Nanocosmetics pp 217-231 | Cite as

Characterization of Penetration of Particles After Dermal Application

  • J. LademannEmail author
  • M. E. Darvin
  • M. C. Meinke
  • A. Patzelt


The effect of cosmetic formulations containing nanostructures should stabilize the actives, enhance their penetration efficiency or provide a reservoir for the actives. Exceptions are nanostructures in sunscreens and make-ups with glitter effects. They should not penetrate in the viable epidermis. Methods to investigate these promises should provide a depth resolution and, if possible, should be non-destructive. In this chapter, different methods are presented to monitor stratum corneum, hair follicle and transdermal penetration of the actives and/or nanostructures.


Sunscreens Stratum corneum Hair follicle Drug delivery Differential stripping Microdialysis Confocal Raman microscopy 


  1. 1.
    Ahmad U, Ahmad Z, Khan AA, Akhtar J, Singh SP, Ahmad FJ. Strategies in development and delivery of nanotechnology based cosmetic products. Drug Res (Stuttg); 2018.Google Scholar
  2. 2.
    Jose J, Netto G: Role of solid lipid nanoparticles as photoprotective agents in cosmetics: J Cosmet Dermatol. 2018:13, Epub ahead of print] Review. Scholar
  3. 3.
    Martini APM, Maia CP. Influence of visible light on cutaneous hyperchromias: Clinical efficacy of broad-spectrum sunscreens. Photodermatol Photoimmunol Photomed; 2018.Google Scholar
  4. 4.
    Ouyang H, Meyer K, Maitra P, Daly S, Svoboda RM, Farberg AS, Rigel DS. Realistic sunscreen durability: a randomized, double-blinded, controlled clinical study. J Drugs Dermatol. 2018;17:116–7.PubMedGoogle Scholar
  5. 5.
    Tyagi P, Subramony JA. Nanotherapeutics in oral and parenteral drug delivery: key learnings and future outlooks as we think small. J Controlled Release. 2018;272:159–68.CrossRefGoogle Scholar
  6. 6.
    Moghadas H, Saidi MS, Kashaninejad N, Nguyen NT. Challenge in particle delivery to cells in a microfluidic device. Drug Deliv Transl Res. 2017.Google Scholar
  7. 7.
    Ilic T, Pantelic I, Lunter D, Dodevic S, Markovic B, Rankovic D, Daniels R, Savic S. Critical quality attributes, in vitro release and correlated in vitro skin permeation-in vivo tape stripping collective data for demonstrating therapeutic (non) equivalence of topical semisolids: A case study of “ready-to-use” vehicles. Int J Pharm. 2017;528:253–67.CrossRefGoogle Scholar
  8. 8.
    Wolf M, Halper M, Pribyl R, Baurecht D, Valenta C. Distribution of phospholipid based formulations in the skin investigated by combined atr-ftir and tape stripping experiments. Int J Pharm. 2017;519:198–205.CrossRefGoogle Scholar
  9. 9.
    Jacobi U, Weigmann HJ, Ulrich J, Sterry W, Lademann J. Estimation of the relative stratum corneum amount removed by tape stripping. Skin Res Technol. 2005;11:91–6.CrossRefGoogle Scholar
  10. 10.
    Voegeli R, Heiland J, Doppler S, Rawlings AV, Schreier T. Efficient and simple quantification of stratum corneum proteins on tape strippings by infrared densitometry. Skin Res Technol. 2007;13:242–51.CrossRefGoogle Scholar
  11. 11.
    Weigmann HJ, Lindemann U, Antoniou C, Tsikrikas GN, Stratigos AI, Katsambas A, Sterry W, Lademann J. Uv/vis absorbance allows rapid, accurate, and reproducible mass determination of corneocytes removed by tape stripping. Skin Pharmacol Appl Skin Physiol. 2003;16:217–27.CrossRefGoogle Scholar
  12. 12.
    Pelchrzim R, Weigmann HJ, Schaefer H, Hagemeister T, Linscheid M, Shah VP, Sterry W, Lademann J. Determination of the formation of the stratum corneum reservoir for two different corticosteroid formulations using tape stripping combined with uv/vis spectroscopy. J Dtsch Dermatol Ges. 2004;2(11):914–9.CrossRefGoogle Scholar
  13. 13.
    Teichmann A, Jacobi U, Ossadnik M, Richter H, Koch S, Sterry W, Lademann J. Differential stripping: Determination of the amount of topically applied substances penetrated into the hair follicles. J Invest Dermatol. 2005;125:264–9.CrossRefGoogle Scholar
  14. 14.
    Ossadnik M, Czaika V, Teichmann A, Sterry W, Tietz HJ, Lademann J, Koch S. Differential stripping: introduction of a method to show the penetration of topically applied antifungal substances into the hair follicles. Mycoses. 2007;50:457–62.CrossRefGoogle Scholar
  15. 15.
    Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol. 2004;122:14–9.CrossRefGoogle Scholar
  16. 16.
    Zhang HY, Zhang K, Li Z, Zhao JH, Zhang YT, Feng NP. In vivo microdialysis for dynamic monitoring of the effectiveness of nano-liposomes as vehicles for topical psoralen application. Biol Pharm Bull. 2017;40:1996–2000.CrossRefGoogle Scholar
  17. 17.
    Yu DG, Ding HF, Mao YQ, Liu M, Yu B, Zhao X, Wang XQ, Li Y, Liu GW, Nie SB, Liu S, Zhu ZA. Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model. Acta Pharmacol Sin. 2013;34:393–402.CrossRefGoogle Scholar
  18. 18.
    Zhu YJ, Choe CS, Ahlberg S, Meinke MC, Alexiev U, Lademann J, Darvin ME. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, raman microscopy, and surface-enhanced raman scattering microscopy. J Biomed Opt. 2015;20.CrossRefGoogle Scholar
  19. 19.
    Choe C, Lademann J, Darvin ME. Confocal raman microscopy for investigating the penetration of various oils into the human skin in vivo. J Dermatol Sci. 2015;79:176–8.CrossRefGoogle Scholar
  20. 20.
    Huang H, Shi H, Feng S, Lin J, Chen W, Huang Z, Li Y, Yu Y, Lin D, Xu Q, Chen R. Silver nanoparticle based surface enhanced raman scattering spectroscopy of diabetic and normal rat pancreatic tissue under near-infrared laser excitation. Laser Phys Lett 2013;10.CrossRefGoogle Scholar
  21. 21.
    Choe C, Lademann J, Darvin ME. A depth-dependent profile of the lipid conformation and lateral packing order of the stratum corneum in vivo measured using raman microscopy. Analyst. 2016;141:1981–7.CrossRefGoogle Scholar
  22. 22.
    Choe C, Lademann J, Darvin ME. Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo. Analyst. 2016;141:6329–37.CrossRefGoogle Scholar
  23. 23.
    Choe C, Schleusener J, Lademann J, Darvin ME. Keratin-water-nmf interaction as a three layer model in the human stratum corneum using in vivo confocal raman microscopy. Scientific Reports 2017:7.Google Scholar
  24. 24.
    Choe C, Schleusener J, Lademann J, Darvin ME. In vivo confocal raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils. J Dermatol Sci. 2017;87:183–91.CrossRefGoogle Scholar
  25. 25.
    Darvin ME, Konig K, Kellner-Hoefer M, Breunig HG, Werncke W, Meinke MC, Patzelt A, Sterry W, Lademann J. Safety assessment by multiphoton fluorescence/second harmonic generation/hyper-rayleigh scattering tomography of zno nanoparticles used in cosmetic products. Skin Pharmacology and Physiology. 2012;25:219–26.CrossRefGoogle Scholar
  26. 26.
    Choe CS, Schleusener J, Lademann J, Darvin ME. Human skin in vivo has a higher skin barrier function than porcine skin ex vivo—comprehensive raman microscopic study of the stratum corneum. J Biophotonics. 2018; Accepted 2018; Scholar
  27. 27.
    Shirshin EA, Gurfinkel YI, Priezzhev AV, Fadeev VV, Lademann J, Darvin ME. Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: Assessment of blood capillaries and structural proteins localization. Scientific Reports 2017;7.Google Scholar
  28. 28.
    Zastrow L, Meinke MC, Albrecht S, Patzelt A, Lademann J. From uv protection to protection in the whole spectral range of the solar radiation: new aspects of sunscreen development. Adv Exp Med Biol. 2017;996:311–8.CrossRefGoogle Scholar
  29. 29.
    Lademann J, Weigmann HJ, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharm Appl Skin Phys. 1999;12:247–56.CrossRefGoogle Scholar
  30. 30.
    Nokhodchi A, Shokri J, Dashbolaghi A, Hassan-Zadeh D, Ghafourian T, Barzegar-Jalali M. The enhancement effect of surfactants on the penetration of lorazepam through rat skin. Int J Pharm. 2003;250:359–69.CrossRefGoogle Scholar
  31. 31.
    Dai Y, Zhang Q, Jiang Y, Yin L, Zhang X, Chen Y, Cai X. Screening of differentially expressed proteins in psoriasis vulgaris by two-dimensional gel electrophoresis and mass spectrometry. Exp Ther Med. 2017;14:3369–74.CrossRefGoogle Scholar
  32. 32.
    Stahl J, Wohlert M, Kietzmann M. Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points. Bmc Pharm Toxicol. 2012;13.Google Scholar
  33. 33.
    Mathes C, Brandner JM, Laue M, Raesch SS, Hansen S, Failla AV, Vidal S, Moll I, Schaefer UF, Lehr CM. Tight junctions form a barrier in porcine hair follicles. Eur J Cell Biol. 2016;95:89–99.CrossRefGoogle Scholar
  34. 34.
    Tachaprutinun A, Meinke MC, Richter H, Pan-In P, Wanichwecharungruang S, Knorr F, Lademann J, Patzelt A. Comparison of the skin penetration of garcinia mangostana extract in particulate and non-particulate form. Eur J Pharm Biopharm. 2014;86:307–13.CrossRefGoogle Scholar
  35. 35.
    Patzelt A, Richter H, Knorr F, Schafer U, Lehr CM, Dahne L, Sterry W, Lademann J. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150:45–8.CrossRefGoogle Scholar
  36. 36.
    Patzelt A, Richter H, Dähne L, Walden P, Wiesmüller KH, Wank U, Sterry W, Lademann J. Influence of the vehicle on the penetration of particles into the hair follicles. Int J Pharm. 2011;3:307–14.Google Scholar
  37. 37.
    Mak WC, Richter H, Knorr F, Patzelt A, Darvin ME, Rühl E, Renneberg R, Lademann J. Triggered drug release from nanoparticles for follicular targeting using ira irradiation. Acta Biomater. 2016;30:388–96.CrossRefGoogle Scholar
  38. 38.
    Pyo SM, Hespeler D, Keck CM, Muller RH. Dermal miconazole nitrate nanocrystals - formulation development, increased antifungal efficacy & skin penetration. Int J Pharm. 2017;531:350–9.CrossRefGoogle Scholar
  39. 39.
    Bors L, Bajza A, Kocsis D, Erdo F. Caffeine: traditional and new therapeutic indications and use as a dermatological model drug. Orv Hetil. 2018;159:384–90.CrossRefGoogle Scholar
  40. 40.
    Türkoğlu M, Uğurlu T, Gedik G, Yılmaz AM, Süha YA. In vivo evaluation of black and green tea dermal products against uv radiation. Drug Discov Ther. 2010;4:362–7.PubMedGoogle Scholar
  41. 41.
    Ascencio SM, Choe C, Meinke MC, Muller RH, Maksimov GV, Wigger-Alberti W, Lademann J, Darvin ME. Confocal raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo. Eur J Pharm Biopharm. 2016;104:51–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. Lademann
    • 1
    • 2
    • 3
    • 4
    Email author
  • M. E. Darvin
    • 1
    • 2
    • 3
    • 4
  • M. C. Meinke
    • 1
    • 2
    • 3
    • 4
  • A. Patzelt
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Dermatology, Venerology and AllergologyCenter of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Freie Universität BerlinBerlinGermany
  3. 3.Humboldt-Universität zu BerlinBerlinGermany
  4. 4.Berlin Institute of HealthBerlinGermany

Personalised recommendations