Nanocosmetics pp 267-295 | Cite as

Production of Nanocosmetics

  • Carsten Schilde
  • Jan Henrik Finke
  • Sandra Breitung-Faes
  • Frederik Flach
  • Arno KwadeEmail author


For successful product development and production of nanocosmetics, the interplay between material properties, formulation, process equipment, and process parameters must carefully be understood. Agglomeration or aggregation state of the starting material and its breakage behavior in combination with the desired product fineness define the necessary process equipment and its applied process parameters. Formulation with additives is crucial for the process performance as well as for product stability. Equipment should be operated in optimal parameter settings to combine the advantages of low energy consumption, high productivity, high product quality, and low product contamination. To realize complex nanocosmetic products, such as nanoparticle-loaded nanoemulsion droplets, process integration, and application of microsystem technology can assist.


Wet dispersion Wet milling Emulsification Process intensification Process models 


  1. 1.
    Raj S, et al. Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci. 2012;4(3):186.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kaul S, et al. Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm 2018;2018.Google Scholar
  3. 3.
    Schilde C, et al. Efficiency of different dispersing devices for dispersing nanosized silica and alumina. Powder Technol. 2011;207:353–61.Google Scholar
  4. 4.
    Schilde C, Kwade A. Measurement of the micromechanical properties of nanostructured aggregates via nanoindentation. J Mater Res. 2012;27(4):672–84.Google Scholar
  5. 5.
    Schilde C, Breitung-Faes S, Kwade A. Dispersing and grinding of alumina nano particles by different stress mechanisms. Ceram Forum Int. 2007;84(13):12–17.Google Scholar
  6. 6.
    Möller A. Modelling the deagglomeration behavior of nanocrystalline Al2O3- and ZrO2-powders. Darmstadt: Technische Universität Darmstadt, Technische Universität Darmstadt; 2000.Google Scholar
  7. 7.
    Parfitt GD. Dispersion of powders in liquids. Elsevier Publishing; 1969.Google Scholar
  8. 8.
    Schilde C. Structure, mechanics and fracture of nanoparticulate aggregates. Braunschweig: Institute of Particle Technology, TU Braunschweig; 2012.Google Scholar
  9. 9.
    Schilde C, Kampen I, Kwade A. Dispersion kinetics of nano-sized particles for different dispersing machines. Chem Eng Sci. 2010;65(11):3518–27.Google Scholar
  10. 10.
    Schilde C, et al. Effect of fluid-particle-interactions on dispersing nano-particles in epoxy resins using stirred-media-mills and three-roll-mills. Compos Sci Technol. 2010;70(4):657–63.Google Scholar
  11. 11.
    Young T. An essay on the cohesion of fluids. Philos Trans R Soc Lond. 1805;95:65–87.Google Scholar
  12. 12.
    Buckton G, Newton JM. Assessment of the wettability and surface energy of pharmaceutical powder. Int J Pharm. 1986;47:121–8.Google Scholar
  13. 13.
    Stiller S. Pickering-Emulsionen auf Basis anorganischer UV-filter. Braunschweig: Institut für Pharmazeutische Technologie, TU Braunschweig; 2003.Google Scholar
  14. 14.
    Fuji M, et al. Effect of wettability on adhesion forces between silica particles evaluated by atomic force microscopy measurement as a function of relative humidity. Langmuir. 1999;15:4584–9.Google Scholar
  15. 15.
    Rumpf H. Die Einzelkornbeanspruchung als Grundlage einer technischen Zerkleinerungswissenschaft. Chem Ing Tec. 1965;37:187–202.Google Scholar
  16. 16.
    Schilde C, Beinert S, Kwade A. Comparison of the micromechanical aggregate properties of nanostructured aggregates with the stress conditions during stirred media milling. Chem Eng Sci. 2011;66:4943–52.Google Scholar
  17. 17.
    Kwade A. Physical model to describe and select comminution and dispersion processes. Chem Ing Tec. 2001;73(6):703.Google Scholar
  18. 18.
    Kwade A. A stressing model for the description and optimization of grinding processes. Chem Eng Technol. 2003;26(2):199–205.Google Scholar
  19. 19.
    Rumpf H, Raasch J. Desagglomeration in Strömungen. In: 1. Europ. Symp. Zerkleinern 10.-13.04.1962. 1962. Frankfurt a. M: Verlag Chemie, Weinheim und VDI-Verlag, Düsseldorf.Google Scholar
  20. 20.
    Kolmogorov AN. Die lokale Struktur der Turbulenz in einer inkompressiblen zähen Flüssigkeit bei sehr großen Reynoldsschen Zahlen. Sammelband zur statischen Theorie der turbulenz 1958, Berlin: Akademie Verlag. p. 71–6.Google Scholar
  21. 21.
    Rumpf H. Grundlagen und Methoden des Granulierens. Chem Ing Tec. 1958;30(3):144–58.Google Scholar
  22. 22.
    Zellmer S, et al. Influence of surface modification on the micromechanical properties of spray-dried silica aggregates. J Colloid Interface Sci. 2015;464:183–90.Google Scholar
  23. 23.
    Knieke C, et al. Nanoparticle production with stirred-media mills: opportunities and limits. Chem Eng Technol. 2010;33(9):1401–11.Google Scholar
  24. 24.
    Schilde C, Breitung-Faes S, Kwade A. Grinding kinetics of nano-sized particles for different electrostatical stabilizing acids in a stirred media mill. Powder Technol. 2013;235:1008–16.Google Scholar
  25. 25.
    Sauter C, et al. Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason Sonochem. 2008;15(4):517–23.PubMedGoogle Scholar
  26. 26.
    Kim YG, et al. Efficient light harvesting polymers for nanocrystalline TiO2 photovoltaic cells. Nano Lett. 2003;3(4):523–5.Google Scholar
  27. 27.
    Biedermann A, Henzler H-J. Beanspruchung von Partikeln in Rührreaktoren. Chem Ing Tec. 1994;66(2):209–11.Google Scholar
  28. 28.
    Winkler J. Nanopigmente dispergieren. Farbe und Lack. 2006;2:35–9.Google Scholar
  29. 29.
    Bittmann B, Haupert F, Schlarp AK. Ultrasonic dispersion of inorganic nanoparticles in epoxy resin. Ultrason Sonochem. 2009;16:622–8.PubMedGoogle Scholar
  30. 30.
    Mende S. Mechanische Erzeugung von Nanopartikeln in Rührwerkskugelmühlen. Braunscheig: TU Braunschweig; 2004.Google Scholar
  31. 31.
    Sommer MM. Mechanical production of nanoparticles in stirred media mills. Technische Fakultät der Universität Nürnberg-Erlangen; 2007.Google Scholar
  32. 32.
    Derjaguin BV, Landau LD. Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimica U.R.S.S., 1941;14:633–62.Google Scholar
  33. 33.
    Verwey EJW, Overbeek JTG. Theory of stability of loyophobic colloids: the interaction of sol particles having an electrical double layer. New York: Elsevier; 1948.Google Scholar
  34. 34.
    Segets D, et al. Experimental and theoretical studies of the colloidal stability of nanoparticles—a general interpretation based on stability maps. ACS Nano. 2011;5(6):4658–69.PubMedGoogle Scholar
  35. 35.
    Reindl A, Peukert W. Intrinsically stable dispersions of silicon nanoparticles. J Colloid Interface Sci. 2008;325:173–8.PubMedGoogle Scholar
  36. 36.
    Stenger F, et al. Nanomilling in stirred media mills. Chem Eng Sci. 2005;60(16):4557–65.Google Scholar
  37. 37.
    Mende S, et al. Production of sub-micron particles by wet comminution in stirred media mills. J Mater Sci. 2004;39:5223–6.Google Scholar
  38. 38.
    Mende S, et al. Mechanical production and stabilization of submicron particles in stirred media mills. Powder Technol. 2003;132:64–73.Google Scholar
  39. 39.
    Barth N, Schilde C, Kwade A. Influence of electrostatic particle interactions on the properties of particulate coatings of titanium dioxide. J Colloid Interface Sci. 2014;420:80–7.PubMedGoogle Scholar
  40. 40.
    Evans R, Napper DH. Steric stabilization I—comparison of theories with experiment. Kolloid-Zeitschrift und Zeitschrift für Polymere. 1972;251(6):409–14.Google Scholar
  41. 41.
    Evans R, Napper DH. Steric stabilization II—a generalization of Fischer’s solvency theory. Kolloid-Zeitschrift und Zeitschrift für Polymere. 1972;251(5):329–36.Google Scholar
  42. 42.
    Ali A, et al. Nanoemulsion: an advanced vehicle for efficient drug delivery. Drug Res (Stuttg). 2017;67(11):617–31.Google Scholar
  43. 43.
    Jintapattanakit A. Preparation of nanoemulsions by phase inversion temperature (PIT). Pharm Sci Asia. 2018;42(1):1–12.Google Scholar
  44. 44.
    Yukuyama MN, et al. Nanoemulsion: process selection and application in cosmetics–a review. Int J Cosmet Sci. 2016;38(1):13–24.PubMedGoogle Scholar
  45. 45.
    Villalobos-Hernandez JR, Muller-Goymann CC. Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media. Eur J Pharm Biopharm. 2005;60(1):113–22.PubMedGoogle Scholar
  46. 46.
    Villalobos-Hernandez JR, Muller-Goymann CC. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles. Eur J Pharm Biopharm. 2007;65(1):122–5.PubMedGoogle Scholar
  47. 47.
    Richter C, et al. Innovative process chain for the development of wear resistant 3D metal microsystems. Microelectron Eng. 2013;110:392–7.Google Scholar
  48. 48.
    Finke JH, et al. Modular overall microsystem for the integrated production and loading of solid lipid nanoparticles, in mikroPART—Microsystems for Particulate Life Science Products (Concluding results of the DFG Research Group FOR 856) In: Kwade A, Kampen I, Finke JH, editors. Braunschweig; 2014. p. CDCP1-6.Google Scholar
  49. 49.
    Finke JH, et al. The influence of customized geometries and process parameters on nanoemulsion and solid lipid nanoparticle production in microsystems. Chem Eng J. 2012;209:126–37.Google Scholar
  50. 50.
    Gothsch T, et al. Effect of microchannel geometry on high-pressure dispersion and emulsification. Chem Eng Technol. 2011;34(3):335–43.Google Scholar
  51. 51.
    Beinert S, Gothsch T, Kwade A. Numerical evaluation of flow fields and stresses acting on agglomerates dispersed in high-pressure microsystems. Chem Eng Technol. 2012;35(11):1922–30.Google Scholar
  52. 52.
    Beinert S, Gothsch T, Kwade A. Numerical evaluation of stresses acting on particles in high-pressure microsystems using a Reynolds stress model. Chem Eng Sci. 2015;123:197–206.Google Scholar
  53. 53.
    Gothsch T, et al. High-pressure microfluidic systems (HPMS): flow and cavitation measurements in supported silicon microsystems. Microfluid Nanofluid. 2014;18(1):121–30.Google Scholar
  54. 54.
    Gothsch T, et al. Effect of cavitation on dispersion and emulsification process in high-pressure microsystems (HPMS). Chem Eng Sci. 2016;144:239–48.Google Scholar
  55. 55.
    Finke JH, et al. Multiple orifices in customized microsystem high-pressure emulsification: the impact of design and counter pressure on homogenization efficiency. Chem Eng J. 2014;248:107–21.Google Scholar
  56. 56.
    Schubert MA, Muller-Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm. 2005;61(1–2):77–86.PubMedGoogle Scholar
  57. 57.
    Ullmanns Encyclopedia of Industrial Chemistry, Dextran. 6 ed. Weinheim: Wiley-VCH; 2002.Google Scholar
  58. 58.
    Breitung-Faes S, Kwade A. Prediction of energy effective grinding conditions. Miner Eng. 2013;43–44:36–43.Google Scholar
  59. 59.
    Breitung-Faes S, Kwade A. Production of transparent suspensions by real grinding of fused corundum. Powder Technol. 2011;212(3):383–9.Google Scholar
  60. 60.
    Breitung-Faes S, Kwade A. Use of an enhanced stress model for the optimization of wet stirred media milling processes. Chem Eng Technol. 2014;37(5):1–9.Google Scholar
  61. 61.
    Kwade A. A stressing model for the description and optimization of grinding processes. Chem Eng Technol. 2003;26(2):199–205.Google Scholar
  62. 62.
    Kwade A, Blecher L, Schwedes J. Motion and stress intensity of grinding beads in a stirred media mill part II: stress intensity and its effect on comminution. Powder Technol. 1996;86:69–76.Google Scholar
  63. 63.
    Kwade A, Schwedes J. Breaking charakteristics of different materials and their effect on stress intensity and stress number in stirred media mills. Powder Technol. 2002;122:109–21.Google Scholar
  64. 64.
    Flach F, et al. Impact of formulation and operating parameters on particle size and grinding media wear in wet media milling of organic compounds—a case study for pyrene. Adv Powder Technol. 2016;27(6):2507–19.Google Scholar
  65. 65.
    Bitterlich A, et al. Challenges in nanogrinding of active pharmaceutical ingredients. Chem Eng Technol. 2014;37(5):840–6.Google Scholar
  66. 66.
    Steiner D, et al. Breakage, temperature dependency and contamination of lactose during ball milling in ethanol. Adv Powder Technol. 2016;27(4):1700–9.Google Scholar
  67. 67.
    Kumar S, Burgess DJ. Wet milling induced physical and chemical instabilities of naproxen nano-crystalline suspensions. Int J Pharm. 2014;466(1):223–32.PubMedGoogle Scholar
  68. 68.
    Flach F, Breitung-Faes S, Kwade A. Grinding media wear induced agglomeration of electrosteric stabilized particles. Colloids Surf, A: Physicochem Eng Asp. 2017;522:140–51.Google Scholar
  69. 69.
    Knieke C, et al. Nanoparticle production with stirred-media mills: opportunities and limits. Chem Eng Technol. 2010;33(9):1401–11.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carsten Schilde
    • 1
  • Jan Henrik Finke
    • 1
  • Sandra Breitung-Faes
    • 1
  • Frederik Flach
    • 1
  • Arno Kwade
    • 1
    Email author
  1. 1.Institute for Particle Technology and Center of Pharmaceutical Engineering PVZ, Technische Universität BraunschweigBrunswickGermany

Personalised recommendations