Nanocosmetics pp 347-359 | Cite as

Why Nanotechnology in Dermal Products?—Advantages, Challenges, and Market Aspects

  • Rainer H. Müller
  • Sung Min PyoEmail author


Dermal products in pharma are a relatively small market when compared to, e.g., oral products like tablets and capsules. Considering the small market size (annual sales per dermal product) together with the high costs for introducing a new drug product to the market, pharma companies consider twice if they replace a well selling product with “old” technology by a successor product, having only a limited improvement in performance.


  1. 1.
    Merck & Co. Ichthyol, its history, properties, and therapeutics. New York Collection: Cornell; 1913.Google Scholar
  2. 2.
    Korting HC, Schäfer-Korting M. Carriers in the topical treatment of skin disease. In: Drug delivery. Berlin: Springer; 2010. p. 435–468.Google Scholar
  3. 3.
    Cerqueira-Coutinho C, dos Santos EP, Mansur CRE. Niosomes as nano-delivery systems in the pharmaceutical field. Crit Rev Ther Drug Carrier Syst. 2016;33(2).CrossRefGoogle Scholar
  4. 4.
    Taniguchi N, Arakawa C, Kobayashi T. On the basic concept of nano-technology. In: Proceedings of the International Conference on Production Engineering. 1974;2:18–23.Google Scholar
  5. 5.
    Graham T. X. Liquid diffusion applied to analysis. Philos Trans R Soc Lond. 1861;151:183–224.CrossRefGoogle Scholar
  6. 6.
    Levine IN. Physical chemistry. 5th ed. Boston: McGraw-Hill, Boston; 2001.Google Scholar
  7. 7.
    Buzek J, Ask B. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Official J Eur Union. 2009;59.Google Scholar
  8. 8.
  9. 9.
  10. 10.
    Roco MC. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. Berlin: Springer; 2011.Google Scholar
  11. 11.
    Roco MC, Williams RS, Alivisatos P, editors. Nanotechnology research directions: IWGN workshop report: vision for nanotechnology in the next decade. Berlin: Springer; 2000.Google Scholar
  12. 12.
  13. 13.
    Keck CM, Müller RH. Nanotoxicological classification system (NCS)–a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm. 2013;84(3):445–8.CrossRefGoogle Scholar
  14. 14.
    Cohen Y, Besnard M. Radionuclides. Pharmacokinetics. In: Nuklearmedizin/Nuclear Medicine. Berlin: Springer; 1980. p. 3–76.CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–18.CrossRefGoogle Scholar
  17. 17.
    Cevc G, Blume G, Schätzlein A. Transfersomes-mediated transepidermal delivery improves the regio-specificity and biological activity of corticosteroids in vivo1. J Control Release. 1997;45(3):211–26.CrossRefGoogle Scholar
  18. 18.
    Rajan R, Jose S, Mukund VB, Vasudevan DT. Transferosomes-A vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res. 2011;2(3):138.CrossRefGoogle Scholar
  19. 19.
    Gupta R, Agrawal A, Anjum MM, Dwivedi H, Kymonil MK, Saraf AS. Lipid nanoformulations for oral delivery of bioactives: an overview. Current Drug Therapy. 2014;9(1):35–46.CrossRefGoogle Scholar
  20. 20.
    Webb MS, Bally MB, Mayer LD. Sphingosomes for enhanced drug delivery. US Patent 5,543,152. 1996.Google Scholar
  21. 21.
    Saraf S, Gupta D, Kaur CD, Saraf S, Res IJCS. Sphingosomes a novel approach to vesicular drug delivery. Int J Cur Sci Res. 2011;1(2):63–8.Google Scholar
  22. 22.
    Herrington KL, Kaler EW, Miller DD, Zasadzinski JA, Chiruvolu S. Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS). J Phys Chem. 1993;97(51):13792–802.CrossRefGoogle Scholar
  23. 23.
    Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol. 1964; 8(5):660–IN10.CrossRefGoogle Scholar
  24. 24.
    Müller RH, Sinambela P, Keck CM. NLC–the invisible dermal patch for moisturizing & skin protection. EuroCosmetics. 2013;6:20–3.Google Scholar
  25. 25.
    Keck CM, Anantaworasakul P, Patel M, Okonogi S, Singh KK, Roessner D, … , Müller RH. A new concept for the treatment of atopic dermatitis: Silver–nanolipid complex (sNLC). Int J Pharm. 2014;462(1–2):44–51.CrossRefGoogle Scholar
  26. 26.
    zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled bioactive delivery–bioactive release and release mechanism. Eur J Pharm Biopharm. 1998;45(2):149–155.Google Scholar
  27. 27.
    Pyo SM, Müller RH. Vitamin A1 smartLipids—improved penetration with reduced side effects. Berlin: Day of Pharmacy; 2018.Google Scholar
  28. 28.
    Olechowski F, Pyo SM, Müller RH. BergaCare SmartLipids—commercial concentrates of solid lipid submicron particles for industrial production of dermal products. PBP World Meeting: Granada; 2018.Google Scholar
  29. 29.
    Petersen RD. Nanocrystals for use in topical formulations and method of production thereof. Germany Patent PCT/EP2007/009943; 2006.Google Scholar
  30. 30.
    Lippacher A, Müller RH, Mäder K. Semisolid SLN™ dispersions for topical application: influence of formulation and production parameters on viscoelastic properties. Eur J Pharm Biopharm. 2002;53(2):155–60.CrossRefGoogle Scholar
  31. 31.
    Kligman D. Cosmeceuticals. Dermatol Clin. 2000;18(4):609–15.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical TechnologyFreie Universität Berlin, Institute of PharmacyBerlinGermany

Personalised recommendations