in oscillatory systems with time-delayed feedback. Phys. Rev. E 93, 052221 (2016)Google Scholar
  73. 73.
    Hövel, P., Schöll, E.: Control of unstable steady states by time-delayed feedback methods. Phys. Rev. E 72, 046203 (2005)Google Scholar
  74. 74.
    Koseska, A., Volkov, E., Kurths, J.: Oscillation quenching mechanisms: amplitude vs. oscillation death. Phys. Rep. 531, 173 (2013)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Falcke, M., Engel, H., Neufeld, M.: Cluster formation, standing waves, and stripe patterns in oscillatory active media with local and global coupling. Phys. Rev. E 52, 763 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Non-linearity and Complexity Research Group, System Analytics Research Institute, School of Engineering and Applied ScienceAston UniversityBirminghamUK
  2. 2.Institute of Physics and AstronomyUniversity of PotsdamPotsdamGermany

Personalised recommendations