Skip to main content

Model-Based Design of Secured Power Aware Smart Sensors

  • Chapter
  • First Online:

Abstract

When designing new smart sensor platforms, the system should be well adapted to the intended use case. In most cases this means that the sensor will be implemented as a part of a larger system—be it as a part of a sensor network or a component of a machine. In both cases the sensor should have a long lifetime, use the available resources with care, handle the data securely, and prevent the system from getting damaged by misusing the sensor knowingly or unknowingly. To test all of these properties, models of the sensor (and its component parts) can be created and used in simulations that represent the environment and the possible uses of the sensor in it. This chapter describes the possibility of creating a new power aware and secured smart sensor using a model-based design approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Accelera: SystemC. (2000). http://accellera.org/downloads/standards/systemc. Accessed 17 Jan 2017

  2. M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J.A. Halderman, L. Invernizzi, M. Kallitsis, et al., Understanding the Mirai botnet, in USENIX Security Symposium (2017)

    Google Scholar 

  3. F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, E. Aboulhamid, A SystemC/simulink co-simulation framework for continuous/discrete-events simulation, in 2006 IEEE International Behavioral Modeling and Simulation Workshop (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2006). https://doi.org/10.1109/bmas.2006.283461

    Google Scholar 

  4. R.J. Campbell, Cybersecurity issues for the bulk power system. Electr. Deliv. Secur Fed Oversight Activities Funding, 63–108 (2016). https://www.hsdl.org/?abstract&did=767255

  5. G. Chen, M. Fojtik, D. Kim, D. Fick, J. Park, M. Seok, M.T. Chen, Z. Foo, D. Sylvester, D. Blaauw, Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells, in 2010 IEEE International Solid-State Circuits Conference - (ISSCC) (IEEE, Piscataway, 2010). https://doi.org/10.1109/isscc.2010.5433921

    Google Scholar 

  6. J. Haase, D. Meyer, M. Eckert, B. Klauer, Wireless sensor/actuator device configuration by NFC, in 2016 IEEE International Conference on Industrial Technology (ICIT) (IEEE, Piscataway, 2016), pp. 1336–1340

    Book  Google Scholar 

  7. K. Huang, I. Bacivarov, F. Hugelshofer, L. Thiele, Scalably distributed SystemC simulation for embedded applications, in 2008 International Symposium on Industrial Embedded Systems (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2008). https://doi.org/10.1109/sies.2008.4577715

    Google Scholar 

  8. A. Kansal, J. Hsu, S. Zahedi, M.B. Srivastava, Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6(4), 32 (2007). https://doi.org/10.1145/1274858.1274870

    Article  Google Scholar 

  9. R. Langner, Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3), 49–51 (2011)

    Article  Google Scholar 

  10. W.S. Lee, W.I. Son, K.S. Oh, J.W. Yu, Contactless energy transfer systems using antiparallel resonant loops. IEEE Trans. Ind. Electron. 60(1), 350–359 (2013). https://doi.org/10.1109/tie.2011.2177611

    Article  Google Scholar 

  11. D. Martin, P. Wilsey, R. Hoekstra, E. Keiter, S. Hutchinson, T. Russo, L. Waters, Integrating multiple parallel simulation engines for mixed-technology parallel simulation, in Proceedings 35th Annual Simulation Symposium. SS 2002 (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2002). https://doi.org/10.1109/simsym.2002.1000082

  12. Mathworks: get started with gazebo and a simulated turtlebot (2016). https://de.mathworks.com/help/robotics/examples/get-started-with-gazebo-and-a-simulated-turtlebot.html. Accessed 03 Jan 2017

  13. D. Mueller-Gritschneder, K. Lu, E. Wallander, M. Greim, U. Schlichtmann, A virtual prototyping platform for real-time systems with a case study for a two-wheeled robot, in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013 (EDAA, 2013). https://doi.org/10.7873/date.2013.274

  14. Open Source Robotics Foundation: Gazebo simulator (2004). http://www.gazebosim.org. Accessed 03 Jan 2017

  15. P.R. Panda, SystemC - A modelling platform supporting multiple design abstractions, in Proceedings of the 14th International Symposium on Systems Synthesis - ISSS (Association for Computing Machinery (ACM), New York, 2001). https://doi.org/10.1145/500001.500018

    Google Scholar 

  16. T.W. Pieber, T. Ulz, C. Steger, Systemic test case generation with the gazebo simulator, in Proceedings of the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH. INSTICC, (SciTePress, Setúbal, 2017). https://doi.org/10.5220/0006404800650072

  17. T.W. Pieber, T. Ulz, C. Steger, R. Matischek, Hardware secured, password-based authentication for smart sensors for the industrial internet of things, in International Conference on Network and System Security (Springer, Berlin, 2017), pp. 632–642

    Google Scholar 

  18. H. Possadas, J.A. Adamez, E. Villar, F. Blasco, F. Escuder, RTOS modeling in SystemC for real-time embedded SW simulation: a POSIX model. Des. Autom. Embed. Syst. (2005). https://doi.org/10.1007/s10617-006-9725-1

    Article  Google Scholar 

  19. M. Rahimi, H. Shah, G. Sukhatme, J. Heideman, D. Estrin, Studying the feasibility of energy harvesting in a mobile sensor network, in 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422) (IEEE, Piscataway, 2003). https://doi.org/10.1109/robot.2003.1241567

  20. T. Sogorb, J.V. Llario, J. Pelegri, R. Lajara, J. Alberola, Studying the feasibility of energy harvesting from broadcast RF station for WSN, in Instrumentation and Measurement Technology Conference Proceedings, 2008, IMTC’08 (IEEE, Piscataway, 2008). pp. 1360–1363

    Google Scholar 

  21. T. Ulz, T. Pieber, C. Steger, S. Haas, R. Matischek, Sneakernet on wheels: trustworthy NFC-based robot to machine communication, in 2017 IEEE International Conference on RFID Technology & Application (RFID-TA) (IEEE, Piscataway, 2017), pp. 260–265

    Book  Google Scholar 

  22. T. Ulz, T. Pieber, C. Steger, S. Haas, R. Matischek, H. Bock, Hardware-secured configuration and two-layer attestation architecture for smart sensors, in 2017 Euromicro Conference on Digital System Design (DSD) (IEEE, Piscataway, 2017), pp. 229–236

    Book  Google Scholar 

  23. T. Ulz, T. Pieber, C. Steger, C. Lesjak, H. Bock, R. Matischek, Secureconfig: NFC and QR-code based hybrid approach for smart sensor configuration, in 2017 IEEE International Conference on RFID (IEEE, Piscataway, 2017), pp. 41–46

    Google Scholar 

  24. T. Ulz, T. Pieber, C. Steger, R. Matischek, H. Bock, Towards trustworthy data in networked control systems: a hardware-based approach, in 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (IEEE, Piscataway, 2017), pp. 1–8

    Google Scholar 

  25. R. Yan, H. Sun, Y. Qian, Energy-aware sensor node design with its application in wireless sensor networks. IEEE Trans. Instrum. Meas. 62(5), 1183–1191 (2013). https://doi.org/10.1109/tim.2013.2245181

    Article  Google Scholar 

  26. I. Zamora, N.G. Lopez, V.M. Vilches, A.H. Cordero, Extending the OpenAI Gym for robotics: a toolkit for reinforcement learning using ROS and Gazebo. arXiv preprint arXiv:1608.05742 (2016)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 692480. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Netherlands, Spain, Austria, Belgium, Slovakia.

IoSense is funded under the agreement number 853326 by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) under the program “ICT of the Future” between May 2016 and May 2019. More information https://iktderzukunft.at/en/.

We would like to thank Infineon Technologies and especially Rainer Matischek for providing us the security controllers used in the system and for their support that helped creating the prototypes and simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wolfgang Pieber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pieber, T.W., Ulz, T., Steger, C. (2020). Model-Based Design of Secured Power Aware Smart Sensors. In: van Driel, W., Pyper, O., Schumann, C. (eds) Sensor Systems Simulations. Springer, Cham. https://doi.org/10.1007/978-3-030-16577-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16577-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16576-5

  • Online ISBN: 978-3-030-16577-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics