Nanocosmetics pp 181-198 | Cite as

Characterization of Nanoparticles for Cosmetic Applications

  • Steffen F. Hartmann
  • Ralph W. Eckert
  • Daniel Knoth
  • Cornelia M. KeckEmail author


Nanoparticles are tiny and cannot be seen by the naked eye. They possess different properties than macro-sized material and most of the well-established characterization methods for larger sized materials cannot be applied for nanomaterials. Hence, different techniques need to be used for a meaningful characterization of the nanosized material. This chapter will focus on the most important characterization methods that need to be applied to characterize and develop nanocarrier for cosmetic applications.


Dynamic light scattering Laser diffraction Microscopy Zeta potential Physical stability Size Size distribution 


  1. 1.
    Particle Allen T. Particle size measurement. 4th ed. Berlin: Springer; 1990.Google Scholar
  2. 2.
    Anderson W, et al. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci. 2013;405:322–30.CrossRefGoogle Scholar
  3. 3.
    Calabretta M, et al. Analytical ultracentrifugation for characterizing nanocrystals and their bioconjugates. Nano Lett. 2005;5(5):963–7.CrossRefGoogle Scholar
  4. 4.
    Carney RP et al. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation. Nat Commun. 2011;2:335.Google Scholar
  5. 5.
    Kumar A, Dixit CK. Methods for characterization of nanoparticles. Advances in nanomedicine for the delivery of therapeutic nucleic acids. Cambridge: Woodhead Publishing; 2017. p. 43–58.CrossRefGoogle Scholar
  6. 6.
    Müller RH. Colloidal carriers for controlled drug delivery and targeting: modification, characterization, and in Vivo distribution. Boca Raton: CRC Press; 1991.Google Scholar
  7. 7.
    Cho EJ, et al. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093–110.CrossRefGoogle Scholar
  8. 8.
    ISO 13320. ISO 13320: Particle size analysis—Laser diffraction methods. International Organization for Standardization; 2009.Google Scholar
  9. 9.
    ISO 22412. ISO 22412: Particle size analysis—Dynamic light scattering (DLS). International Organization for Standardization; 2017.Google Scholar
  10. 10.
    Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science. 2003;300(5616):82–6.CrossRefGoogle Scholar
  11. 11.
    Burrows ND, Penn RL. Cryogenic transmission electron microscopy: aqueous suspensions of nanoscale objects. Microsc Microanal Official J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can. 2013;19(6):1542–53.Google Scholar
  12. 12.
    Chen S, et al. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments. J Microsc. 2016;261(2):157–66.CrossRefGoogle Scholar
  13. 13.
    Tiede K et al. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Exposure Risk Assess. 2008; 25 (7):795–821.CrossRefGoogle Scholar
  14. 14.
    Woehl TJ et al. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy. 2013;127:53–63.CrossRefGoogle Scholar
  15. 15.
    Müller RH, Schuhmann R. Teilchengrößenmessung in der Laborpraxis. Wissenschaftliche Verlagsgesellschaft Stuttgart; 1996.Google Scholar
  16. 16.
    Keck CM. Particle size analysis of nanocrystals: improved analysis method. Int J Pharm. 2010;390(1):3–12.CrossRefGoogle Scholar
  17. 17.
    Keck CM, Müller RH. Size analysis of submicron particles by laser diffractometry–90% of the published measurements are false. Int J Pharm. 2008;355(1–2):150–63.CrossRefGoogle Scholar
  18. 18.
    Keck CM. Cyclosporine nanosuspensions—Optimised size characterisation & oral formulations. PhD thesis. Freie Universität Berlin; 2006.Google Scholar
  19. 19.
    Kübart Acar S, Keck CM. Laser diffractometry of nanoparticles: frequent pitfalls & overlooked opportunities. J Pharm Technol Drug Res. 2013;2:17.CrossRefGoogle Scholar
  20. 20.
    Keck CM. Partikelgrößenanalytik für Nanopartikel: Ein Kinderspiel oder doch eine verflixte Kiste? TechnoPharm. 2012;4:279–87.Google Scholar
  21. 21.
    Acar Kübart S. Menthol-beladene Lipidnanopartikel für Consumer-Care: Entwicklung & optimierte Charakterisierung. PhD thesis. Freie Universität Berlin; 2017.Google Scholar
  22. 22.
    Müller RH. Zetapotential und Partikelladung in der Laborpraxis. Wissenschaftliche Verlagsgesellschaft Stuttgart; 1996.Google Scholar
  23. 23.
    Al Shaal L, Müller RH, Keck CM. Preserving hesperetin nanosuspensions for dermal application. Pharmazie. 2010;65(2):86–92.PubMedGoogle Scholar
  24. 24.
    Zhai X, et al. Nanocrystals of medium soluble actives–novel concept for improved dermal delivery and production strategy. Eur J Pharm Biopharm. 2014;470(1–2):141–50.Google Scholar
  25. 25.
    Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;370(1–2):202–9.CrossRefGoogle Scholar
  26. 26.
    Mishra PR, et al. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm. 2009;371(1–2):182–9.CrossRefGoogle Scholar
  27. 27.
    Müller RH, Gohla S, Keck CM. State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm Official J Arbeitsgemeinschaft fur Pharma Verfahrenstechnik. 2011;78(1):1–9.CrossRefGoogle Scholar
  28. 28.
    Romero GB, et al. Industrial concentrates of dermal hesperidin smartCrystals®–production, characterization & long-term stability. Int J Pharm. 2015;482(1–2):54–60.CrossRefGoogle Scholar
  29. 29.
    Schwarz JC, et al. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm. 2013;447(1–2):213–7.CrossRefGoogle Scholar
  30. 30.
    Zhai X, et al. Dermal nanocrystals from medium soluble actives—physical stability and stability affecting parameters. Eur J Pharm Biopharm. 2014;88(1):85–91.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Steffen F. Hartmann
    • 1
  • Ralph W. Eckert
    • 1
  • Daniel Knoth
    • 1
  • Cornelia M. Keck
    • 1
    Email author
  1. 1.Department of Pharmaceutics and BiopharmaceuticsPhilipps-Universität MarburgMarburgGermany

Personalised recommendations